Research Article
BibTex RIS Cite

FOTOKİMYASAL İLERİ OKSİDASYON PROSESLERİ İLE FLOROKİNOLON GRUBU ANTİBİYOTİKLERİN GİDERİM VERİMLERİNİN ARAŞTIRILMASI VE TOKSİSİTELERİNİN DEĞERLENDİRMESİ

Year 2023, Volume: 11 Issue: 3, 1202 - 1212, 28.09.2023
https://doi.org/10.21923/jesd.1317749

Abstract

Son yıllarda, ileri oksidasyon prosesleri, ilaç etken maddelerinin su ve atıksulardan uzaklaştırılmasında umut verici yöntemler olarak öne çıkmaktadır. Bu deneysel çalışmada, siprofloksasinin etkin bir şekilde arıtımını sağlamak amacıyla sülfat radikali bazlı fotokimyasal ileri oksidasyon prosesleri olan persülfat/UV-C (PS/UV-C) ve persülfat/UV-A (PS/UV-A) yöntemlerinin uygulanabilirliği araştırılmıştır. PS/UV-C prosesinde, 0,05 mM PS dozunda ve 120 dakikalık reaksiyon süresinde %98 giderim verimi elde edilirken, 0,1 mM ve 0,25 mM dozlarında, %100 giderim verimi 60 dakikalık süre içerisinde sağlanmıştır. PS/UV-A prosesi ise, tüm PS konsantrasyonları için %88 ile %92 aralığında giderim verimleri göstermiştir. Optimum koşullar altında su matrisinin proses verimine olan etkisini değerlendirmek amacıyla, yüzeysel su örneklerinde siprofloksasin giderim verimi araştırılmıştır. Elde edilen sonuçlar, yüzeysel su örneklerinin kullanıldığı durumlarda siprofloksasinin tamamen giderilmesi için gereken sürenin sentetik numunelerin arıtımı için gerekli süreye kıyasla yüksek olduğunu ortaya koymuştur. Ayrıca, deneyler başlangıç pH değerinin proses verimi üzerinde önemli bir etkisi olmadığı göstermiştir. Toksisite analizleri, Aliivibrio fischeri üzerinde herhangi bir inhibisyon etkisi olmadığını göstermiştir. Bu bulgular, PS/UV-C prosesinin siprofloksasin gibi ilaç etken maddelerinin arıtımı için umut vadeden bir yöntem olduğunu göstermektedir.

