REMOVAL OF REACTIVE YELLOW 145 DYE FROM SYNTHETIC WASTEWATER: EVALUATION OF PEANUT SHELLS AS AN ADSORBENT
Year 2024,
Volume: 12 Issue: 1, 190 - 204, 25.03.2024
Hakan Çelebi
,
İsmail Bilican
,
İsmail Şimşek
,
Tolga Bahadır
,
Şevket Tulun
Abstract
Agricultural and food waste is one of the most important wastes in the food chain, generated by both industrial and domestic use. All over the world, these wastes with valuable properties are directly disposed of in landfills. In this study, peanut shells discarded as waste were used for the removal of Reactive Yellow 145 in powder form from synthetic solution. For the evaluation, the effects of pH, contact time, peanut shell dose and temperature factors were investigated at constant stirring speed (150±5 rpm) and Reactive Yellow 145 dose of 10±3 mg/L. The structure and surface chemistry of the peanut shell were revealed by FTIR, pHZPC, and SEM. FTIR peaks proved the presence of specific functional groups on the peanut shell surface, indicating that Reactive Yellow 145 can bind to it. The porous structure on the peanut shell surface was found to be advantageous for the removal of Reactive Yellow 145. Under optimum conditions (Peanut shell dose: 0.5 g, pH: 2.0, time: 30 minutes, temperature: 20 oC), about 75% Reactive Yellow 145 yield was obtained for peanut shell. It is seen that the process in which physisorption is at the forefront and monolayer adsorption takes place fits the Langmuir and pseudo-second order models. Thermodynamic data showed that the process was spontaneous and endothermic. The maximum adsorption capacity was determined as 9,438 mg/g for Reactive Yellow 145. The results support that peanut shell is both a promising and alternative environmentally friendly adsorbent for Reactive Yellow 145 removal.
References
- Adar, E., Acar, F. N., 2021. Tekstil atıksuyundan astrazon black boyasının giderimi: taguchi metodu ile modelleme. Müh. Bil. Tas. Dergisi, 9, 768-784. https://doi.org/10.21923/jesd.808176
- Ahmad, T., Danish, M., 2022. A review of avocado waste-derived adsorbents: Characterizations, adsorption characteristics, and surface mechanism. Chemosphere 296, 134036. https://doi.org/10.1016/j.chemosphere.2022.134036
- Bailey, K., Basu, A., Sharma, S., 2022. The Environmental Impacts of Fast Fashion on Water Quality: A Systematic Review. Water 14, 1073. https://doi.org/10.3390/w14071073
- Barciela, P., Perez-Vazquez, A., Prieto, M.A., 2023. Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation. Food Chem. Toxicol. 178, 113935. https://doi.org/10.1016/j.fct.2023.113935
- Chauhdary, Y., Hanif, M.A., Rashid, U., Bhatti, I.A., Anwar, H., Jamil, Y., Alharthi, F.A., Kazerooni, E.A., 2022. Effective Removal of Reactive and Direct Dyes from Colored Wastewater Using Low-Cost Novel Bentonite Nanocomposites. Water 14, 3604. https://doi.org/10.3390/w14223604
- Cui, L., Wang, Y., Hu, L., Gao, L., Du, B., Wei, Q., 2015. Mechanism of Pb(ii) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide. RSC Adv. 5, 9759–9770. https://doi.org/10.1039/C4RA13009J
- da Silva, B.C., Delgobo, E.S., Corrêa, J., Zanutto, A., da Silva Medeiros, D.C.C., Lenzi, G.G., Matos, E.M., de Abreu Pietrobelli, J.M.T., 2023. Recovery of a synthetic dye through adsorption using malt bagasse, a by-product of brewing industry: Study in batch and continuous systems. J. Water Process Eng. 56, 104366. https://doi.org/10.1016/j.jwpe.2023.104366
- do Nascimento, J.M., de Oliveira, J.D., Leite, S.G.F., 2019. Chemical characterization of biomass flour of the babassu coconut mesocarp (Orbignya speciosa) during biosorption process of copper ions. Environ. Technol. Innov. 16, 100440. https://doi.org/10.1016/j.eti.2019.100440
