Research Article
BibTex RIS Cite

Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault

Year 2024, Volume: 9 Issue: 1, 1 - 21, 30.04.2024
https://doi.org/10.30931/jetas.1169518

Abstract

This paper presents a novel nonlinear robust adaptive trajectory tracking control architecture for stabilizing and controlling a quadrotor in the presence of actuator partial faults. The proposed control strategy utilizes an Incremental Nonlinear Dynamic Inversion (INDI) algorithm as the baseline controller in the inner loop and augments a nonlinear model reference adaptive controller in the outer loop to ensure robustness against unmodeled faults. Additionally, a modified PID controller is introduced in the most outer-loop to track the desired path. The effects of actuator faults are modeled by considering sudden variations in motor thrust and torques. To enhance the control algorithm's robustness, a projection operator is employed in the robust adaptive structure. Comparative performance evaluations with a previous successful algorithm implemented on a quadrotor model demonstrate that the proposed controller achieves full controllability of the faulty quadrotor in pitch, roll, and yaw channels in the presence of actuator partial faults up to 50%.

Supporting Institution

Scientific and Technological Research Council of Turkey (TÜBİTAK)

Project Number

120M793

References

  • [1] Turan V., Avşar E., Asadi D., Aydin E.A., "Image Processing Based Autonomous Landing Zone Detection for a Multi-Rotor Drone in Emergency Situation”, Turkish Journal Engineering 5 (2021): 193-200.
  • [2] Asadi D., “Partial engine fault detection and control of a quadrotor considering model uncertainty”, Turkish Journal Engineering 6 (2021):106-117.
  • [3] Nabavi Y., Asadi D., Ahmadi K., “Image-based UAV position and velocity estimationsing a monocular camera”, Control Engineering Practice 134 (2023).
  • [4] Asadi D., Sabzehparvar M., Atkins E.M., Talebi H.A., “Damaged airplane trajectory planning based on flight envelope and motion primitives”, Journal of Aircraft 51 (2014): 1740-1757.
  • [5] Asadi D., Sabzehparvar M., Talebi H.A., “Damaged airplane flight envelope and stability evaluation, Aircraft Engineering and Aerospace Technology”, 85 (2013) : 186-198.
  • [6] Ahmadi K., Asadi D., Pazooki F., “Nonlinear L1 adaptive control of an airplane with structural damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233 (2019) : 341-353.
  • [7] Asadi D., Ahmadi K., “Nonlinear robust adaptive control of an airplane with structural damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 234 (2020) : 2076-2088.
  • [8] Asadi D., Bagherzadeh S.A., “Nonlinear adaptive sliding mode tracking control of an airplane with wing damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 232 (2017): 1405–1420.
  • [9] Alwi H., Edwards C., “Fault-tolerant control of an octorotor using LPV based sliding mode control allocation”, American Control Conference, Washington, DC, USA, (2013) : 6505-6510.
  • [10] Navabi M., Davoodi A., Mirzaei H., “Trajectory tracking of an under-actuated quadcopter using Lyapunov-based optimum adaptive controller”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 236(1) (2021) : 202-215.
  • [11] Ahmadi K., Asadi D., Nabavi Y., Tutsoy O., “Modified adaptive discrete-time incremental nonlinear dynamic inversion control for quad-rotors in the presence of motor faults”, Mechanical Systems and Signal Processing 188 (2023) : 109989.
  • [12] Asadi D., Ahmadi K., Nabavi Y., “Fault-tolerant Trajectory Tracking Control of a Quadcopter in Presence of a Motor Fault”, Int. J. Aeronaut. Sp. Sci. 23 (2022) : 129-142.