References

  • Abbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A. Iqbal, M., 2018. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Science of the Total Environment, 626, 1295-1309.
  • Ao, X., Liu, W., 2017. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide. Chemical Engineering Journal, 313, 629-637.
  • Ao, X., Liu, W., Sun, W., Cai, M., Ye, Z., Yang, C., Lu, Z., Li, C., 2018. Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation: Kinetics, mechanism, and genotoxicity. Chemical Engineering Journal, 345, 87–97.
  • Ao, X., Sun, W., Li, S., Yang, C., Li, C., Lu, Z., 2019. Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation. Chemical Engineering Journal, 361, 1053–1062.
  • Barbossa, M.O., Moreira, N.F.F., Riberio, A.R., Pereira, M.F.R., Silva, A.M.T., 2016. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257-279.
  • Berruti, I., Nahim-Granados, S., Abeledo-Lameiro, M.J., Oller, I., Polo-López, M.I., 2021. UV-C Peroxymonosulfate Activation for Wastewater Regeneration: Simultaneous Inactivation of Pathogens and Degradation of Contaminants of Emerging Concern. Molecules, 26, 4890.
  • Boczkaj, G., Fernandes, A., 2017. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608-633.
  • Deblonde, T., Cossu-Leguille, C., Hartemann, P., 2011. Emerging pollutants in wastewater: a review of the literature. International journal of hygiene and environmental health, 214, 6, 442–448.
  • Deng, J., Wu, G., Yuan, S., Zhan, X., Wang, W., Hu, Z., 2019. Ciprofloxacin degradation in UV/chlorine advanced oxidation process: Influencing factors, mechanisms and degradation pathways. Journal of Photochemistry and Photobiology A: Chemistry, 371, 151-158.
  • Fang, G., Gao, J., Dionysiou, D.D., Liu, C., Zhou, D., 2013. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environmental science & technology, 47, 9, 4605–4611.
  • Fernandes, A., Makos, P., Boczkaj, G., 2018. Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions. Journal of Cleaner Production, 195, 374-384.
  • Gao, Y.Q., Gao, N.Y., Deng, Y., Yang, Y.Q., Ma, Y., 2012. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal, 195, 248–253.
  • Ghauch, A., Baalbaki, A., Amasha, M., El Asmar, R., Tantawi, O., 2017. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water. Chemical Engineering Journal, 317, 1012-1025.
  • Gülcan, H., 2019. Antibiyotiklerin Fotokimyasal İleri Oksidasyon Prosesleri İle Giderimi. Yayınlanmış Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Türkiye.
  • Huang, J., Zhang, H., 2019. Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review. Environment international, 133(Pt A), 105141.
  • Karci, A., Arslan-Alaton, I., Ölmez-Hanci, T., Bekbölet, M., 2012. Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: Oxidation products and toxicity evolution. Journal of Photochemistry and Photobiology A:Chemistry, 230, 1, 65-73.
  • Lado Ribeiro, A.R., Moreira, N.F.F., Puma, G.L., Silva, A.M.T., 2019. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chemical Engineering Journal, 363, 155-173.
  • Larsson, D.G.J., Pedro, C., Paxeus, N., 2007. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148, 751–755.
  • Li, J., Li, Y., Xiong, Z., Yao, G., Lai, B., 2019. The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review. Chinese Chemical Letters, 30, 12, 2139-2146.
  • Lin, C.C., Wu, M.S., 2014. Degradation of ciprofloxacin by UV/S2O82- process in a large photoreactor. Journal of Photochemistry and Photobiology A: Chemistry, 285, 1–6.
  • Liu, Y., He, X., Fu, Y., Dionysiou, D.D., 2016. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254nm activation of persulfate. Journal of hazardous materials, 305, 229–239.
  • Liu, C., Wu, B., Chen, X., 2018. Sulfate radical-based oxidation for sludge treatment: A review. Chemical Engineering Journal, 335, 865-875.
  • Liu, L., Gao, J., Liu, P., Duan, X., Han, N., Li, F., Sofianos, M.V., Wang, S., Tan, X., Liu, S., 2019. Novel applications of perovskite oxide via catalytic peroxymonosulfate advanced oxidation in aqueous systems for trace L-cysteine detection. Journal of colloid and interface science, 545, 311–316.
  • Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C., 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. The Science of the total environment, 473-474, 619–641. Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Li, L., Fu, Y., Li, B., Zhang, M., Qin, L., Liu, S., Yang, L., 2021. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere, 275, 130104.
  • Matin, A., Jillani, S.M.S., Baig, U., Ihsanullah, I., Alhooshani, K., 2023. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: Comparison of removal efficiencies and in-depth analysis of rejection mechanisms. Journal of environmental management, 338, 117682.