- Ebrahim, A. allah M., El-Apasery, M.A., 2023. A Facile Route for Removal of Reactive Dye Yellow 145 and Cu (II) by Using Bentonite/slag-based geopolymer. Egypt. J. Chem. 66, 0–0. https://doi.org/10.21608/ejchem.2023.214609.8062
- El Messaoudi, N., El Khomri, M., El Mouden, A., Bouich, A., Jada, A., Lacherai, A., Iqbal, H.M.N., Mulla, S.I., Kumar, V., Américo-Pinheiro, J.H.P., 2022. Regeneration and reusability of non-conventional low-cost adsorbents to remove dyes from wastewaters in multiple consecutive adsorption–desorption cycles: a review. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-022-03604-9
- Farajzadeh-Dehkordi, N., Farhadian, S., Zahraei, Z., Asgharzadeh, S., Shareghi, B., Shakerian, B., 2023. Insights into the binding interaction of Reactive Yellow 145 with human serum albumin from a biophysics point of view. J. Mol. Liq. 369, 120800. https://doi.org/10.1016/j.molliq.2022.120800
- Fatima, S.K., Ceesay, A.S., Khan, M.S., Sarwar, R., Bilal, M., Uddin, J., Ul-Hamid, A., Khan, A., Riaz, N., Al-Harrasi, A., 2023. Visible Light-Induced Reactive Yellow 145 Discoloration: Structural and Photocatalytic Studies of Graphene Quantum Dot-Incorporated TiO 2. ACS Omega 8, 3007–3016. https://doi.org/10.1021/acsomega.2c05805
- Gharbani, P., 2018. Modeling and optimization of reactive yellow 145 dye removal process onto synthesized MnO X -CeO 2 using response surface methodology. Colloids Surfaces A Physicochem. Eng. Asp. 548, 191–197. https://doi.org/10.1016/j.colsurfa.2018.03.046
- Grigoraș, C.-G., Simion, A.-I., Favier, L., 2023. Exploration of Reactive Black 5 Dye Desorption from Composite Hydrogel Beads—Adsorbent Reusability, Kinetic and Equilibrium Isotherms. Gels 9, 299. https://doi.org/10.3390/gels9040299
- Hatimi, B., Loudiki, A., Mouldar, J., Hafdi, H., Joudi, M., Bensemlali, M., Aarfane, A., Nasrellah, H., El Mhammedi, M.A., Bakasse, E.M., 2023. Physicochemical and statistical modeling of reactive Yellow 145 enhanced adsorption onto pyrrhotite Ash-Based novel (Catechin-PG-Fe)-Complex. Mater. Sci. Energy Technol. 6, 65–76. https://doi.org/10.1016/j.mset.2022.11.007
- Hosseini Taheri, S.E., Bazargan, M., Rahnama Vosough, P., Sadeghian, A., 2024. A comprehensive insight into peanut: Chemical structure of compositions, oxidation process, and storage conditions. J. Food Compos. Anal. 125, 105770. https://doi.org/10.1016/j.jfca.2023.105770
- Jinendra, U., Bilehal, D., Nagabhushana, B.M., Reddy, K.R., Reddy, C.V., Raghu, A. V., 2019. Template-free hydrothermal synthesis of hexa ferrite nanoparticles and its adsorption capability for different organic dyes: Comparative adsorption studies, isotherms and kinetic studies. Mater. Sci. Energy Technol. 2, 657–666. https://doi.org/10.1016/j.mset.2019.08.005
- Kanwal, A., Rehman, R., Imran, M., Samin, G., Jahangir, M.M., Ali, S., 2023. Phytoremediative adsorption methodologies to decontaminate water from dyes and organic pollutants. RSC Adv. 13, 26455–26474. https://doi.org/10.1039/D3RA02104A
- Kenda, G.T., Fotsop, C.G., Tchuifon, D.R.T., Kouteu, P.A.N., Fanle, T.F., Anagho, S.G., 2024. Building TiO2-doped magnetic biochars from Citrus sinensis peels as low-cost materials for improved dye degradation using a mathematical approach. Appl. Surf. Sci. Adv. 19, 100554. https://doi.org/10.1016/j.apsadv.2023.100554
- Khan, Idrees, Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., Khan, Ibrahim, 2022. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 14, 242. https://doi.org/10.3390/w14020242
