Research Article
BibTex RIS Cite

BER PERFORMANCE OF VPAPM TRANSMISSION METHOD

Year 2023, Volume: 11 Issue: 4, 1554 - 1567, 30.12.2023
https://doi.org/10.21923/jesd.1256647

Abstract

References

  • Börekoğlu, S. Sönmez, M. (2022). Performance Analysis of Dimming Methods in Visible Light Communication Systems . Journal of Advanced Research in Natural and Applied Sciences , 8 (3) , 485-493 .
  • Chavhan, S., 2022. Shift to 6G: Exploration on trends, vision, requirements, technologies, research, and standardization efforts. Sustainable Energy Technologies and Assessments, 54, 1-33.
  • Deng, K., Wan, Y., Lu, Y., 2019. MPPM based dimming control scheme in visible light communication systems. Optics Communications, 451, 168-173.
  • Dyble, M., Narendran, N., Bierman, A., Klein, T., 2005. Impact of dimming white LEDs: chromaticity shifts due to different dimming methods, in Proc. SPIE 5th Int. Conf. Solid State Lighting, 5941, 291–299.
  • Feng, L., Hu, R. Q.,Wang, J., Xu, P., 2015. Fountain code-based error control sche-me for dimmable visible light communication systems. Optics Communicati-ons, 347, 20-24.
  • Gu, Y., Narendran, N., Dong, T., Wu, H., 2006. Spectral and luminous efficacy change of high-power LEDs under different dimming methods, in Proc. 6th Int. Conf. Solid State Lighting, 6337, 1-7.
  • Guo, J. N., Zhang, J., Zhang, Y. Y., Xin, G., Li, L., 2021. Joint multi-LED dimming control scheme based on the additively uniquely decomposable constellation group. Optics Communications, 495, 1-6.
  • Israr, A., Yang, Q., Israr, A., 2022. Power consumption analysis of access network in 5G mobile communication infrastructures An analytical quantification model. Pervasive and Mobile Computing, 80, 1-17.
  • Jarchlo, E. A., Eso, E., Doroud, H., Siessegger, B., Ghassemlooy, Z., Caire, G., Dressler, F., 2022. Li-Wi: An upper layer hybrid VLC-WiFi network handover solution.Ad Hoc Networks, 124, 1-10.
  • Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R., 2015. LED based indoor visible light communications: State of the art. IEEE communications surveys & tu-torials, 17(3), 1649-1678.
  • Komine, T., Nakagawa, M., 2004. Fundamental analysis for visible-light communication system using LED lights. IEEE transactions on Consumer Electronics, 50(1), 100-107.
  • Lee K., Park H., 2011. Modulations for visible light communications with dimming control, IEEE Photon. Technol. Lett., 23(16), 1136–1138.
  • Matheus, L. E. M., Vieira, A. B., Vieira, L. F. M.,Vieira, M. A. M., Gnawali,O., 2019. Visible light communication:concepts, applications and challenges, IEEE Communications Surveys and Tutorials, 21(4), 3204–3237.
  • Mohsan, S. A. H., Khan, M. A., Amjad, H., 2022. Hybrid FSO/RF networks:A review of practical constraints, applications and challenges. Optical Switching and Networking, 47, 1-17.
  • Raj, R., Jaiswal, S., Dixit, A., 2020. On the effect of multipath reflections in indoor visible light communication links: Channel characterization and BER analysis. IEEE Access, 8, 190620-190636.
  • Raj, R., Jaiswal, S., Dixit, A., 2021. Dimming-based modulation schemes for visible light communication: spectral analysis and ISI mitigation. IEEE Open Journal of the Communications Society, 2, 1777-1798.
  • Shahjalal, M., Kim, W., Khalid, W., Moon, S., Khan, M., Liu, S., Jang, Y. M., 2022. Enabling technologies for AI empowered 6G massive radio access networks. ICT Express, Article in Press.
  • Shankar, V., Grewal, D., Sunder, S., Fossen, B., Peters, K., Agarwal, A., 2021. Digital marketing communication in global marketplaces: A review of extant research, future directions, and potential approaches. International Journal of research in Marketing, 39(2), 541-565.
  • Stergiou, C. L., Psannis, K. E., 2022. Digital Twin Intelligent System for Industrial IoT-based Big Data Management and Analysis in Cloud. Virtual Reality & Intelligent Hardware, 4(4), 279-291.
  • Vats, A., Aggarwal, M., Ahuja, S., 2022. Outage and error performance analysis of dual hop hybrid RF-VLC system with wireless energy harvesting. Physical Communication, 55, 1-10.
  • Wang, J. Y., Wang, J.B., Chen, M., Song, X., 2013. Dimming scheme analysis for pulse amplitude modulated visible light communications. In 2013 International Conference on Wireless Communications and Signal Processing, 1-6.
  • Wang, Z., Zhong, W. D., Yu, C., Chen, J., Francois, C. P. S., Chen, W., 2012. Performance of dimming control scheme in visible light communication system. Optics express, 20(17), 18861-18868.
  • Yi, L., Lee, S.G., 2014. Performance improvement of dimmable VLC system with variable pulse amplitude and position modulation control scheme. In 2014 International Conference on Wireless Communication and Sensor Network, 81-85.
  • Yoo, J.H., Jung, S.Y., 2013. Modeling and analysis of variable PPM for visible light communications. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1-6.
  • Yoo, J.H., Kim, B.W., Jung, S.Y., 2015. Modelling and analysis of M‐ary variable pulse position modulation for visible light communications. IET Optoelectronics, 9(5), 184-190.
  • Yun,J., Ryeom, J., 2020. Dimming Correction Scheme considering Luminous Cha-racteristics of R, G, B LEDs in Visible Light Communication. Journal of Electrical En-gineering & Technology, 15, 1759-1768.
  • Zafar, F., Kalavally, V., Bakaul, M., Parthiban, R. 2015. Experimental investigation of analog and digital dimming techniques on photometric performance of an indoor Visible Light Communication (VLC) system. In Fourteenth International Conference on Solid State Lighting and LED-based Illumination Systems, 9571, 59-66.
  • Zafar, F., Karunatilaka, D., Parthiban, R. 2015a. Dimming schemes for visible light communication: the state of research. IEEE Wireless Communications, 22(2), 29-35.
  • Zafar, F., Bakaul, M., Parthiban, R. 2017. Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication. IEEE Communications Magazine, 55(2), 144-151.

