Research Article
BibTex RIS Cite

Ionizing Radiation Shielding Properties of Tantalum Pentoxide Doped High-Density Polyethylene Composites: A Theoretical Study

Year 2023, Volume: 8 Issue: 3, 143 - 154, 31.12.2023
https://doi.org/10.30931/jetas.1298557

Abstract

The rise in the utilization of radiation across various domains necessitates the advancement of next-generation radiation shielding materials that are devoid of lead. Due to their low weight and flexibility, polymer composites are considered as environmentally friendly alternative materials that can be used instead of toxic and high-weight lead for radiation shielding. From this point of view, the present study has focused on examining the radiation shielding performance of tantalum pentoxide doped high-density polyethylene (HDPE/Ta2O5) composites (including 5, 10, and 20 wt% Ta2O5) by using WinXCom software and MCNP6 simulation. The photon energies selected corresponded to the photons emitted from the Ba-133 (81 and 356 keV), Cs-137 (662 keV), and Co-60 (1173 and 1332 keV) radioactive sources that cover X-rays along with the low-and mid-energetic gamma-rays. The mass attenuation coefficient (/) of the composites has been calculated within the 81 keV-1332 keV photon range by utilizing WinXCom software and MCNP6 code. The other shielding parameters such as Half Value Layer (HVL), effective atomic number (Zeff), and effective electron density (Neff) have been determined. In the light of data, it has been revealed that gradual increase in Ta2O5 doping while improving the / coefficients, Zeff, and Neff parameters, decreasing the HVL length of HDPE considerably. Additionally, the parameters obtained by WinXCom and MCNP6 simulation are in good agreement. the. Ultimately, the best ionizing shielding performance among the composites has been determined for HDPE/20% Ta2O5 composite against 81 keV photons.