  • [13] Gao Z., Cecati C., Ding S.X., “A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches”, IEEE Trans. Ind. Electron. 62 (2015) : 3757-3767.
  • [14] Ahmadi K., Asadi D., Merheb A., Nabavi Y., Tutsoy O., “Active fault-tolerant control of quadrotor UAVs with nonlinear observer-based sliding mode control validated through hardware in the loop experiments”, Control Engineering Practice, 137 (2023).
  • [15] Barghandan S., Badamchizadeh M.A., Jahed-Motlagh M.R., “Improved adaptive fuzzy sliding mode controller for robust fault-tolerant of a Quadrotor”, Int. J. Control. Autom. Syst. 15 (2017): 427-441.
  • [16] Lanzon A., Freddi A., Longhi S., “Flight Control of a Quadrotor Vehicle Subsequent to a Rotor Failure”, J. Guid. Control. Dyn. 37 (2014): 580-591.
  • [17] Khaneghaei M., Asadi D., Tutsoy O., “Software in the Loop (SIL) Simulation for an Autonomous Multirotor Flight Planning and Landing with ROS and Gazebo”, 2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS), Istanbul, Turkiye (2023): 1-10.
  • [18] Besnard L., Shtessel Y.B., Landrum B., “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer”, J. Franklin Inst. 349 (2012) : 658-684.
  • [19] Quan Q., “Introduction to multicopter design and control”, Springer, (2017).
  • [20] Haghighi H., Delahaye D., Asadi D., “Performance-based emergency landing trajectory planning applying meta-heuristic and Dubins paths, Applied Soft Computing”, 117 (2022) : 108453.
  • [21] Sun S., Wang X., Chu Q., Visser C., “Incremental Nonlinear Fault-Tolerant Control of a Quadrotor With Complete Loss of Two Opposing Rotors”, IEEE Trans. Robot. 37 (2021) : 116-130.
  • [22] Sun S., Cioffi G., De Visser C., Scaramuzza D., “Autonomous Quadrotor Flight Despite Rotor Failure With Onboard Vision Sensors: Frames vs. Events”, IEEE Robot. Autom. Lett. 6(2) (2021) : 580-587.
  • [23] Asadi D., “Actuator Fault Detection, Identification, and Control of a Multirotor Air Vehicle Using Residual Generation and Parameter Estimation Approaches. Int. J. Aeronaut. Space Sci. 25, 176-189 (2024).
  • [24] Asadi D., Ahmadi K., Nabavi Y., Tutsoy O., “Controllability of multi-rotors under motor fault effect”, Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4 (2021): 24-43.
  • [25] Lee J., Choi H.S., Shim H., “Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method”, Int. J. Aeronaut. Sp. Sci. 17 (2016): 54-63.
  • [26] Asadi, D., “Model-based Fault Detection and Identification of a Quadrotor with Rotor Fault”, Int. J. Aeronaut. Space Sci. 23 (2022): 916-928. 10.1007/s42405-022-00494-z.
  • [27] Merheb A., Noura H., Bateman F., “Emergency Control of AR Drone Quadrotor UAV Suffering a Total Loss of One Rotor”, IEEE/ASME Trans. Mechatronics. 22 (2017) : 961-971.
  • [28] Lee D., “A Linear Acceleration Control for Precise Trajectory Tracking Flights of a Quadrotor UAV Under High-wind Environments”, Int. J. Aeronaut. Sp. Sci. 22 (2021) : 898-910.
  • [29] Bouabdallah S., Siegwart R., “Full control of a quadrotor”, IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, (2007) :153-158.
  • [30] Tutsoy O., Asadi D., Ahmadi K., Nabavi Y., “Robust Reduced-Order Thau Observer With the Adaptive Fault Estimator for the Unmanned Air Vehicles”, in IEEE Transactions on Vehicular Technology, 72 (2023) : 1601-1610.
  • [31] Ermeydan A., Kiyak E., “Fault tolerant control against actuator faults based on enhanced PID controller for a quadrotor”, Aircr. Eng. Aerosp. Technol. 89 (2017) : 468-476.
Year 2024, Volume: 9 Issue: 1, 1 - 21, 30.04.2024
https://doi.org/10.30931/jetas.1169518