- Khiaophong, W., Jaroensan, J., Kachangoon, R., Vichapong, J., Burakham, R., Santaladchaiyakit, Y., Srijaranai, S., 2022. Modified Peanut Shell as an Eco-Friendly Biosorbent for Effective Extraction of Triazole Fungicide Residues in Surface Water and Honey Samples before Their Determination by High-Performance Liquid Chromatography. ACS Omega 7, 34877–34887. https://doi.org/10.1021/acsomega.2c03410
- Kifetew, M., Alemayehu, E., Fito, J., Worku, Z., Prabhu, S.V., Lennartz, B., 2023. Adsorptive Removal of Reactive Yellow 145 Dye from Textile Industry Effluent Using Teff Straw Activated Carbon: Optimization Using Central Composite Design. Water 15, 1281. https://doi.org/10.3390/w15071281
- Krishnasamy, S., SaiAtchyuth, B.A., Ravindiran, G., Subramaniyan, B., Ramalingam, M., Sai Vamsi, J.U.B., Ramesh, B., Razack, N.A., 2022. Effective Removal of Reactive Yellow 145 (RY145) using Biochar Derived from Groundnut Shell. Adv. Mater. Sci. Eng. 2022, 1–7. https://doi.org/10.1155/2022/8715669
- Kushwaha, R., Singh, R.S., Mohan, D., 2023. Comparative study for sorption of arsenic on peanut shell biochar and modified peanut shell biochar. Bioresour. Technol. 375, 128831. https://doi.org/10.1016/j.biortech.2023.128831
- Lavado-Meza, C., De la Cruz-Cerrón, L., Asencios, Y.J.O., Marcos, F.C.F., Dávalos-Prado, J.Z., 2023. Alkaline Modification of Arabica-Coffee and Theobroma-Cocoa Agroindustrial Waste for Effective Removal of Pb(II) from Aqueous Solutions. Molecules 28, 683. https://doi.org/10.3390/molecules28020683
- Lu, A., Yu, X., Ji, Q., Chen, L., Yagoub, A.E.-G., Olugbenga, F., Zhou, C., 2023. Preparation and characterization of lignin-containing cellulose nanocrystals from peanut shells using a deep eutectic solvent containing lignin-derived phenol. Ind. Crops Prod. 195, 116415. https://doi.org/10.1016/j.indcrop.2023.116415
- Meili, L., Lins, P.V.S., Costa, M.T., Almeida, R.L., Abud, A.K.S., Soletti, J.I., Dotto, G.L., Tanabe, E.H., Sellaoui, L., Carvalho, S.H.V., Erto, A., 2019. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling. Prog. Biophys. Mol. Biol. 141, 60–71. https://doi.org/10.1016/j.pbiomolbio.2018.07.011
- Mondal, M., Mukherjee, R., Sinha, A., Sarkar, S., De, S., 2019. Removal of cyanide from steel plant effluent using coke breeze, a waste product of steel industry. J. Water Process Eng. 28, 135–143. https://doi.org/10.1016/j.jwpe.2019.01.013
- Munagapati, V.S., Wen, H.-Y., Wen, J.-C., Gollakota, A.R.K., Shu, C.-M., Lin, K.-Y.A., Wen, J.-H., 2022. Adsorption of Reactive Red 195 from aqueous medium using Lotus ( Nelumbo nucifera ) leaf powder chemically modified with dimethylamine: characterization, isotherms, kinetics, thermodynamics, and mechanism assessment. Int. J. Phytoremediation 24, 131–144. https://doi.org/10.1080/15226514.2021.1929060
- Ofudje, E.A., Sodiya, E.F., Ibadin, F.H., Ogundiran, A.A., Alayande, S.O., Osideko, O.A., 2021. Mechanism of Cu 2+ and reactive yellow 145 dye adsorption onto eggshell waste as low-cost adsorbent. Chem. Ecol. 37, 268–289. https://doi.org/10.1080/02757540.2020.1855153
- Pączkowski, P., Puszka, A., Gawdzik, B., 2021. Effect of Eco-Friendly Peanut Shell Powder on the Chemical Resistance, Physical, Thermal, and Thermomechanical Properties of Unsaturated Polyester Resin Composites. Polymers (Basel). 13, 3690. https://doi.org/10.3390/polym13213690
- Pamukoğlu, Y., Kırkan, B., Yoldaş, B., 2022. Lavanta bitkisi özütü kullanılarak SiNH2@FeNP nanokompozitinin yeşil sentezi ile sulu çözeltiden metilen mavisinin giderimi: deneysel tasarım yaklaşımı. Müh. Bil. Tas. Dergisi, 10, 272-285. https://doi.org/10.21923/jesd.1005031
- Patel, M.J., Tandel, R.C., Sonera, S.A., Bairwa, S.K., 2023. Trends in the synthesis and application of some reactive dyes: A review. Brazilian J. Sci. 2, 14–29. https://doi.org/10.14295/bjs.v2i7.350
