Temperleme Isıl İşleminin Orta Manganlı Çelikler Üzerindeki Etkisi
Year 2023,
Volume: 4 Issue: 1, 31 - 36, 05.09.2023
Mehmet Eroğlu
,
Fatih Demir
Abstract
Son yıllarda, özellikle otomotiv sektörü için önemi artan orta Manganlı çelikler, yeni nesil gelişmiş yüksek mukavemetli çelik olarak da değerlendirilmektedir. Bu çeliklerin sergilemiş olduğu üstün özellikler, kimyasal bileşime, ön şekillendirme yöntemine ve termal döngülere bağlıdır. Geleneksel, kritik ve temperleme ısıl işlemleri ve bu termal proseslerin kombinasyonları bu çelik türleri için sıkça araştırma konusu olmuştur. Bu çalışmada da geleneksel tavlama ile temperleme birlikte uygulanmış ve orta Manganlı çeliklerin mikroyapısı ve mekanik özellikleri üzerindeki etkileri araştırılmıştır. SEM, EDS ve XRD analizlerinden elde edilen veriler ile çekme ve sertlik deneylerinin sonuçları ilişkilendirilerek temperleme ısıl işleminin orta Manganlı çelikler üzerindeki etkisi incelenmiştir.
Supporting Institution
Fırat Üniversitesi
References
- Y.K. Lee and J. Han. (2015). Current opinion in medium manganese steel, Materials Science and Technology, C. 31(7), 843–856. doi:10.1179/1743284714y.0000000722
- M. Soleimani, A. Kalhor and H. Mirzadeh. (2020). Transformation-induced plasticity (TRIP) in advanced steels: A review, Materials Science and Engineering A, C. 795, 140023. doi:10.1016/j.msea.2020.140023
- B. Hu and H. Luo. (2019). A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel, Acta Materialia, C. 176, 250-263. doi:10.1016/j.actamat.2019.07.014
- S. Lee, S.J. Lee, S.S. Kumar, K. Lee and B.C. De Cooman. (2011). Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel, Metallurgical and Materials Transactions A, C. 42(12), 3638–3651. doi:10.1007/s11661-011-0636-9
- S. Lee, Y. Estrin and B.C. De Cooman. (2013). Constitutive Modeling of the Mechanical Properties of V-added Medium Manganese TRIP Steel, Metallurgical and Materials Transactions A, C. 44(7), 3136–3146. doi:10.1007/s11661-013-1648-4
- D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh and S.J. Kim. (2010). Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel, Metallurgical and Materials Transactions A, C. 41(2), 397–408. doi:10.1007/s11661-009-0124-7
- T. Furukawa, H. Huang and O. Matsumura. (1994). Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity, Materials Science and Technology, C. 10(11), 964–970. doi:10.1179/mst.1994.10.11.964
- D.J. Radakovic and M. Tumuluru. (2012). An evaluation of the cross-tension test of resistance spot welds in high-strength dual-phase steels, Welding Journal, C. 91(1), 8–15.
- H. Liu, F. Li, W. Shi, S. Swaminathan, Y. He, M. Rohwerder and L. Li. (2012). Challenges in hot-dip galvanizing of high strength dual phase steel: Surface selective oxidation and mechanical property degradation, Surface and Coatings Technology, C. 206(16), 3428–3436. doi:10.1016/j.surfcoat.2012.02.001
- T.B. Hilditch, T. de Souza and P.D. Hodgson. (2015). Properties and automotive applications of advanced high-strength steels (AHSS). M. Shome and M. Tumuluru (Ed.), Welding and Joining of Advanced High Strength Steels (AHSS) (9–28. ss.). Woodhead Publishing, Cambridge
- Y. Kang, Q. Han, X. Zhao and M. Cai. (2013). Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium, Materials & Design, C. 44, 331–339. doi:10.1016/j.matdes.2012.07.068
- M. Cai, Z. Li, Q. Chao and P.D. Hodgson. (2014). A Novel Mo and Nb Microalloyed Medium Mn TRIP Steel with Maximal Ultimate Strength and Moderate Ductility, Metallurgical and Materials Transactions A, C. 45(12), 5624–5634. doi:10.1007/s11661-014-2504-x
- A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand and P. Barges. (2012). Evolution of microstructure and mechanical properties of medium Mn steels during double annealing, Materials Science and Engineering A, C. 542, 31–39. doi:10.1016/j.msea.2012.02.024
- W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui and H. Dong. (2011). Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing, Materials Science and Engineering: A, C. 528(22-23), 6661–6666. doi:10.1016/j.msea.2011.05.039
- M.H. Cai, W.J. Zhu, N. Stanford, L.B. Pan, Q. Chao and P.D. Hodgson. (2016). Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy, Materials Science and Engineering A, C. 653, 35–42. doi:10.1016/j.msea.2015.11.103