VPAPM İLETİM YÖNTEMİNİN BER PERFORMANSI

Year 2023, Volume: 11 Issue: 4, 1554 - 1567, 30.12.2023
https://doi.org/10.21923/jesd.1256647

Abstract

Görünür ışık haberleşme sistemleri aynı anda hem aydınlanma hem de veri iletimi sağladığından karartma seviyesinin ayarlanması önemli görülmektedir. Karartma seviyesini ayarlamak için modülasyon tabanlı yöntemlerden birisi olan değişken darbe konum modülasyonu yöntemi tercih edilmektedir. Sinyalin görev periyodunun değiştirilmesine ek olarak analog olarak güç seviyesinin değiştirilmesi karartma seviyesini değiştiren yöntemlerden birisidir. Bu çalışmada değişken darbe genlik konum modülasyonu (VPAPM: Variable Pulse Amplitude Position Modulation) yönteminin Bit Hata Oranı (BER: Bit Error Rate) performansı alıcı-verici arasındaki mesafe dikkate alınarak incelenmiştir. Ancak, sıralı düşük veya yüksek güç yayılımının yapılması durumunda hedef karartma seviyesine göre gerçek karartma seviyesinin değişimi değerlendirilmiştir. Ayrıca, sıralı düşük veya yüksek güç seviyesinde yapılan iletimlerde elde edilen bit hata oranı ile ortalama güç seviyesi için hedef karartma seviyesinde yapılan iletimlerde elde edilen bit hata oranı arasında bir karşılaştırma yapılmıştır. Karşılaştırma sonuçlarına göre sıralı yüksek güç seviyesinde yapılan iletimlerde elde edilen bit hata oranı performansı hedef karartma seviyesinde yapılan iletimlerde elde edilen bit hata oranı performansına göre daha iyi bir sonuç veriyorken, sıralı düşük güç seviyesinde yapılan iletimlerin hedef karartma seviyesinde yapılan iletimlere göre daha düşük bit hata oranı performansı verdiği görülmüştür.