- Pérez-Calderón, J., Santos, M. V., Zaritzky, N., 2018. Reactive RED 195 dye removal using chitosan coacervated particles as bio-sorbent: Analysis of kinetics, equilibrium and adsorption mechanisms. J. Environ. Chem. Eng. 6, 6749–6760. https://doi.org/10.1016/j.jece.2018.10.039
- Prasad, K., Veluru, S., Himaja Pamu, S., Rao Poiba, V., Talib Hamzah, H., Seereeddi, M., 2023. Potential efficacy of a fruit waste - Manila tamarind seed powder for the adsorption of hazardous dyes from aqueous solution: Batch studies. Mater. Today Proc. 80, 1334–1340. https://doi.org/10.1016/j.matpr.2023.01.082
- Raji, Z., Karim, A., Karam, A., Khalloufi, S., 2023. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 1, 775–805. https://doi.org/10.3390/waste1030046
- Ramírez-Gómez, W.M., Garzón-Cucaita, V., Carriazo, J.G., 2024. Synthesis of iron oxide microparticles with fern leaf morphology: Assessment of the RY-145 azo-dye adsorption. Surfaces and Interfaces 44, 103661. https://doi.org/10.1016/j.surfin.2023.103661
- Rose, P.K., Kumar, Rajat, Kumar, Rakesh, Kumar, M., Sharma, P., 2023. Congo red dye adsorption onto cationic amino-modified walnut shell: Characterization, RSM optimization, isotherms, kinetics, and mechanism studies. Groundw. Sustain. Dev. 21, 100931. https://doi.org/10.1016/j.gsd.2023.100931
- Saravanan, A., Karishma, S., Jeevanantham, S., Jeyasri, S., Kiruthika, A.R., Kumar, P.S., Yaashikaa, P.R., 2020. Optimization and modeling of reactive yellow adsorption by surface modified Delonix regia seed: Study of nonlinear isotherm and kinetic parameters. Surfaces and Interfaces 20, 100520. https://doi.org/10.1016/j.surfin.2020.100520
- Selvaraj, V., Swarna Karthika, T., Mansiya, C., Alagar, M., 2021. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J. Mol. Struct. 1224, 129195. https://doi.org/10.1016/j.molstruc.2020.129195
- Sen, T.K., 2023. Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review. Molecules 28, 5575. https://doi.org/10.3390/molecules28145575
- Silva, C.E. de F., Gama, B.M.V. da, Gonçalves, A.H. da S., Medeiros, J.A., Abud, A.K. de S., 2020. Basic-dye adsorption in albedo residue: Effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength. J. King Saud Univ. - Eng. Sci. 32, 351–359. https://doi.org/10.1016/j.jksues.2019.04.006
- Tanattı, P.N., 2021. Treatability of Wastewater Containing Reactive Yellow 145 Dyestuff by Ozonation Process. Sak. Univ. J. Sci. 25, 995–1002. https://doi.org/10.16984/saufenbilder.876926
- Tunç Dede, Ö., 2019. Potentıal use of hazelnut processıng plant wastes as a sorbent for the sımultaneous removal of multı-elements from water. Müh. Bil. Tas. Dergisi, 7(2), 301-312. https://doi.org/10.21923/jesd.486065
- Ungureanu, E.L., Mocanu, A.L., Stroe, C.A., Panciu, C.M., Berca, L., Sionel, R.M., Mustatea, G., 2023. Agricultural Byproducts Used as Low-Cost Adsorbents for Removal of Potentially Toxic Elements from Wastewater: A Comprehensive Review. Sustainability 15, 5999. https://doi.org/10.3390/su15075999
- Yadav, B.S., Dasgupta, S., 2022. Effect of time, pH, and temperature on kinetics for adsorption of methyl orange dye into the modified nitrate intercalated MgAl LDH adsorbent. Inorg. Chem. Commun. 137, 109203. https://doi.org/10.1016/j.inoche.2022.109203
- Yakout, S.M., El-Zaidy, M.E., 2023. Depollution of industrial dyes by nanocrystalline Ti0.95Bi0.025X0.025O2 (X = Zr, Nb): visible light harvesting, charge separation and high efficiency. J. Sol-Gel Sci. Technol. 107, 417–429. https://doi.org/10.1007/s10971-023-06124-8
SENTETİK ATIKSULARDAN REAKTİF SARI 145 BOYASININ UZAKLAŞTIRILMASI: YER FISTIĞI KABUKLARININ ADSORBAN OLARAK DEĞERLENDİRİLMESİ
Year 2024,
Volume: 12 Issue: 1, 190 - 204, 25.03.2024
Hakan Çelebi