References

  • [1] Al‐Buriahi, M. S., Eke, C., Alomairy, S., Yildirim, A., Alsaeedy, H. I., and Sriwunkum, C., “Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies”, Polymers for Advanced Technologies 32(6) (2021) : 2386–2396.
  • [2] Ekinci, N., Mahmoud, K. A., Aygün, B., Hessien, M. M., and Rammah, Y. S., “Impacts of the colemanite on the enhancement of the radiation shielding capacity of polypropylene”, Journal of Materials Science: Materials in Electronics 33(25) (2022) : 20046–20055.
  • [3] El-Khatib, A. M., Abbas, M. I., Abd Elzaher, M., et al., “Gamma Attenuation Coefficients of Nano Cadmium Oxide/High density Polyethylene Composites”, Scientific reports 9(1) (2019) : 1–11.
  • [4] Mahmoud, M. E., El-Khatib, A. M., Badawi, M. S., Rashad, A. R., El-Sharkawy, R. M., and Thabet, A. A., “Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites”, Radiation Physics and Chemistry 145 (2018) : 160–173.
  • [5] Elsafi, M., Al-Ghamdi, H., Sayyed, M. I., El-Khatib, A. M., “Optimizing the gamma-ray shielding behaviors for polypropylene using lead oxide: A detailed examination”, Journal of Materials Research and Technology 19 (2022) : 1862–1872.
  • [6] Chang, L., Zhang, Y., Liu, Y., Zhang, W., “Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 356 (2015) : 88–93.
  • [7] Ambika, M. R., Nagaiah, N., Suman, S. K., “Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites”, Journal of Applied Polymer Science 134(13) (2017).
  • [8] Adlienė, D., Gilys, L., and Griškonis, E., “Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 467 (2020) : 21–26.
  • [9] Issa, S. A. M., Zakaly, H. M. H., Pyshkina, M., Mostafa, M. Y. A., Rashad, M., Soliman, T. S., “Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: An experimental investigation”, Radiation Physics and Chemistry 180 (2021) : 109281.
  • [10] Fontainha, C. C. P., Baptista Neto, A. T., Santos, A. P., Faria, L. O. de, “P(VDF-TrFE)/ZrO 2 polymer-composites for x-ray shielding”, Materials Research 19 (2016) : 426–433.
  • [11] Shreef, A. M., and Abdulzahara, N. A., “Manufacture of Shielding for Attenuation Ionization Ray by the Preparation of Nano Gadolinium Oxide with PMMA”, NeuroQuantology 19(8) (2021) : 66.
  • [12] Prabhu, S., Bubbly, S. G., and Gudennavar, S. B., “Thermal, mechanical and γ‐ray shielding properties of micro‐and nano‐Ta2O5 loaded DGEBA epoxy resin composites”, Journal of Applied Polymer Science 138(44) (2021) : 51289.
  • [13] Ogul, H., “Radiation attenuation properties of polymer composites mixed with tantalum carbide”, Radiation Effects and Defects in Solids 177(5–6) (2022) : 531–544.
  • [14] Alsayed, Z., Badawi, M. S., Awad, R., El-Khatib, A. M., Thabet, A. A., “Investigation of γ-ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite”, Physica Scripta 95(8) (2020) : 85301.
  • [15] El-Agawany, F. I., Tashlykov, O. L., Mahmoud, K. A., and Rammah, Y. S., “The radiation-shielding properties of ternary SiO2–SnO–SnF2 glasses: simulation and theoretical study”, Ceramics International 46(15) (2020) : 23369–23378.
  • [16] Şahin, N., Bozkurt, M., Karabul, Y., Kılıç, M., Özdemir, Z. G., “Low cost radiation shielding material for low energy radiation applications: Epoxy/Yahyali Stone composites”, Progress in Nuclear Energy 135 (2021) : 103703.