  • McKinney, C.W., Pruden, A., 2012. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environmental science & technology, 46, 24, 13393–13400.
  • Michael, S.G., Michael-Kordatou, I., Nahim-Granados, S., Polo-Lopez, M.I., Rocha, J., Martinez-Piernas, A.B., Fernandez-Ibanez, P., Agüera, A., Manaia, C.M., Fatta-Kassinos, D., 2020. Investigating the impact of UV-C/H2O2 and sunlight/H2O2 on the removal of antibiotics, antibiotic resistance determinants and toxicity present in urban wastewater. Chemical Engineering Journal, 388, 124383.
  • Nasseri, S., Mahvi, A.H., Seyedsalehi, M., Yaghmaeian, K., Nabizadeh, R., Alimohammadi, M., Safari, G.H., 2017. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix. Journal of Molecular Liquids, 241, 704-714.
  • Norzaee, S., Bazrafshan, E., Djahed, B., Mostafapour, F.K., Khaksefidi, R., 2017. UV Activation of Persulfate for Removal of Penicillin G Antibiotics in Aqueous Solution. Hindawi The Scientific World Journal, 2017.
  • Pereira, A.M., Silva, L.J., Meisel, L.M., Lino, C.M., Pena, A., 2015. Environmental impact of pharmaceuticals from Portuguese wastewaters: geographical and seasonal occurrence, removal and risk assessment. Environmental research, 136, 108–119.
  • Pirsaheb, M., Hossaini, H., Janjani, H., 2020. Reclamation of hospital secondary treatment effluent by sulfate radicals based–advanced oxidation processes (SR-AOPs) for removal of antibiotics. Microchemical Journal, 153, 104430.
  • Ribeiro, A.L., Moreira, N., Puma, G.L., Silva, A., 2019. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chemical Engineering Journal, 363, 155-173.
  • Richards, L.A., Guo, S., Lapworth, D.J., White, D., Civil, W., Wilson, G.J.L., Lu, C., Kumar, A., Ghosh, A., Khamis, K., Krause, S., Polya, D.A., Gooddy, D.C., 2023. Emerging organic contaminants in the River Ganga and key tributaries in the middle Gangetic Plain, India: Characterization, distribution & controls. Environmental Pollution 327, 121626.
  • Rodriguez, S.G., Rodriguez, E., Singh, D.N., Chueca, J.R., 2018. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water, 10, 1828.
  • Sadeghi, M., Sadeghi, R., Ghasemi, B., Gashtasb, M., Ahmad, A., 2018. Removal of Azithromycin from Aqueous Solution Using UV- Light Alone and UV Plus Persulfate Processes. Iranian Journal of Pharmaceutical Research, 17, 54-64.
  • Shad, A., Chen, J., Qu, R., Dar, A.A., Bin-Jumah, M., Allam, A.A., Wang, Z., 2020. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways. Chemical Engineering Journal, 398, 125357.
  • Topal, M., Uslu Şenel, G., Arslan Topal, E., Öbek, E., 2015. Antibiyotikler ve kullanım alanları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31, 3, 121-127.
  • Ucun, O. K., Montazeri, B., Arslan-Alaton, I., & Olmez-Hanci, T., 2021. Degradation of 3,5-dichlorophenol by UV-C photolysis and UV-C-activated persulfate oxidation process in pure water and simulated tertiary treated urban wastewater. Environmental technology, 42, 25, 3877–3888.
  • Valavanidis, A., Vlachogianni, T., 2015. Ecotoxicity Test Methods and Ecological Risk Assessment. Aquatic and Terrestrial Ecotoxicology Tests under the Guidelines of International Organizations. Science Advances on Environmental Chemistry. Toxicology and Ecotoxicology Issues, 1-29.
  • Xia, X., Zhu, F., Li, J., Yang, H., Wei, L., Li, Q., Jiang, J., Zhang, G., Zhao, Q., 2020. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Frontiers in chemistry, 8, 592056.
  • Yin, K., Deng, L., Luo, J., Crittenden, J., Liu, C., Wei, Y., Wang, L., 2018. Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, byproducts, toxicity evaluation and trichloromethane formation potential. Chemical Engineering Journal, 351, 867-877.
  • Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y., Qu, J., 2011. Photodegradation and toxicity changes of antibiotics in UV and UV/H(2)O(2) process. Journal of hazardous materials, 185, 2-3, 1256–1263.
  • Zhang, Y., Zhao, Y., Maqbool, F., Hu, Y., 2022. Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: A review. Journal of Water Process Engineering, 45, 102496.
  • Zhao, D., Liao, X., Yan, X., Huling, S. G., Chai, T., Tao, H., 2013. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. Journal of Hazardous Materials, 254-255, 228–235.
  • Zhao, Q., Mao, Q., Zhou, Y., Wei, J., Liu, X., Yang, J., Luo, L., Zhang, J., Chen, H., Chen, H., Tang, L., 2017. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications. Chemosphere, 189, 224–238.
  • Zhu, Y., Wei, M., Pan, Z., Li, L., Liang, J., Yu, K., Zhang, Y., 2020. Ultraviolet/peroxydisulfate degradation of ofloxacin in seawater: Kinetics, mechanism and toxicity of products. Science of the total environment, 705, 135960.