,
İsmail Bilican
,
İsmail Şimşek
,
Tolga Bahadır
,
Şevket Tulun
Abstract
Hem sektörel hem de evsel kullanımlarla açığa çıkan tarım ve gıda atıkları besin zincirinin en önemli atıklarındandır. Tüm dünyada değerli özelliklere sahip bu atıklar doğrudan çöp alanlarına atılmaktadır. Bu çalışmada, atık olarak çöpe atılan yer fıstığı kabukları toz formda Reaktif Sarı 145’in sentetik çözeltiden giderimi amacıyla kullanılmıştır. Değerlendirme için, sabit karıştırma hızı (150±5 rpm) ve 10±3 mg/L Reaktif Sarı 145 dozunda; pH, temas süresi, fıstık kabuğu dozu ve sıcaklık faktörlerinin etkileri incelenmiştir. Fıstık kabuğunun yapısı ve yüzey kimyası FTIR, pHZPC, ve SEM ile ortaya konulmuştur. FTIR pikleri, fıstık kabuğu yüzeyi üzerinde Reaktif Sarı 145’in tutunabildiğini gösteren spesifik fonksiyonel grupların varlığını ispatlamıştır. Fıstık kabuğu yüzeyindeki gözenekli yapının Reaktif Sarı 145 giderimi için avantajlı olduğu görülmüştür. Optimum şartlarda (Fıstık kabuğu dozu: 0,5 g, pH: 2,0, süre: 30 dakika, sıcaklık: 20 oC) Fıstık kabuğu için yaklaşık %75 Reaktif Sarı 145 verimi elde edilmiştir. Fizisorpsiyonun ön planda olduğu ve tek katmanlı adsorpsiyonun gerçekleştiği sürecin Langmuir ve yalancı ikinci derece modellerine uyduğu görülmektedir. Termodinamik verileri sürecin kendiliğinden ve endotermik gerçekleştiğini göstermiştir. Maksimum adsorpsiyon kapasitesi Reaktif Sarı 145 için 9,438 mg/g olarak tespit edilmiştir. Sonuçlar, fıstık kabuğunun, Reaktif Sarı 145 giderimi için hem umut verici hem de alternatif çevre dostu bir adsorbent olduğunu desteklemektedir.
Ethical Statement
Bu araştırma makalesinde sunduğumuz verileri ve bilgileri akademik ve etik kurallar çerçevesinde elde ettiğimizi ve çalışmanın özgün olduğunu beyan ederiz.
Supporting Institution
Aksaray Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP)
Thanks
Bu çalışma Aksaray Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP) ve Çevre Mühendisliği Bölümü tarafından desteklenmiştir.
References
- Adar, E., Acar, F. N., 2021. Tekstil atıksuyundan astrazon black boyasının giderimi: taguchi metodu ile modelleme. Müh. Bil. Tas. Dergisi, 9, 768-784. https://doi.org/10.21923/jesd.808176
- Ahmad, T., Danish, M., 2022. A review of avocado waste-derived adsorbents: Characterizations, adsorption characteristics, and surface mechanism. Chemosphere 296, 134036. https://doi.org/10.1016/j.chemosphere.2022.134036
- Bailey, K., Basu, A., Sharma, S., 2022. The Environmental Impacts of Fast Fashion on Water Quality: A Systematic Review. Water 14, 1073. https://doi.org/10.3390/w14071073
- Barciela, P., Perez-Vazquez, A., Prieto, M.A., 2023. Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation. Food Chem. Toxicol. 178, 113935. https://doi.org/10.1016/j.fct.2023.113935
- Chauhdary, Y., Hanif, M.A., Rashid, U., Bhatti, I.A., Anwar, H., Jamil, Y., Alharthi, F.A., Kazerooni, E.A., 2022. Effective Removal of Reactive and Direct Dyes from Colored Wastewater Using Low-Cost Novel Bentonite Nanocomposites. Water 14, 3604. https://doi.org/10.3390/w14223604
- Cui, L., Wang, Y., Hu, L., Gao, L., Du, B., Wei, Q., 2015. Mechanism of Pb(ii) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide. RSC Adv. 5, 9759–9770. https://doi.org/10.1039/C4RA13009J
- da Silva, B.C., Delgobo, E.S., Corrêa, J., Zanutto, A., da Silva Medeiros, D.C.C., Lenzi, G.G., Matos, E.M., de Abreu Pietrobelli, J.M.T., 2023. Recovery of a synthetic dye through adsorption using malt bagasse, a by-product of brewing industry: Study in batch and continuous systems. J. Water Process Eng. 56, 104366. https://doi.org/10.1016/j.jwpe.2023.104366