  • [17] Turgay, M. E., Berna, A., Sezgin, N., Şengül, M., “Shielding Effect of Aluminum Against Cs-137 Source, According to Gamma Ray Transmission Technique”, Journal of Engineering Technology and Applied Sciences 7(2) (2022) : 109–113.
  • [18] Çağlar, M., Kayacık, H., Karabul, Y., Kılıç, M., Özdemir, Z. G., and İçelli, O., “Na2Si3O7/BaO composites for the gamma-ray shielding in medical applications: Experimental, MCNP5, and WinXCom studies”, Progress in Nuclear Energy 117 (2019) : 103119.
  • [19] Tekin, H. O., Kavaz, E., Altunsoy, E. E., Tarhan, N., “Characterization of a broad range gamma-ray and neutron shielding properties of MgO-Al2O3-SiO2-B2O3 and Na2O-Al2O3-SiO2 glass systems”, Journal of Non-Crystalline Solids 518 (2019) : 92–102.
  • [20] Kara, H., Karabul, Y., Kılıç, M., İçelli, O., and Özdemir, Z. G., “Volcanic Rock Reinforced Epoxy Composites for Gamma Ray Shielding”, European Journal of Science and Technology 15 (2019) : 552–560.
  • [21] Singh, V. P., Badiger, N. M., Kucuk, N., “Determination of Effective Atomic Numbers Using Different Methods for Some Low- Z Materials”, Journal of Nuclear Chemistry 2014 (2014) : 1–7.
  • [22] Beyazay, E., Karabul, Y., Korkut, S. E., Kılıç, M., and Özdemir, Z. G., “Multifunctional PCz/BaO nanocomposites: Ionizing radiation shielding ability and enhanced electric conductivity”, Progress in Nuclear Energy 155 (2023) : 104521.
  • [23] Chaiphaksa, W., Limkitjaroenporn, P., Kim, H. J., and Kaewkhao, J., “The mass attenuation coefficients, effective atomic numbers and effective electron densities for GAGG: Ce and CaMoO4 scintillators”, Progress in Nuclear Energy 92 (2016) : 48–53.
  • [24] Gerward, L., Guilbert, N., Jensen, K. B., Levring, H., “WinXCom—a program for calculating X-ray attenuation coefficients”, Radiation Physics and Chemistry 71(3–4) (2004) : 653–654.
  • [25] Bozkurt, M., Şahin, N., Karabul, Y., Kılıç, M., Özdemir, Z. G., “Radiation shielding performances of Na2SiO3 based low-cost micro and nano composites for diagnostic imaging”, Progress in Nuclear Energy 143 (2022) : 104058.
  • [26] Mahmoud, K. A., Sayyed, M. I., Tashlykov, O. L., “Comparative studies between the shielding parameters of concretes with different additive aggregates using MCNP-5 simulation code”, Radiation Physics and Chemistry 165 (2019) : 108426.
  • [27] El-Agawany, F. I., Mahmoud, K. A., Kavaz, E., El-Mallawany, R., and Rammah, Y. S., “Evaluation of nuclear radiation shielding competence for ternary Ge–Sb–S chalcogenide glasses”, Applied Physics A 126(4) (2020) : 1–11.
  • [28] Akman, F., Ogul, H., Kaçal, M. R., Polat, H., Dilsiz, K., Agar, O., “Gamma attenuation characteristics of CdTe-Doped polyester composites”, Progress in Nuclear Energy 131 (2021) : 103608.
  • [29] El-Denglawey, A., Issa, S. A. M., Saddeek, Y. B., Tekin, H. O., Zakaly, H. M. H., “The impact of PbF2-based glasses on radiation shielding and mechanical concepts: an extensive theoretical and Monte Carlo simulation study”, Journal of Inorganic and Organometallic Polymers and Materials 31(10) (2021) : 3934–3942.
  • [30] Kim, J., Bar-Ness, D., Si-Mohamed, S., Cormode, D. P., “Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents”, Scientific reports 8(1) (2018) : 1–12.
Year 2023, Volume: 8 Issue: 3, 143 - 154, 31.12.2023
https://doi.org/10.30931/jetas.1298557