ASSESSMENT OF REMOVAL EFFICIENCIES AND TOXICITY OF FLUOROQUINOLONE GROUP ANTIBIOTICS USING PHOTOCATALYTIC ADVANCED OXIDATION PROCESSES

Year 2023, Volume: 11 Issue: 3, 1202 - 1212, 28.09.2023
https://doi.org/10.21923/jesd.1317749

Abstract

Advanced oxidation processes have emerged as a promising method for removing pharmaceutical compounds from water and wastewater. This experimental study investigated the feasibility of sulfate radical-based photocatalytic advanced oxidation processes, specifically persulfate/UV-C (PS /UV-C) and persulfate/UV-A (PS /UV-A), to effectively remove ciprofloxacin. In the PS /UV-C process, a dosage of 0.05 mM persulfate and a reaction time of 120 minutes resulted in a removal efficiency of 98%, while dosages of 0.1 mM and 0.25 mM achieved complete removal (100% removal efficiency) within 60 minutes. The PS /UV-A procedure resulted in removal efficiencies of 88% to 92% for all persulfate concentrations. To evaluate the influence of the water matrix on the process efficiency, the removal efficiency of ciprofloxacin was investigated in surface water samples. The results showed that the treatment time required for complete removal of ciprofloxacin was longer in surface water samples than in synthetic samples. Furthermore, the experiments showed that the initial pH had no significant effect on the process efficiency. Toxicity analysis showed no inhibitory effect on Aliivibrio fischeri. These results underline the promising potential of the PS /UV-C process as a method for removing active pharmaceutical ingredients such as ciprofloxacin.