- do Nascimento, J.M., de Oliveira, J.D., Leite, S.G.F., 2019. Chemical characterization of biomass flour of the babassu coconut mesocarp (Orbignya speciosa) during biosorption process of copper ions. Environ. Technol. Innov. 16, 100440. https://doi.org/10.1016/j.eti.2019.100440
- Ebrahim, A. allah M., El-Apasery, M.A., 2023. A Facile Route for Removal of Reactive Dye Yellow 145 and Cu (II) by Using Bentonite/slag-based geopolymer. Egypt. J. Chem. 66, 0–0. https://doi.org/10.21608/ejchem.2023.214609.8062
- El Messaoudi, N., El Khomri, M., El Mouden, A., Bouich, A., Jada, A., Lacherai, A., Iqbal, H.M.N., Mulla, S.I., Kumar, V., Américo-Pinheiro, J.H.P., 2022. Regeneration and reusability of non-conventional low-cost adsorbents to remove dyes from wastewaters in multiple consecutive adsorption–desorption cycles: a review. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-022-03604-9
- Farajzadeh-Dehkordi, N., Farhadian, S., Zahraei, Z., Asgharzadeh, S., Shareghi, B., Shakerian, B., 2023. Insights into the binding interaction of Reactive Yellow 145 with human serum albumin from a biophysics point of view. J. Mol. Liq. 369, 120800. https://doi.org/10.1016/j.molliq.2022.120800
- Fatima, S.K., Ceesay, A.S., Khan, M.S., Sarwar, R., Bilal, M., Uddin, J., Ul-Hamid, A., Khan, A., Riaz, N., Al-Harrasi, A., 2023. Visible Light-Induced Reactive Yellow 145 Discoloration: Structural and Photocatalytic Studies of Graphene Quantum Dot-Incorporated TiO 2. ACS Omega 8, 3007–3016. https://doi.org/10.1021/acsomega.2c05805
- Gharbani, P., 2018. Modeling and optimization of reactive yellow 145 dye removal process onto synthesized MnO X -CeO 2 using response surface methodology. Colloids Surfaces A Physicochem. Eng. Asp. 548, 191–197. https://doi.org/10.1016/j.colsurfa.2018.03.046
- Grigoraș, C.-G., Simion, A.-I., Favier, L., 2023. Exploration of Reactive Black 5 Dye Desorption from Composite Hydrogel Beads—Adsorbent Reusability, Kinetic and Equilibrium Isotherms. Gels 9, 299. https://doi.org/10.3390/gels9040299
- Hatimi, B., Loudiki, A., Mouldar, J., Hafdi, H., Joudi, M., Bensemlali, M., Aarfane, A., Nasrellah, H., El Mhammedi, M.A., Bakasse, E.M., 2023. Physicochemical and statistical modeling of reactive Yellow 145 enhanced adsorption onto pyrrhotite Ash-Based novel (Catechin-PG-Fe)-Complex. Mater. Sci. Energy Technol. 6, 65–76. https://doi.org/10.1016/j.mset.2022.11.007
- Hosseini Taheri, S.E., Bazargan, M., Rahnama Vosough, P., Sadeghian, A., 2024. A comprehensive insight into peanut: Chemical structure of compositions, oxidation process, and storage conditions. J. Food Compos. Anal. 125, 105770. https://doi.org/10.1016/j.jfca.2023.105770
- Jinendra, U., Bilehal, D., Nagabhushana, B.M., Reddy, K.R., Reddy, C.V., Raghu, A. V., 2019. Template-free hydrothermal synthesis of hexa ferrite nanoparticles and its adsorption capability for different organic dyes: Comparative adsorption studies, isotherms and kinetic studies. Mater. Sci. Energy Technol. 2, 657–666. https://doi.org/10.1016/j.mset.2019.08.005
- Kanwal, A., Rehman, R., Imran, M., Samin, G., Jahangir, M.M., Ali, S., 2023. Phytoremediative adsorption methodologies to decontaminate water from dyes and organic pollutants. RSC Adv. 13, 26455–26474. https://doi.org/10.1039/D3RA02104A
- Kenda, G.T., Fotsop, C.G., Tchuifon, D.R.T., Kouteu, P.A.N., Fanle, T.F., Anagho, S.G., 2024. Building TiO2-doped magnetic biochars from Citrus sinensis peels as low-cost materials for improved dye degradation using a mathematical approach. Appl. Surf. Sci. Adv. 19, 100554. https://doi.org/10.1016/j.apsadv.2023.100554
- Khan, Idrees, Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., Khan, Ibrahim, 2022. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 14, 242. https://doi.org/10.3390/w14020242