- J. Teixeira, M. Moreno, S.Y.P. Allain, C. Oberbillig, G. Geandier and F. Bonnet. (2021). Intercritical annealing of cold-rolled ferrite-pearlite steel: Microstructure evolutions and phase transformation kinetics, Acta Materialia, C. 212, 116920. doi:10.1016/j.actamat.2021.116920
- P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer and D.K. Matlock. (2011). Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel, Metallurgical and Materials Transactions A, C. 42(12), 3691–3702. doi:10.1007/s11661-011-0687-y
- R. Kalsar, S. Sanamar, N. Schell, H.G. Brokmeier, R. Saha, P. Ghosh and S. Suwas. (2022). In-situ study of tensile deformation behaviour of medium Mn TWIP/TRIP steel using synchrotron radiation, Materials Science and Engineering A, C. 857, 144013. doi.org/10.1016/j.msea.2022.144013
- P. Hodgson, M.H. Cai and B. Rolfe. (2016). Hot Forming of Medium Mn Steels with TRIP Effect. Y. Zhang and M. Ma (Ed.), Advanced High Strength Steel and Press Hardening: Proceedings of the 2nd International Conference (ICHSU2015) (27–34. ss.). World Scientific, Changsha. doi:10.1142/9789813140622_0005
- X. Zhao, Y. Zhang, C. Shao, W. Hui and H. Dong. (2017). Thermal stability of retained austenite and mechanical properties of medium-Mn steel during tempering treatment, Journal of Iron and Steel Research, International, C. 24, 830–837. doi:10.1016/s1006-706x(17)30123-1
- S. Yan, X. Liu, W.J. Liu, H. Lan and H. Wu. (2015). Comparison on mechanical properties and microstructure of a C–Mn–Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) processes, Materials Science and Engineering A, C. 620, 58–66. doi:10.1016/j.msea.2014.09.047
- N. Zhou, R. Song, X. Li and J. Li. (2018). Dependence of austenite stability and deformation behavior on tempering time in an ultrahigh strength medium Mn TRIP steel, Materials Science and Engineering A, C. 738, 153–162. doi:10.1016/j.msea.2018.09.098
Effect of Tempering Heat Treatment on Medium Manganese Steels
Year 2023,
Volume: 4 Issue: 1, 31 - 36, 05.09.2023
Mehmet Eroğlu
,
Fatih Demir
Abstract
Medium Mn steels, whose importance has increased especially for the automotive industry in recent years, are also considered as new generation advanced high strength steels. The superior properties exhibited by these steels depend on the chemical composition, preforming method and thermal cycles. Conventional, intercritical and tempering heat treatments and combinations of these thermal processes have frequently been the subject of research for these steels. In this study, conventional heat treatment and tempering were applied together and their effects on the microstructure and mechanical properties of mid-Mn steels were investigated. The effect of tempering heat treatment on medium Mn steels was investigated by correlating the data obtained from SEM, EDS and XRD analyses with the results of tensile and hardness tests.
References
- Y.K. Lee and J. Han. (2015). Current opinion in medium manganese steel, Materials Science and Technology, C. 31(7), 843–856. doi:10.1179/1743284714y.0000000722
- M. Soleimani, A. Kalhor and H. Mirzadeh. (2020). Transformation-induced plasticity (TRIP) in advanced steels: A review, Materials Science and Engineering A, C. 795, 140023. doi:10.1016/j.msea.2020.140023
- B. Hu and H. Luo. (2019). A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel, Acta Materialia, C. 176, 250-263. doi:10.1016/j.actamat.2019.07.014
- S. Lee, S.J. Lee, S.S. Kumar, K. Lee and B.C. De Cooman. (2011). Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel, Metallurgical and Materials Transactions A, C. 42(12), 3638–3651. doi:10.1007/s11661-011-0636-9
- S. Lee, Y. Estrin and B.C. De Cooman. (2013). Constitutive Modeling of the Mechanical Properties of V-added Medium Manganese TRIP Steel, Metallurgical and Materials Transactions A, C. 44(7), 3136–3146. doi:10.1007/s11661-013-1648-4
- D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh and S.J. Kim. (2010). Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel, Metallurgical and Materials Transactions A, C. 41(2), 397–408. doi:10.1007/s11661-009-0124-7
- T. Furukawa, H. Huang and O. Matsumura. (1994). Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity, Materials Science and Technology, C. 10(11), 964–970. doi:10.1179/mst.1994.10.11.964
- D.J. Radakovic and M. Tumuluru. (2012). An evaluation of the cross-tension test of resistance spot welds in high-strength dual-phase steels, Welding Journal, C. 91(1), 8–15.