Abstract

References

  • [1] Al‐Buriahi, M. S., Eke, C., Alomairy, S., Yildirim, A., Alsaeedy, H. I., and Sriwunkum, C., “Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies”, Polymers for Advanced Technologies 32(6) (2021) : 2386–2396.
  • [2] Ekinci, N., Mahmoud, K. A., Aygün, B., Hessien, M. M., and Rammah, Y. S., “Impacts of the colemanite on the enhancement of the radiation shielding capacity of polypropylene”, Journal of Materials Science: Materials in Electronics 33(25) (2022) : 20046–20055.
  • [3] El-Khatib, A. M., Abbas, M. I., Abd Elzaher, M., et al., “Gamma Attenuation Coefficients of Nano Cadmium Oxide/High density Polyethylene Composites”, Scientific reports 9(1) (2019) : 1–11.
  • [4] Mahmoud, M. E., El-Khatib, A. M., Badawi, M. S., Rashad, A. R., El-Sharkawy, R. M., and Thabet, A. A., “Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites”, Radiation Physics and Chemistry 145 (2018) : 160–173.
  • [5] Elsafi, M., Al-Ghamdi, H., Sayyed, M. I., El-Khatib, A. M., “Optimizing the gamma-ray shielding behaviors for polypropylene using lead oxide: A detailed examination”, Journal of Materials Research and Technology 19 (2022) : 1862–1872.
  • [6] Chang, L., Zhang, Y., Liu, Y., Zhang, W., “Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 356 (2015) : 88–93.
  • [7] Ambika, M. R., Nagaiah, N., Suman, S. K., “Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites”, Journal of Applied Polymer Science 134(13) (2017).
  • [8] Adlienė, D., Gilys, L., and Griškonis, E., “Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 467 (2020) : 21–26.
  • [9] Issa, S. A. M., Zakaly, H. M. H., Pyshkina, M., Mostafa, M. Y. A., Rashad, M., Soliman, T. S., “Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: An experimental investigation”, Radiation Physics and Chemistry 180 (2021) : 109281.
  • [10] Fontainha, C. C. P., Baptista Neto, A. T., Santos, A. P., Faria, L. O. de, “P(VDF-TrFE)/ZrO 2 polymer-composites for x-ray shielding”, Materials Research 19 (2016) : 426–433.
  • [11] Shreef, A. M., and Abdulzahara, N. A., “Manufacture of Shielding for Attenuation Ionization Ray by the Preparation of Nano Gadolinium Oxide with PMMA”, NeuroQuantology 19(8) (2021) : 66.
  • [12] Prabhu, S., Bubbly, S. G., and Gudennavar, S. B., “Thermal, mechanical and γ‐ray shielding properties of micro‐and nano‐Ta2O5 loaded DGEBA epoxy resin composites”, Journal of Applied Polymer Science 138(44) (2021) : 51289.
  • [13] Ogul, H., “Radiation attenuation properties of polymer composites mixed with tantalum carbide”, Radiation Effects and Defects in Solids 177(5–6) (2022) : 531–544.
  • [14] Alsayed, Z., Badawi, M. S., Awad, R., El-Khatib, A. M., Thabet, A. A., “Investigation of γ-ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite”, Physica Scripta 95(8) (2020) : 85301.
  • [15] El-Agawany, F. I., Tashlykov, O. L., Mahmoud, K. A., and Rammah, Y. S., “The radiation-shielding properties of ternary SiO2–SnO–SnF2 glasses: simulation and theoretical study”, Ceramics International 46(15) (2020) : 23369–23378.
  • [16] Şahin, N., Bozkurt, M., Karabul, Y., Kılıç, M., Özdemir, Z. G., “Low cost radiation shielding material for low energy radiation applications: Epoxy/Yahyali Stone composites”, Progress in Nuclear Energy 135 (2021) : 103703.
  • [17] Turgay, M. E., Berna, A., Sezgin, N., Şengül, M., “Shielding Effect of Aluminum Against Cs-137 Source, According to Gamma Ray Transmission Technique”, Journal of Engineering Technology and Applied Sciences 7(2) (2022) : 109–113.
  • [18] Çağlar, M., Kayacık, H., Karabul, Y., Kılıç, M., Özdemir, Z. G., and İçelli, O., “Na2Si3O7/BaO composites for the gamma-ray shielding in medical applications: Experimental, MCNP5, and WinXCom studies”, Progress in Nuclear Energy 117 (2019) : 103119.
  • [19] Tekin, H. O., Kavaz, E., Altunsoy, E. E., Tarhan, N., “Characterization of a broad range gamma-ray and neutron shielding properties of MgO-Al2O3-SiO2-B2O3 and Na2O-Al2O3-SiO2 glass systems”, Journal of Non-Crystalline Solids 518 (2019) : 92–102.
  • [20] Kara, H., Karabul, Y., Kılıç, M., İçelli, O., and Özdemir, Z. G., “Volcanic Rock Reinforced Epoxy Composites for Gamma Ray Shielding”, European Journal of Science and Technology 15 (2019) : 552–560.
  • [21] Singh, V. P., Badiger, N. M., Kucuk, N., “Determination of Effective Atomic Numbers Using Different Methods for Some Low- Z Materials”, Journal of Nuclear Chemistry 2014 (2014) : 1–7.
  • [22] Beyazay, E., Karabul, Y., Korkut, S. E., Kılıç, M., and Özdemir, Z. G., “Multifunctional PCz/BaO nanocomposites: Ionizing radiation shielding ability and enhanced electric conductivity”, Progress in Nuclear Energy 155 (2023) : 104521.
  • [23] Chaiphaksa, W., Limkitjaroenporn, P., Kim, H. J., and Kaewkhao, J., “The mass attenuation coefficients, effective atomic numbers and effective electron densities for GAGG: Ce and CaMoO4 scintillators”, Progress in Nuclear Energy 92 (2016) : 48–53.
  • [24] Gerward, L., Guilbert, N., Jensen, K. B., Levring, H., “WinXCom—a program for calculating X-ray attenuation coefficients”, Radiation Physics and Chemistry 71(3–4) (2004) : 653–654.
  • [25] Bozkurt, M., Şahin, N., Karabul, Y., Kılıç, M., Özdemir, Z. G., “Radiation shielding performances of Na2SiO3 based low-cost micro and nano composites for diagnostic imaging”, Progress in Nuclear Energy 143 (2022) : 104058.
  • [26] Mahmoud, K. A., Sayyed, M. I., Tashlykov, O. L., “Comparative studies between the shielding parameters of concretes with different additive aggregates using MCNP-5 simulation code”, Radiation Physics and Chemistry 165 (2019) : 108426.
  • [27] El-Agawany, F. I., Mahmoud, K. A., Kavaz, E., El-Mallawany, R., and Rammah, Y. S., “Evaluation of nuclear radiation shielding competence for ternary Ge–Sb–S chalcogenide glasses”, Applied Physics A 126(4) (2020) : 1–11.
  • [28] Akman, F., Ogul, H., Kaçal, M. R., Polat, H., Dilsiz, K., Agar, O., “Gamma attenuation characteristics of CdTe-Doped polyester composites”, Progress in Nuclear Energy 131 (2021) : 103608.
  • [29] El-Denglawey, A., Issa, S. A. M., Saddeek, Y. B., Tekin, H. O., Zakaly, H. M. H., “The impact of PbF2-based glasses on radiation shielding and mechanical concepts: an extensive theoretical and Monte Carlo simulation study”, Journal of Inorganic and Organometallic Polymers and Materials 31(10) (2021) : 3934–3942.
  • [30] Kim, J., Bar-Ness, D., Si-Mohamed, S., Cormode, D. P., “Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents”, Scientific reports 8(1) (2018) : 1–12.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Yaşar Karabul 0000-0002-0789-556X