- Khiaophong, W., Jaroensan, J., Kachangoon, R., Vichapong, J., Burakham, R., Santaladchaiyakit, Y., Srijaranai, S., 2022. Modified Peanut Shell as an Eco-Friendly Biosorbent for Effective Extraction of Triazole Fungicide Residues in Surface Water and Honey Samples before Their Determination by High-Performance Liquid Chromatography. ACS Omega 7, 34877–34887. https://doi.org/10.1021/acsomega.2c03410
- Kifetew, M., Alemayehu, E., Fito, J., Worku, Z., Prabhu, S.V., Lennartz, B., 2023. Adsorptive Removal of Reactive Yellow 145 Dye from Textile Industry Effluent Using Teff Straw Activated Carbon: Optimization Using Central Composite Design. Water 15, 1281. https://doi.org/10.3390/w15071281
- Krishnasamy, S., SaiAtchyuth, B.A., Ravindiran, G., Subramaniyan, B., Ramalingam, M., Sai Vamsi, J.U.B., Ramesh, B., Razack, N.A., 2022. Effective Removal of Reactive Yellow 145 (RY145) using Biochar Derived from Groundnut Shell. Adv. Mater. Sci. Eng. 2022, 1–7. https://doi.org/10.1155/2022/8715669
- Kushwaha, R., Singh, R.S., Mohan, D., 2023. Comparative study for sorption of arsenic on peanut shell biochar and modified peanut shell biochar. Bioresour. Technol. 375, 128831. https://doi.org/10.1016/j.biortech.2023.128831
- Lavado-Meza, C., De la Cruz-Cerrón, L., Asencios, Y.J.O., Marcos, F.C.F., Dávalos-Prado, J.Z., 2023. Alkaline Modification of Arabica-Coffee and Theobroma-Cocoa Agroindustrial Waste for Effective Removal of Pb(II) from Aqueous Solutions. Molecules 28, 683. https://doi.org/10.3390/molecules28020683
- Lu, A., Yu, X., Ji, Q., Chen, L., Yagoub, A.E.-G., Olugbenga, F., Zhou, C., 2023. Preparation and characterization of lignin-containing cellulose nanocrystals from peanut shells using a deep eutectic solvent containing lignin-derived phenol. Ind. Crops Prod. 195, 116415. https://doi.org/10.1016/j.indcrop.2023.116415
- Meili, L., Lins, P.V.S., Costa, M.T., Almeida, R.L., Abud, A.K.S., Soletti, J.I., Dotto, G.L., Tanabe, E.H., Sellaoui, L., Carvalho, S.H.V., Erto, A., 2019. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling. Prog. Biophys. Mol. Biol. 141, 60–71. https://doi.org/10.1016/j.pbiomolbio.2018.07.011
- Mondal, M., Mukherjee, R., Sinha, A., Sarkar, S., De, S., 2019. Removal of cyanide from steel plant effluent using coke breeze, a waste product of steel industry. J. Water Process Eng. 28, 135–143. https://doi.org/10.1016/j.jwpe.2019.01.013
- Munagapati, V.S., Wen, H.-Y., Wen, J.-C., Gollakota, A.R.K., Shu, C.-M., Lin, K.-Y.A., Wen, J.-H., 2022. Adsorption of Reactive Red 195 from aqueous medium using Lotus ( Nelumbo nucifera ) leaf powder chemically modified with dimethylamine: characterization, isotherms, kinetics, thermodynamics, and mechanism assessment. Int. J. Phytoremediation 24, 131–144. https://doi.org/10.1080/15226514.2021.1929060
- Ofudje, E.A., Sodiya, E.F., Ibadin, F.H., Ogundiran, A.A., Alayande, S.O., Osideko, O.A., 2021. Mechanism of Cu 2+ and reactive yellow 145 dye adsorption onto eggshell waste as low-cost adsorbent. Chem. Ecol. 37, 268–289. https://doi.org/10.1080/02757540.2020.1855153
- Pączkowski, P., Puszka, A., Gawdzik, B., 2021. Effect of Eco-Friendly Peanut Shell Powder on the Chemical Resistance, Physical, Thermal, and Thermomechanical Properties of Unsaturated Polyester Resin Composites. Polymers (Basel). 13, 3690. https://doi.org/10.3390/polym13213690
- Pamukoğlu, Y., Kırkan, B., Yoldaş, B., 2022. Lavanta bitkisi özütü kullanılarak SiNH2@FeNP nanokompozitinin yeşil sentezi ile sulu çözeltiden metilen mavisinin giderimi: deneysel tasarım yaklaşımı. Müh. Bil. Tas. Dergisi, 10, 272-285. https://doi.org/10.21923/jesd.1005031
