Research Article
BibTex RIS Cite

THE EFFECT OF INFILL PATTERN IN 3-DIMENSIONAL PRINTING ON TENSILE STRENGTH

Year 2023, Volume: 11 Issue: 1, 336 - 348, 27.03.2023
https://doi.org/10.21923/jesd.1095594

Abstract

In this study, test specimens with different infill patterns and orientations were manufactured by using one of the 3D printing technologies, Fused Deposition Modeling (FDM) manufacturing technology, and polylactic acid (PLA) material, and the effects of the infill pattern and direction on the tensile strength were investigated. 10 samples of the same weight with five different infill patterns (concentric, grid, triangle, 3D hexagon, zig-zag) and three different infill pattern angles (0°, 45°, 90°) and one solid sample (100% infill) were fabricated with FDM technology. A mechanical tensile test was applied to all specimens. As a result of the mechanical tensile test; it was determined that the second specimen (90° infill pattern angle, concentric) and eleventh specimen (90° fill pattern angle, zig zag) had higher strength than the other specimens with the same weight. It has been seen that the high strength of the concentric specimen is related to the direction of the infill pattern, and therefore the selection of the infill pattern angles and directions in the direction of the applied forces provides a great advantage. In addition, as a result of the tensile test, it was observed that the specific strength of the second specimen with 30% infill was approximately 25% higher than the first specimen with 100% infill. This study has shown that more durable, lighter and low-cost designs can be achieved by planning the infill type and angle for the 3D printing process according to the working and loading conditions.

References

  • Agencies of the U.S. Department of Defense, Standard Test Method for Tensile Properties of Plastics, ASTM International, Designation: D638 – 14, 2015.
  • Akın E., The Investigation of Notched Tensile Test with Finite element method, Master Thesis, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Haziran 2006.
  • Bacak S, Özkavak H. V., Sofu M. M., Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries. Journal of the Institute of Science and Technology, 11(2), 1444-1454, 2021.
  • Bozkurt Y., Gülsoy H. Ö., Karayel E., The Use of Additive Manufacturing Technologies in the Production of Medical Equipment, El-Cezerî Journal of Science and Engineering, 8 (2), 962-980, 2021.
  • Cristian D., Laszlo R., Effects of Raster Orientation, Infill Rate and Infıll Pattern on the Mechanical Properties of 3B Printed Materials, Acta Universitatis Cibiniensis – Technical Series, 23-29, 2017.
  • Dey A., Yodo N; A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics: Review, Journal of Manufacturing and Materials Processing, 2019.
  • Dizon J. R. C., Espera, A. H., Chen Q., Advincula R. C., Mechanical Characterization of 3D-Printed Polymers, Additive Manufacturing, 20, 44-67, 2018.
  • Gibson L., Rosen D., Stucker B., Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., Springer, New York, 1-2, 2015.
  • Günay M., Gündüz S., Yılmaz H., Yaşar N., Kaçar R., Optimization of 3D Printing Operation Parameters for Tensile Strength in PLA Based Specimen, Journal of Polytechnic, 23(1), 73-79, 2020.
  • Hanon M. M., Marczis R., Zsidai L., Influence of the 3B Printing Process Settings on Tensile Strength of PLA and HT-PLA, Periodica Polytechnica Mechanical Engineering, 65(1), 38–46, 2021.
  • Harshitha, V., Rao, S. S., Design and analysis of ISO standard bolt and nut in FDM 3B printer using PLA and ABS materials. Materials Today: Proceedings, 19(2), 583-588, 2019.
  • Iwata T., Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics, Sustainable Chemistry, 3210- 3215, 2015. Kozior, T., Kundera, C., Evaluation of the influence of parameters of FDM technology on the selected mechanical properties of models, Procedia Engineering, 192, 463-468, 2017.
  • Mazurchevici A. D., Nedelcu D., Popa R., Additive manufacturing of composite materials by FDM technology: A review, Indian Journal of Engineering & Materials Sciences, Vol. 27, 179-192, 2020.
  • Pakkanen J., Manfredi D., Minetola P. and Iuliano L., About the Use of Recycled or Biodegradable Filaments for Sustainability of 3B Printing, State of the Art and Research Opportunities, Springer International Publishing AG, 776-785, 2017.
  • Rismalia M., Hidajat S. C., Permana I. G. R., Hadisujoto B., Muslimin M. and Triawan F., Infill pattern and density effects on the tensile properties of 3B printed PLA material, 4th Annual Applied Science and Engineering Conference Series 1402, 2019.
  • Sürmen, H. K. Additive Manufacturing (3D Printing): Technologies and Applications. Uludağ University Journal of The Faculty of Engineering, 24(2), 373-392, 2019.
  • Ultimaker. PLA TDS. https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS. Yayın tarihi Mayıs 16, 2017. Erişim tarihi Aralık 5, 2021.
  • Yarwindran M., Sa’aban N. A., Ibrahim M., Periyasamy R., Thermoplastic Elastomer Infill Pattern Impact on Mechanical Properties 3B Printed Customized Orthotic Insole, ARPN Journal of Engineering and Applied Sciences, 11(10), 6519- 6524, 2006.