Abstract

Project Number

120M793

References

  • [1] Turan V., Avşar E., Asadi D., Aydin E.A., "Image Processing Based Autonomous Landing Zone Detection for a Multi-Rotor Drone in Emergency Situation”, Turkish Journal Engineering 5 (2021): 193-200.
  • [2] Asadi D., “Partial engine fault detection and control of a quadrotor considering model uncertainty”, Turkish Journal Engineering 6 (2021):106-117.
  • [3] Nabavi Y., Asadi D., Ahmadi K., “Image-based UAV position and velocity estimationsing a monocular camera”, Control Engineering Practice 134 (2023).
  • [4] Asadi D., Sabzehparvar M., Atkins E.M., Talebi H.A., “Damaged airplane trajectory planning based on flight envelope and motion primitives”, Journal of Aircraft 51 (2014): 1740-1757.
  • [5] Asadi D., Sabzehparvar M., Talebi H.A., “Damaged airplane flight envelope and stability evaluation, Aircraft Engineering and Aerospace Technology”, 85 (2013) : 186-198.
  • [6] Ahmadi K., Asadi D., Pazooki F., “Nonlinear L1 adaptive control of an airplane with structural damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233 (2019) : 341-353.
  • [7] Asadi D., Ahmadi K., “Nonlinear robust adaptive control of an airplane with structural damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 234 (2020) : 2076-2088.
  • [8] Asadi D., Bagherzadeh S.A., “Nonlinear adaptive sliding mode tracking control of an airplane with wing damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 232 (2017): 1405–1420.
  • [9] Alwi H., Edwards C., “Fault-tolerant control of an octorotor using LPV based sliding mode control allocation”, American Control Conference, Washington, DC, USA, (2013) : 6505-6510.
  • [10] Navabi M., Davoodi A., Mirzaei H., “Trajectory tracking of an under-actuated quadcopter using Lyapunov-based optimum adaptive controller”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 236(1) (2021) : 202-215.
  • [11] Ahmadi K., Asadi D., Nabavi Y., Tutsoy O., “Modified adaptive discrete-time incremental nonlinear dynamic inversion control for quad-rotors in the presence of motor faults”, Mechanical Systems and Signal Processing 188 (2023) : 109989.
  • [12] Asadi D., Ahmadi K., Nabavi Y., “Fault-tolerant Trajectory Tracking Control of a Quadcopter in Presence of a Motor Fault”, Int. J. Aeronaut. Sp. Sci. 23 (2022) : 129-142.
  • [13] Gao Z., Cecati C., Ding S.X., “A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches”, IEEE Trans. Ind. Electron. 62 (2015) : 3757-3767.
  • [14] Ahmadi K., Asadi D., Merheb A., Nabavi Y., Tutsoy O., “Active fault-tolerant control of quadrotor UAVs with nonlinear observer-based sliding mode control validated through hardware in the loop experiments”, Control Engineering Practice, 137 (2023).
  • [15] Barghandan S., Badamchizadeh M.A., Jahed-Motlagh M.R., “Improved adaptive fuzzy sliding mode controller for robust fault-tolerant of a Quadrotor”, Int. J. Control. Autom. Syst. 15 (2017): 427-441.
  • [16] Lanzon A., Freddi A., Longhi S., “Flight Control of a Quadrotor Vehicle Subsequent to a Rotor Failure”, J. Guid. Control. Dyn. 37 (2014): 580-591.
  • [17] Khaneghaei M., Asadi D., Tutsoy O., “Software in the Loop (SIL) Simulation for an Autonomous Multirotor Flight Planning and Landing with ROS and Gazebo”, 2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS), Istanbul, Turkiye (2023): 1-10.
  • [18] Besnard L., Shtessel Y.B., Landrum B., “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer”, J. Franklin Inst. 349 (2012) : 658-684.
  • [19] Quan Q., “Introduction to multicopter design and control”, Springer, (2017).
  • [20] Haghighi H., Delahaye D., Asadi D., “Performance-based emergency landing trajectory planning applying meta-heuristic and Dubins paths, Applied Soft Computing”, 117 (2022) : 108453.
  • [21] Sun S., Wang X., Chu Q., Visser C., “Incremental Nonlinear Fault-Tolerant Control of a Quadrotor With Complete Loss of Two Opposing Rotors”, IEEE Trans. Robot. 37 (2021) : 116-130.
  • [22] Sun S., Cioffi G., De Visser C., Scaramuzza D., “Autonomous Quadrotor Flight Despite Rotor Failure With Onboard Vision Sensors: Frames vs. Events”, IEEE Robot. Autom. Lett. 6(2) (2021) : 580-587.
  • [23] Asadi D., “Actuator Fault Detection, Identification, and Control of a Multirotor Air Vehicle Using Residual Generation and Parameter Estimation Approaches. Int. J. Aeronaut. Space Sci. 25, 176-189 (2024).
  • [24] Asadi D., Ahmadi K., Nabavi Y., Tutsoy O., “Controllability of multi-rotors under motor fault effect”, Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4 (2021): 24-43.
  • [25] Lee J., Choi H.S., Shim H., “Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method”, Int. J. Aeronaut. Sp. Sci. 17 (2016): 54-63.
  • [26] Asadi, D., “Model-based Fault Detection and Identification of a Quadrotor with Rotor Fault”, Int. J. Aeronaut. Space Sci. 23 (2022): 916-928. 10.1007/s42405-022-00494-z.
  • [27] Merheb A., Noura H., Bateman F., “Emergency Control of AR Drone Quadrotor UAV Suffering a Total Loss of One Rotor”, IEEE/ASME Trans. Mechatronics. 22 (2017) : 961-971.
  • [28] Lee D., “A Linear Acceleration Control for Precise Trajectory Tracking Flights of a Quadrotor UAV Under High-wind Environments”, Int. J. Aeronaut. Sp. Sci. 22 (2021) : 898-910.
  • [29] Bouabdallah S., Siegwart R., “Full control of a quadrotor”, IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, (2007) :153-158.
  • [30] Tutsoy O., Asadi D., Ahmadi K., Nabavi Y., “Robust Reduced-Order Thau Observer With the Adaptive Fault Estimator for the Unmanned Air Vehicles”, in IEEE Transactions on Vehicular Technology, 72 (2023) : 1601-1610.
  • [31] Ermeydan A., Kiyak E., “Fault tolerant control against actuator faults based on enhanced PID controller for a quadrotor”, Aircr. Eng. Aerosp. Technol. 89 (2017) : 468-476.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Karim Ahmadi Dastgerdi 0000-0002-2633-3351