- Patel, M.J., Tandel, R.C., Sonera, S.A., Bairwa, S.K., 2023. Trends in the synthesis and application of some reactive dyes: A review. Brazilian J. Sci. 2, 14–29. https://doi.org/10.14295/bjs.v2i7.350
- Pérez-Calderón, J., Santos, M. V., Zaritzky, N., 2018. Reactive RED 195 dye removal using chitosan coacervated particles as bio-sorbent: Analysis of kinetics, equilibrium and adsorption mechanisms. J. Environ. Chem. Eng. 6, 6749–6760. https://doi.org/10.1016/j.jece.2018.10.039
- Prasad, K., Veluru, S., Himaja Pamu, S., Rao Poiba, V., Talib Hamzah, H., Seereeddi, M., 2023. Potential efficacy of a fruit waste - Manila tamarind seed powder for the adsorption of hazardous dyes from aqueous solution: Batch studies. Mater. Today Proc. 80, 1334–1340. https://doi.org/10.1016/j.matpr.2023.01.082
- Raji, Z., Karim, A., Karam, A., Khalloufi, S., 2023. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 1, 775–805. https://doi.org/10.3390/waste1030046
- Ramírez-Gómez, W.M., Garzón-Cucaita, V., Carriazo, J.G., 2024. Synthesis of iron oxide microparticles with fern leaf morphology: Assessment of the RY-145 azo-dye adsorption. Surfaces and Interfaces 44, 103661. https://doi.org/10.1016/j.surfin.2023.103661
- Rose, P.K., Kumar, Rajat, Kumar, Rakesh, Kumar, M., Sharma, P., 2023. Congo red dye adsorption onto cationic amino-modified walnut shell: Characterization, RSM optimization, isotherms, kinetics, and mechanism studies. Groundw. Sustain. Dev. 21, 100931. https://doi.org/10.1016/j.gsd.2023.100931
- Saravanan, A., Karishma, S., Jeevanantham, S., Jeyasri, S., Kiruthika, A.R., Kumar, P.S., Yaashikaa, P.R., 2020. Optimization and modeling of reactive yellow adsorption by surface modified Delonix regia seed: Study of nonlinear isotherm and kinetic parameters. Surfaces and Interfaces 20, 100520. https://doi.org/10.1016/j.surfin.2020.100520
- Selvaraj, V., Swarna Karthika, T., Mansiya, C., Alagar, M., 2021. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J. Mol. Struct. 1224, 129195. https://doi.org/10.1016/j.molstruc.2020.129195
- Sen, T.K., 2023. Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review. Molecules 28, 5575. https://doi.org/10.3390/molecules28145575
- Silva, C.E. de F., Gama, B.M.V. da, Gonçalves, A.H. da S., Medeiros, J.A., Abud, A.K. de S., 2020. Basic-dye adsorption in albedo residue: Effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength. J. King Saud Univ. - Eng. Sci. 32, 351–359. https://doi.org/10.1016/j.jksues.2019.04.006
- Tanattı, P.N., 2021. Treatability of Wastewater Containing Reactive Yellow 145 Dyestuff by Ozonation Process. Sak. Univ. J. Sci. 25, 995–1002. https://doi.org/10.16984/saufenbilder.876926
- Tunç Dede, Ö., 2019. Potentıal use of hazelnut processıng plant wastes as a sorbent for the sımultaneous removal of multı-elements from water. Müh. Bil. Tas. Dergisi, 7(2), 301-312. https://doi.org/10.21923/jesd.486065
- Ungureanu, E.L., Mocanu, A.L., Stroe, C.A., Panciu, C.M., Berca, L., Sionel, R.M., Mustatea, G., 2023. Agricultural Byproducts Used as Low-Cost Adsorbents for Removal of Potentially Toxic Elements from Wastewater: A Comprehensive Review. Sustainability 15, 5999. https://doi.org/10.3390/su15075999
- Yadav, B.S., Dasgupta, S., 2022. Effect of time, pH, and temperature on kinetics for adsorption of methyl orange dye into the modified nitrate intercalated MgAl LDH adsorbent. Inorg. Chem. Commun. 137, 109203. https://doi.org/10.1016/j.inoche.2022.109203
- Yakout, S.M., El-Zaidy, M.E., 2023. Depollution of industrial dyes by nanocrystalline Ti0.95Bi0.025X0.025O2 (X = Zr, Nb): visible light harvesting, charge separation and high efficiency. J. Sol-Gel Sci. Technol. 107, 417–429. https://doi.org/10.1007/s10971-023-06124-8