3 BOYUTLU BASKIDA DOLGU BİÇİMİNİN ÇEKME DAYANIMINA ETKİSİ

Year 2023, Volume: 11 Issue: 1, 336 - 348, 27.03.2023
https://doi.org/10.21923/jesd.1095594

Abstract

3B baskı teknolojilerinden biri olan ergiterek yığma ile modelleme (FDM) üretim teknolojisi ve polilaktik asit (PLA) malzemesi kullanarak farklı dolgu deseni ve yönüne sahip çekme testi numuneleri üretilmiş ve dolgu deseni ve yönünün çekme dayanımına olan etkileri incelenmiştir. Beş farklı dolgu deseni (eş merkezli, ızgara, üçgen, 3B altıgen, zik zak) ve üç farklı dolgu desen açısına (0°, 45°, 90°) sahip aynı ağırlıkta 10 adet numune ve bir adet de tam dolu numune FDM teknolojisi ile basılarak toplam 11 adet numune üretilmiştir. Tüm numunelere mekanik çekme testi uygulanmıştır. Mekanik çekme testi sonucunda; ikinci numunenin (90° dolgu desen açılı, eş merkezli), aynı ağırlıktaki diğer numunelere göre daha yüksek dayanıma sahip olduğu tespit edilmiştir. Eş merkezli numunenin aynı ağırlıktaki diğer numunelere göre dayanımının yüksek olması, baskı desen yönünün çekme yönüyle bağlantılı olduğu ve dolayısıyla baskı sırasında baskı desen açılarının ve yönlerinin uygulanan kuvvetler doğrultusunda seçilmesinin büyük avantaj sağladığı görülmüştür. Ayrıca, %30 doluluk oranındaki ikinci numunenin %100 doluluk oranına sahip birinci numuneye göre özgül dayanımının yaklaşık %25 oranında daha yüksek olduğu çekme testi sonucunda gözlemlenmiştir. Bu nedenle parçaların çalışma şartlarında maruz kaldıkları yüklenme durumları dikkate alınarak tam dolulukla basılmış parçalarla aynı dayanıma sahip daha hafif ve daha az maliyetli tasarımların yapılabileceği sonucu ortaya çıkmıştır.

References

  • Agencies of the U.S. Department of Defense, Standard Test Method for Tensile Properties of Plastics, ASTM International, Designation: D638 – 14, 2015.
  • Akın E., The Investigation of Notched Tensile Test with Finite element method, Master Thesis, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Haziran 2006.
  • Bacak S, Özkavak H. V., Sofu M. M., Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries. Journal of the Institute of Science and Technology, 11(2), 1444-1454, 2021.
  • Bozkurt Y., Gülsoy H. Ö., Karayel E., The Use of Additive Manufacturing Technologies in the Production of Medical Equipment, El-Cezerî Journal of Science and Engineering, 8 (2), 962-980, 2021.
  • Cristian D., Laszlo R., Effects of Raster Orientation, Infill Rate and Infıll Pattern on the Mechanical Properties of 3B Printed Materials, Acta Universitatis Cibiniensis – Technical Series, 23-29, 2017.
  • Dey A., Yodo N; A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics: Review, Journal of Manufacturing and Materials Processing, 2019.
  • Dizon J. R. C., Espera, A. H., Chen Q., Advincula R. C., Mechanical Characterization of 3D-Printed Polymers, Additive Manufacturing, 20, 44-67, 2018.
  • Gibson L., Rosen D., Stucker B., Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., Springer, New York, 1-2, 2015.
  • Günay M., Gündüz S., Yılmaz H., Yaşar N., Kaçar R., Optimization of 3D Printing Operation Parameters for Tensile Strength in PLA Based Specimen, Journal of Polytechnic, 23(1), 73-79, 2020.
  • Hanon M. M., Marczis R., Zsidai L., Influence of the 3B Printing Process Settings on Tensile Strength of PLA and HT-PLA, Periodica Polytechnica Mechanical Engineering, 65(1), 38–46, 2021.
  • Harshitha, V., Rao, S. S., Design and analysis of ISO standard bolt and nut in FDM 3B printer using PLA and ABS materials. Materials Today: Proceedings, 19(2), 583-588, 2019.
  • Iwata T., Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics, Sustainable Chemistry, 3210- 3215, 2015. Kozior, T., Kundera, C., Evaluation of the influence of parameters of FDM technology on the selected mechanical properties of models, Procedia Engineering, 192, 463-468, 2017.
  • Mazurchevici A. D., Nedelcu D., Popa R., Additive manufacturing of composite materials by FDM technology: A review, Indian Journal of Engineering & Materials Sciences, Vol. 27, 179-192, 2020.
  • Pakkanen J., Manfredi D., Minetola P. and Iuliano L., About the Use of Recycled or Biodegradable Filaments for Sustainability of 3B Printing, State of the Art and Research Opportunities, Springer International Publishing AG, 776-785, 2017.
  • Rismalia M., Hidajat S. C., Permana I. G. R., Hadisujoto B., Muslimin M. and Triawan F., Infill pattern and density effects on the tensile properties of 3B printed PLA material, 4th Annual Applied Science and Engineering Conference Series 1402, 2019.
  • Sürmen, H. K. Additive Manufacturing (3D Printing): Technologies and Applications. Uludağ University Journal of The Faculty of Engineering, 24(2), 373-392, 2019.
  • Ultimaker. PLA TDS. https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS. Yayın tarihi Mayıs 16, 2017. Erişim tarihi Aralık 5, 2021.
  • Yarwindran M., Sa’aban N. A., Ibrahim M., Periyasamy R., Thermoplastic Elastomer Infill Pattern Impact on Mechanical Properties 3B Printed Customized Orthotic Insole, ARPN Journal of Engineering and Applied Sciences, 11(10), 6519- 6524, 2006.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Özbil Özmen 0000-0001-8813-5097

Hasan Kemal Sürmen 0000-0001-8045-9193

Aziz Sezgin 0000-0001-6861-5309

Publication Date March 27, 2023
Submission Date March 30, 2022
Acceptance Date October 14, 2022
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Özmen, Ö., Sürmen, H. K., & Sezgin, A. (2023). 3 BOYUTLU BASKIDA DOLGU BİÇİMİNİN ÇEKME DAYANIMINA ETKİSİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(1), 336-348. https://doi.org/10.21923/jesd.1095594