References

  • Börekoğlu, S. Sönmez, M. (2022). Performance Analysis of Dimming Methods in Visible Light Communication Systems . Journal of Advanced Research in Natural and Applied Sciences , 8 (3) , 485-493 .
  • Chavhan, S., 2022. Shift to 6G: Exploration on trends, vision, requirements, technologies, research, and standardization efforts. Sustainable Energy Technologies and Assessments, 54, 1-33.
  • Deng, K., Wan, Y., Lu, Y., 2019. MPPM based dimming control scheme in visible light communication systems. Optics Communications, 451, 168-173.
  • Dyble, M., Narendran, N., Bierman, A., Klein, T., 2005. Impact of dimming white LEDs: chromaticity shifts due to different dimming methods, in Proc. SPIE 5th Int. Conf. Solid State Lighting, 5941, 291–299.
  • Feng, L., Hu, R. Q.,Wang, J., Xu, P., 2015. Fountain code-based error control sche-me for dimmable visible light communication systems. Optics Communicati-ons, 347, 20-24.
  • Gu, Y., Narendran, N., Dong, T., Wu, H., 2006. Spectral and luminous efficacy change of high-power LEDs under different dimming methods, in Proc. 6th Int. Conf. Solid State Lighting, 6337, 1-7.
  • Guo, J. N., Zhang, J., Zhang, Y. Y., Xin, G., Li, L., 2021. Joint multi-LED dimming control scheme based on the additively uniquely decomposable constellation group. Optics Communications, 495, 1-6.
  • Israr, A., Yang, Q., Israr, A., 2022. Power consumption analysis of access network in 5G mobile communication infrastructures An analytical quantification model. Pervasive and Mobile Computing, 80, 1-17.
  • Jarchlo, E. A., Eso, E., Doroud, H., Siessegger, B., Ghassemlooy, Z., Caire, G., Dressler, F., 2022. Li-Wi: An upper layer hybrid VLC-WiFi network handover solution.Ad Hoc Networks, 124, 1-10.
  • Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R., 2015. LED based indoor visible light communications: State of the art. IEEE communications surveys & tu-torials, 17(3), 1649-1678.
  • Komine, T., Nakagawa, M., 2004. Fundamental analysis for visible-light communication system using LED lights. IEEE transactions on Consumer Electronics, 50(1), 100-107.
  • Lee K., Park H., 2011. Modulations for visible light communications with dimming control, IEEE Photon. Technol. Lett., 23(16), 1136–1138.
  • Matheus, L. E. M., Vieira, A. B., Vieira, L. F. M.,Vieira, M. A. M., Gnawali,O., 2019. Visible light communication:concepts, applications and challenges, IEEE Communications Surveys and Tutorials, 21(4), 3204–3237.
  • Mohsan, S. A. H., Khan, M. A., Amjad, H., 2022. Hybrid FSO/RF networks:A review of practical constraints, applications and challenges. Optical Switching and Networking, 47, 1-17.
  • Raj, R., Jaiswal, S., Dixit, A., 2020. On the effect of multipath reflections in indoor visible light communication links: Channel characterization and BER analysis. IEEE Access, 8, 190620-190636.
  • Raj, R., Jaiswal, S., Dixit, A., 2021. Dimming-based modulation schemes for visible light communication: spectral analysis and ISI mitigation. IEEE Open Journal of the Communications Society, 2, 1777-1798.
  • Shahjalal, M., Kim, W., Khalid, W., Moon, S., Khan, M., Liu, S., Jang, Y. M., 2022. Enabling technologies for AI empowered 6G massive radio access networks. ICT Express, Article in Press.
  • Shankar, V., Grewal, D., Sunder, S., Fossen, B., Peters, K., Agarwal, A., 2021. Digital marketing communication in global marketplaces: A review of extant research, future directions, and potential approaches. International Journal of research in Marketing, 39(2), 541-565.
  • Stergiou, C. L., Psannis, K. E., 2022. Digital Twin Intelligent System for Industrial IoT-based Big Data Management and Analysis in Cloud. Virtual Reality & Intelligent Hardware, 4(4), 279-291.
  • Vats, A., Aggarwal, M., Ahuja, S., 2022. Outage and error performance analysis of dual hop hybrid RF-VLC system with wireless energy harvesting. Physical Communication, 55, 1-10.
  • Wang, J. Y., Wang, J.B., Chen, M., Song, X., 2013. Dimming scheme analysis for pulse amplitude modulated visible light communications. In 2013 International Conference on Wireless Communications and Signal Processing, 1-6.
  • Wang, Z., Zhong, W. D., Yu, C., Chen, J., Francois, C. P. S., Chen, W., 2012. Performance of dimming control scheme in visible light communication system. Optics express, 20(17), 18861-18868.
  • Yi, L., Lee, S.G., 2014. Performance improvement of dimmable VLC system with variable pulse amplitude and position modulation control scheme. In 2014 International Conference on Wireless Communication and Sensor Network, 81-85.
  • Yoo, J.H., Jung, S.Y., 2013. Modeling and analysis of variable PPM for visible light communications. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1-6.
  • Yoo, J.H., Kim, B.W., Jung, S.Y., 2015. Modelling and analysis of M‐ary variable pulse position modulation for visible light communications. IET Optoelectronics, 9(5), 184-190.
  • Yun,J., Ryeom, J., 2020. Dimming Correction Scheme considering Luminous Cha-racteristics of R, G, B LEDs in Visible Light Communication. Journal of Electrical En-gineering & Technology, 15, 1759-1768.
  • Zafar, F., Kalavally, V., Bakaul, M., Parthiban, R. 2015. Experimental investigation of analog and digital dimming techniques on photometric performance of an indoor Visible Light Communication (VLC) system. In Fourteenth International Conference on Solid State Lighting and LED-based Illumination Systems, 9571, 59-66.
  • Zafar, F., Karunatilaka, D., Parthiban, R. 2015a. Dimming schemes for visible light communication: the state of research. IEEE Wireless Communications, 22(2), 29-35.
  • Zafar, F., Bakaul, M., Parthiban, R. 2017. Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication. IEEE Communications Magazine, 55(2), 144-151.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Süleyman Börekoğlu 0000-0003-4933-686X

Mehmet Sonmez 0000-0002-6025-3734

Publication Date December 30, 2023
Submission Date February 26, 2023
Acceptance Date November 28, 2023
Published in Issue Year 2023 Volume: 11 Issue: 4

Cite

APA Börekoğlu, S., & Sonmez, M. (2023). VPAPM İLETİM YÖNTEMİNİN BER PERFORMANSI. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(4), 1554-1567. https://doi.org/10.21923/jesd.1256647