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 8 Issue: 3

Cite

APA Karabul, Y. (2023). Ionizing Radiation Shielding Properties of Tantalum Pentoxide Doped High-Density Polyethylene Composites: A Theoretical Study. Journal of Engineering Technology and Applied Sciences, 8(3), 143-154. https://doi.org/10.30931/jetas.1298557
AMA Karabul Y. Ionizing Radiation Shielding Properties of Tantalum Pentoxide Doped High-Density Polyethylene Composites: A Theoretical Study. JETAS. December 2023;8(3):143-154. doi:10.30931/jetas.1298557
Chicago Karabul, Yaşar. “Ionizing Radiation Shielding Properties of Tantalum Pentoxide Doped High-Density Polyethylene Composites: A Theoretical Study”. Journal of Engineering Technology and Applied Sciences 8, no. 3 (December 2023): 143-54. https://doi.org/10.30931/jetas.1298557.
EndNote Karabul Y (December 1, 2023) Ionizing Radiation Shielding Properties of Tantalum Pentoxide Doped High-Density Polyethylene Composites: A Theoretical Study. Journal of Engineering Technology and Applied Sciences 8 3 143–154.
IEEE Y. Karabul, “Ionizing Radiation Shielding Properties of Tantalum Pentoxide Doped High-Density Polyethylene Composites: A Theoretical Study”, JETAS, vol. 8, no. 3, pp. 143–154, 2023, doi: 10.30931/jetas.1298557.
ISNAD Karabul, Yaşar. “Ionizing Radiation Shielding Properties of Tantalum Pentoxide Doped High-Density Polyethylene Composites: A Theoretical Study”. Journal of Engineering Technology and Applied Sciences 8/3 (December 2023), 143-154. https://doi.org/10.30931/jetas.1298557.
JAMA Karabul Y. Ionizing Radiation Shielding Properties of Tantalum Pentoxide Doped High-Density Polyethylene Composites: A Theoretical Study. JETAS. 2023;8:143–154.
MLA Karabul, Yaşar. “Ionizing Radiation Shielding Properties of Tantalum Pentoxide Doped High-Density Polyethylene Composites: A Theoretical Study”. Journal of Engineering Technology and Applied Sciences, vol. 8, no. 3, 2023, pp. 143-54, doi:10.30931/jetas.1298557.
Vancouver Karabul Y. Ionizing Radiation Shielding Properties of Tantalum Pentoxide Doped High-Density Polyethylene Composites: A Theoretical Study. JETAS. 2023;8(3):143-54.