- H. Liu, F. Li, W. Shi, S. Swaminathan, Y. He, M. Rohwerder and L. Li. (2012). Challenges in hot-dip galvanizing of high strength dual phase steel: Surface selective oxidation and mechanical property degradation, Surface and Coatings Technology, C. 206(16), 3428–3436. doi:10.1016/j.surfcoat.2012.02.001
- T.B. Hilditch, T. de Souza and P.D. Hodgson. (2015). Properties and automotive applications of advanced high-strength steels (AHSS). M. Shome and M. Tumuluru (Ed.), Welding and Joining of Advanced High Strength Steels (AHSS) (9–28. ss.). Woodhead Publishing, Cambridge
- Y. Kang, Q. Han, X. Zhao and M. Cai. (2013). Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium, Materials & Design, C. 44, 331–339. doi:10.1016/j.matdes.2012.07.068
- M. Cai, Z. Li, Q. Chao and P.D. Hodgson. (2014). A Novel Mo and Nb Microalloyed Medium Mn TRIP Steel with Maximal Ultimate Strength and Moderate Ductility, Metallurgical and Materials Transactions A, C. 45(12), 5624–5634. doi:10.1007/s11661-014-2504-x
- A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand and P. Barges. (2012). Evolution of microstructure and mechanical properties of medium Mn steels during double annealing, Materials Science and Engineering A, C. 542, 31–39. doi:10.1016/j.msea.2012.02.024
- W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui and H. Dong. (2011). Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing, Materials Science and Engineering: A, C. 528(22-23), 6661–6666. doi:10.1016/j.msea.2011.05.039
- M.H. Cai, W.J. Zhu, N. Stanford, L.B. Pan, Q. Chao and P.D. Hodgson. (2016). Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy, Materials Science and Engineering A, C. 653, 35–42. doi:10.1016/j.msea.2015.11.103
- J. Teixeira, M. Moreno, S.Y.P. Allain, C. Oberbillig, G. Geandier and F. Bonnet. (2021). Intercritical annealing of cold-rolled ferrite-pearlite steel: Microstructure evolutions and phase transformation kinetics, Acta Materialia, C. 212, 116920. doi:10.1016/j.actamat.2021.116920
- P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer and D.K. Matlock. (2011). Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel, Metallurgical and Materials Transactions A, C. 42(12), 3691–3702. doi:10.1007/s11661-011-0687-y
- R. Kalsar, S. Sanamar, N. Schell, H.G. Brokmeier, R. Saha, P. Ghosh and S. Suwas. (2022). In-situ study of tensile deformation behaviour of medium Mn TWIP/TRIP steel using synchrotron radiation, Materials Science and Engineering A, C. 857, 144013. doi.org/10.1016/j.msea.2022.144013
- P. Hodgson, M.H. Cai and B. Rolfe. (2016). Hot Forming of Medium Mn Steels with TRIP Effect. Y. Zhang and M. Ma (Ed.), Advanced High Strength Steel and Press Hardening: Proceedings of the 2nd International Conference (ICHSU2015) (27–34. ss.). World Scientific, Changsha. doi:10.1142/9789813140622_0005
- X. Zhao, Y. Zhang, C. Shao, W. Hui and H. Dong. (2017). Thermal stability of retained austenite and mechanical properties of medium-Mn steel during tempering treatment, Journal of Iron and Steel Research, International, C. 24, 830–837. doi:10.1016/s1006-706x(17)30123-1
- S. Yan, X. Liu, W.J. Liu, H. Lan and H. Wu. (2015). Comparison on mechanical properties and microstructure of a C–Mn–Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) processes, Materials Science and Engineering A, C. 620, 58–66. doi:10.1016/j.msea.2014.09.047
- N. Zhou, R. Song, X. Li and J. Li. (2018). Dependence of austenite stability and deformation behavior on tempering time in an ultrahigh strength medium Mn TRIP steel, Materials Science and Engineering A, C. 738, 153–162. doi:10.1016/j.msea.2018.09.098