References

  • Abbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A. Iqbal, M., 2018. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Science of the Total Environment, 626, 1295-1309.
  • Ao, X., Liu, W., 2017. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide. Chemical Engineering Journal, 313, 629-637.
  • Ao, X., Liu, W., Sun, W., Cai, M., Ye, Z., Yang, C., Lu, Z., Li, C., 2018. Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation: Kinetics, mechanism, and genotoxicity. Chemical Engineering Journal, 345, 87–97.
  • Ao, X., Sun, W., Li, S., Yang, C., Li, C., Lu, Z., 2019. Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation. Chemical Engineering Journal, 361, 1053–1062.
  • Barbossa, M.O., Moreira, N.F.F., Riberio, A.R., Pereira, M.F.R., Silva, A.M.T., 2016. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257-279.
  • Berruti, I., Nahim-Granados, S., Abeledo-Lameiro, M.J., Oller, I., Polo-López, M.I., 2021. UV-C Peroxymonosulfate Activation for Wastewater Regeneration: Simultaneous Inactivation of Pathogens and Degradation of Contaminants of Emerging Concern. Molecules, 26, 4890.
  • Boczkaj, G., Fernandes, A., 2017. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608-633.
  • Deblonde, T., Cossu-Leguille, C., Hartemann, P., 2011. Emerging pollutants in wastewater: a review of the literature. International journal of hygiene and environmental health, 214, 6, 442–448.
  • Deng, J., Wu, G., Yuan, S., Zhan, X., Wang, W., Hu, Z., 2019. Ciprofloxacin degradation in UV/chlorine advanced oxidation process: Influencing factors, mechanisms and degradation pathways. Journal of Photochemistry and Photobiology A: Chemistry, 371, 151-158.
  • Fang, G., Gao, J., Dionysiou, D.D., Liu, C., Zhou, D., 2013. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environmental science & technology, 47, 9, 4605–4611.
  • Fernandes, A., Makos, P., Boczkaj, G., 2018. Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions. Journal of Cleaner Production, 195, 374-384.
  • Gao, Y.Q., Gao, N.Y., Deng, Y., Yang, Y.Q., Ma, Y., 2012. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal, 195, 248–253.
  • Ghauch, A., Baalbaki, A., Amasha, M., El Asmar, R., Tantawi, O., 2017. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water. Chemical Engineering Journal, 317, 1012-1025.
  • Gülcan, H., 2019. Antibiyotiklerin Fotokimyasal İleri Oksidasyon Prosesleri İle Giderimi. Yayınlanmış Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Türkiye.
  • Huang, J., Zhang, H., 2019. Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review. Environment international, 133(Pt A), 105141.
  • Karci, A., Arslan-Alaton, I., Ölmez-Hanci, T., Bekbölet, M., 2012. Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: Oxidation products and toxicity evolution. Journal of Photochemistry and Photobiology A:Chemistry, 230, 1, 65-73.
  • Lado Ribeiro, A.R., Moreira, N.F.F., Puma, G.L., Silva, A.M.T., 2019. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chemical Engineering Journal, 363, 155-173.
  • Larsson, D.G.J., Pedro, C., Paxeus, N., 2007. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148, 751–755.
  • Li, J., Li, Y., Xiong, Z., Yao, G., Lai, B., 2019. The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review. Chinese Chemical Letters, 30, 12, 2139-2146.
  • Lin, C.C., Wu, M.S., 2014. Degradation of ciprofloxacin by UV/S2O82- process in a large photoreactor. Journal of Photochemistry and Photobiology A: Chemistry, 285, 1–6.
  • Liu, Y., He, X., Fu, Y., Dionysiou, D.D., 2016. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254nm activation of persulfate. Journal of hazardous materials, 305, 229–239.
  • Liu, C., Wu, B., Chen, X., 2018. Sulfate radical-based oxidation for sludge treatment: A review. Chemical Engineering Journal, 335, 865-875.
  • Liu, L., Gao, J., Liu, P., Duan, X., Han, N., Li, F., Sofianos, M.V., Wang, S., Tan, X., Liu, S., 2019. Novel applications of perovskite oxide via catalytic peroxymonosulfate advanced oxidation in aqueous systems for trace L-cysteine detection. Journal of colloid and interface science, 545, 311–316.
  • Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C., 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. The Science of the total environment, 473-474, 619–641. Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Li, L., Fu, Y., Li, B., Zhang, M., Qin, L., Liu, S., Yang, L., 2021. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere, 275, 130104.
  • Matin, A., Jillani, S.M.S., Baig, U., Ihsanullah, I., Alhooshani, K., 2023. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: Comparison of removal efficiencies and in-depth analysis of rejection mechanisms. Journal of environmental management, 338, 117682.
  • McKinney, C.W., Pruden, A., 2012. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environmental science & technology, 46, 24, 13393–13400.