Davood Asadi 0000-0002-2066-6016

Seyed Yaser Nabavi Chashmi 0000-0003-1836-2600

Önder Tutsoy 0000-0003-2556-2002

Project Number 120M793
Early Pub Date April 29, 2024
Publication Date April 30, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Ahmadi Dastgerdi, K., Asadi, D., Nabavi Chashmi, S. Y., Tutsoy, Ö. (2024). Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault. Journal of Engineering Technology and Applied Sciences, 9(1), 1-21. https://doi.org/10.30931/jetas.1169518
AMA Ahmadi Dastgerdi K, Asadi D, Nabavi Chashmi SY, Tutsoy Ö. Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault. JETAS. April 2024;9(1):1-21. doi:10.30931/jetas.1169518
Chicago Ahmadi Dastgerdi, Karim, Davood Asadi, Seyed Yaser Nabavi Chashmi, and Önder Tutsoy. “Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault”. Journal of Engineering Technology and Applied Sciences 9, no. 1 (April 2024): 1-21. https://doi.org/10.30931/jetas.1169518.
EndNote Ahmadi Dastgerdi K, Asadi D, Nabavi Chashmi SY, Tutsoy Ö (April 1, 2024) Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault. Journal of Engineering Technology and Applied Sciences 9 1 1–21.
IEEE K. Ahmadi Dastgerdi, D. Asadi, S. Y. Nabavi Chashmi, and Ö. Tutsoy, “Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault”, JETAS, vol. 9, no. 1, pp. 1–21, 2024, doi: 10.30931/jetas.1169518.
ISNAD Ahmadi Dastgerdi, Karim et al. “Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault”. Journal of Engineering Technology and Applied Sciences 9/1 (April 2024), 1-21. https://doi.org/10.30931/jetas.1169518.
JAMA Ahmadi Dastgerdi K, Asadi D, Nabavi Chashmi SY, Tutsoy Ö. Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault. JETAS. 2024;9:1–21.
MLA Ahmadi Dastgerdi, Karim et al. “Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault”. Journal of Engineering Technology and Applied Sciences, vol. 9, no. 1, 2024, pp. 1-21, doi:10.30931/jetas.1169518.
Vancouver Ahmadi Dastgerdi K, Asadi D, Nabavi Chashmi SY, Tutsoy Ö. Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault. JETAS. 2024;9(1):1-21.