  • Michael, S.G., Michael-Kordatou, I., Nahim-Granados, S., Polo-Lopez, M.I., Rocha, J., Martinez-Piernas, A.B., Fernandez-Ibanez, P., Agüera, A., Manaia, C.M., Fatta-Kassinos, D., 2020. Investigating the impact of UV-C/H2O2 and sunlight/H2O2 on the removal of antibiotics, antibiotic resistance determinants and toxicity present in urban wastewater. Chemical Engineering Journal, 388, 124383.
  • Nasseri, S., Mahvi, A.H., Seyedsalehi, M., Yaghmaeian, K., Nabizadeh, R., Alimohammadi, M., Safari, G.H., 2017. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix. Journal of Molecular Liquids, 241, 704-714.
  • Norzaee, S., Bazrafshan, E., Djahed, B., Mostafapour, F.K., Khaksefidi, R., 2017. UV Activation of Persulfate for Removal of Penicillin G Antibiotics in Aqueous Solution. Hindawi The Scientific World Journal, 2017.
  • Pereira, A.M., Silva, L.J., Meisel, L.M., Lino, C.M., Pena, A., 2015. Environmental impact of pharmaceuticals from Portuguese wastewaters: geographical and seasonal occurrence, removal and risk assessment. Environmental research, 136, 108–119.
  • Pirsaheb, M., Hossaini, H., Janjani, H., 2020. Reclamation of hospital secondary treatment effluent by sulfate radicals based–advanced oxidation processes (SR-AOPs) for removal of antibiotics. Microchemical Journal, 153, 104430.
  • Ribeiro, A.L., Moreira, N., Puma, G.L., Silva, A., 2019. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chemical Engineering Journal, 363, 155-173.
  • Richards, L.A., Guo, S., Lapworth, D.J., White, D., Civil, W., Wilson, G.J.L., Lu, C., Kumar, A., Ghosh, A., Khamis, K., Krause, S., Polya, D.A., Gooddy, D.C., 2023. Emerging organic contaminants in the River Ganga and key tributaries in the middle Gangetic Plain, India: Characterization, distribution & controls. Environmental Pollution 327, 121626.
  • Rodriguez, S.G., Rodriguez, E., Singh, D.N., Chueca, J.R., 2018. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water, 10, 1828.
  • Sadeghi, M., Sadeghi, R., Ghasemi, B., Gashtasb, M., Ahmad, A., 2018. Removal of Azithromycin from Aqueous Solution Using UV- Light Alone and UV Plus Persulfate Processes. Iranian Journal of Pharmaceutical Research, 17, 54-64.
  • Shad, A., Chen, J., Qu, R., Dar, A.A., Bin-Jumah, M., Allam, A.A., Wang, Z., 2020. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways. Chemical Engineering Journal, 398, 125357.
  • Topal, M., Uslu Şenel, G., Arslan Topal, E., Öbek, E., 2015. Antibiyotikler ve kullanım alanları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31, 3, 121-127.
  • Ucun, O. K., Montazeri, B., Arslan-Alaton, I., & Olmez-Hanci, T., 2021. Degradation of 3,5-dichlorophenol by UV-C photolysis and UV-C-activated persulfate oxidation process in pure water and simulated tertiary treated urban wastewater. Environmental technology, 42, 25, 3877–3888.
  • Valavanidis, A., Vlachogianni, T., 2015. Ecotoxicity Test Methods and Ecological Risk Assessment. Aquatic and Terrestrial Ecotoxicology Tests under the Guidelines of International Organizations. Science Advances on Environmental Chemistry. Toxicology and Ecotoxicology Issues, 1-29.
  • Xia, X., Zhu, F., Li, J., Yang, H., Wei, L., Li, Q., Jiang, J., Zhang, G., Zhao, Q., 2020. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Frontiers in chemistry, 8, 592056.
  • Yin, K., Deng, L., Luo, J., Crittenden, J., Liu, C., Wei, Y., Wang, L., 2018. Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, byproducts, toxicity evaluation and trichloromethane formation potential. Chemical Engineering Journal, 351, 867-877.
  • Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y., Qu, J., 2011. Photodegradation and toxicity changes of antibiotics in UV and UV/H(2)O(2) process. Journal of hazardous materials, 185, 2-3, 1256–1263.
  • Zhang, Y., Zhao, Y., Maqbool, F., Hu, Y., 2022. Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: A review. Journal of Water Process Engineering, 45, 102496.
  • Zhao, D., Liao, X., Yan, X., Huling, S. G., Chai, T., Tao, H., 2013. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. Journal of Hazardous Materials, 254-255, 228–235.
  • Zhao, Q., Mao, Q., Zhou, Y., Wei, J., Liu, X., Yang, J., Luo, L., Zhang, J., Chen, H., Chen, H., Tang, L., 2017. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications. Chemosphere, 189, 224–238.
  • Zhu, Y., Wei, M., Pan, Z., Li, L., Liang, J., Yu, K., Zhang, Y., 2020. Ultraviolet/peroxydisulfate degradation of ofloxacin in seawater: Kinetics, mechanism and toxicity of products. Science of the total environment, 705, 135960.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Hande Gülcan

Nergis Dilsizoğlu-akyol 0000-0002-1850-9070

Ceyhun Akarsu 0000-0002-0168-9941

Tugba Olmez-hanci 0000-0001-9200-5420

Publication Date September 28, 2023
Submission Date June 21, 2023
Acceptance Date August 11, 2023
Published in Issue Year 2023 Volume: 11 Issue: 3

Cite

APA Gülcan, H., Dilsizoğlu-akyol, N., Akarsu, C., Olmez-hanci, T. (2023). FOTOKİMYASAL İLERİ OKSİDASYON PROSESLERİ İLE FLOROKİNOLON GRUBU ANTİBİYOTİKLERİN GİDERİM VERİMLERİNİN ARAŞTIRILMASI VE TOKSİSİTELERİNİN DEĞERLENDİRMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(3), 1202-1212. https://doi.org/10.21923/jesd.1317749