Year 2024,
Volume: 9 Issue: 2, 71 - 84, 30.08.2024
Hasan Hüseyin Güleç
,
İbrahim Aktaş
References
- Duren, P.L., “Univalent Functions In: Grundlehren der Mathematischen Wissenschaften”, Springer-Verlag (1983).
- Fekete, M., Szegö, G., “Eine bemerkung über ungerade schlichte funktionen”, Journal of London Mathematical Society 1(2) (1933) : 85–89.
- Zaprawa, P., “On the Fekete-Szegö problem for classes of bi-univalent functions”, Bulletin of the Belgian Mathematical Society-Simon Stevin 21(1) (2014) : 169–178.
- Srivastava, H.M., Mishra, A.K., Gochhayat, P., “Certain subclasses of analytic and bi-univalent functions”, Applied Mathematics Letters 23 (2010) : 1188–1192.
- Lewin, M., “On a coefficient problem for bi-univalent functions”, Proceedings of the American Mathematical Society 18 (1967) : 63–68.
- Brannan, D., Clunie, J., “Aspects of contemporary complex analysis”, Academic Press (1980).
- Netanyahu, E., “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1”, Archive for Rational Mechanics and Analysis 32(2) (1969) : 100–112.
- Tan, D.L., “Coefficient estimates for bi-univalent functions”, Chinese Annals of Mathematics Series A 5(5) (1984) : 559–568.
- Brannan, D., Taha, T.S., “On some classes of bi-univalent functions”, Proceedings of the International Conference on Mathematical Analysis and its Applications. Kuwait, (1985) : 53–60.
- Aktaş, İ., Yılmaz, N., “Initial coefficients estimate and Fekete-Szegő problems for two new subclasses of bi-univalent functions”, Konuralp Journal of Mathematics 10(1) (2022) : 138–148.
- Alamoush, A.G., “Coefficient estimates for certain subclass of bi-Bazilević functions associated with Chebyshev polynomials”, Acta Universitatis Apulensis: Mathematics-Informatics 60 (2019) : 53–59.
- Alamoush, A.G., “On a subclass of bi-univalent functions associated to Horadam polynomials”, International Journal of Open Problems in Complex Analysis 12(1) (2020) : 58–65.
- Amourah, A., Al-Hawary, T., Frasin, B.A., “Application of Chebyshev polynomials to certain class of bi-Bazilevic functions of order α+iß”, Afrika Mathematika 32(5) (2021) : 1059–1066.
- Altınkaya, Ş., Yalçın, S., “On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions”, Gulf Journal of Mathematics 5(3) (2017) : 34–40.
- Altınkaya, Ş., Yalçın, S., “On the Chebyshev polynomial coefficient problem of bi-Bazilevič function”, TWMS Journal of Applied and Engineering Mathematics 10(1) (2020) : 251–258.
- Bulut, S., Magesh, N., Balaji, V.K., “Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials”, Journal of Classical Analysis 11(1) (2017) : 83–89.
- Çağlar, M., “Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions”, Comptes Rendus de l’Acad´emie Bulgare des Sciences 72(12) (2019) : 1608–1615.
- Kamali, M., Çağlar, M., Deniz, E., Turabaev, M., “Fekete-Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials”, Turkish Journal of Mathematics 45(3) (2021) : 1195–1208.
- Srivastava, H.M., Altınkaya, Ş., Yalçın, S., “Certain subclasses of bi-univalent functions associated with the Horadam polynomials”, Iranian Journal of Science and Technology, Transactions A: Science 43(4) (2019) : 1873–1879.
- Srivastava, H.M., Murugusundaramoorthy, G., Vijaya, K., “Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator”, Journal of Classical Analysis 2(2) (2013) : 167–181.
- Swamy, S.R., Sailaja, Y., “Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions”, International Journal of Mathematics Trends and Technology 66(8) (2020) : 131–138.
- Wanas, A.K., Alina, A.L., “Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions”, Journal of Physics: Conference Series, IOP Publishing 1294(3) (2019).
- Miller, S.S., Mocanu, P.T., “Differential Subordinations: Theory and Applications”, CRC Press (2000).
- Koshy, T., “Fibonacci and Lucas Numbers with Applications”, John Wiley and Sons Incorparation (2001).
- Panwar, Y.K., Singh, M., “Generalized bivariate Fibonacci-like polynomials”, International Journal of Pure Mathematics 1 (2014) : 8–13.
- Altınkaya, Ş., Yalçın, S., “Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions”, arXiv : 1605.08224v2 (2017).
- Bulut, S., Magesh, N., Abirami, C., “A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials”, Journal of Fractional Calculus and Applications 8(2) (2017) : 32–39.
- Murugusundaramoorthy, G., Vijaya, K., Güney, H.Ö., “Certain subclasses of bi-univalent functions associated with the Chebyshev polynomials based on Hohlov operator”, Tbilisi Mathematical Journal 11(2) (2018) : 153–166.
- Patil, A.B., Shaba, T.G., “On sharp Chebyshev polynomial bounds for a general subclass of bi-univalent functions”, Balkan Society of Geometers, Geometry Balkan Press, Applied Sciences 23 (2021) : 109–117.
- Aouf, M.K., Mostafa, A.O., El-Morsy, R.E., “Coefficient bounds for general class of bi-univalent functions of complex order”, Electronic Journal of Mathematical Analysis and Applications 8(2) (2020) : 251–260.
- Abirami, C., Magesh, N., Yamini, J., “Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials”, Abstract and Applied Analysis (2020) : 7391058.
- Güney, H.Ö., Murugusundaramoorthy, G., Vijaya, K., “Coefficient bounds for subclasses of bi-univalent functions associated with the Chebyshev polynomials”, Journal of Complex Analysis (2017) : 4150210
- Magesh, N., Bulut, S., “Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions”, Afrika Mathematika 29 (2018) : 203–209.
- Al-Shbeil, I., Wanas, A.K., AlAqad, H., Cătaş, A., Alohali, H., “Applications of Horadam Polynomials for Bazilevič and λ-Pseudo-Starlike Bi-Univalent Functions Associated with Sakaguchi Type Functions”, Symmetry 16 (2024) : 218.
- Almalki, Y., Wanas, A.K., Shaba, T.G., Lupaş, A.A., Abdalla, M., “Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials”, Axioms 12(11) (2023) : 1018.
- Wanas, A.K., “Upper Bound to Second Hankel Determinant for a family of Bi-Univalent Functions”, Boletim da Sociedade Paranaense de Matematica 41 (2023) : 1–8.
- Güney, H.Ö., Murugusundaramoorthy, G., Sokøł J., “Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers”, Acta Universitatis Sapientiae, Mathematica 10(1) (2018) : 70–84.
- Deniz, E., “Certain subclasses of bi-univalent functions satisfying subordinate conditions”, Journal of Classical Analysis 2(1) (2013) : 49–60.
- Murugusundaramoorthy, G., Kaliappan, V., “Certain subclasses of analytic functions associated with generalized telephone numbers”, Symmetry 14 (5) (2022) : 1053.
- Mustafa, N., Murugusundaramoorthy, G., “Second Hankel determinant for Mocanu type bi-starlike functionsrelated to shell-shaped region”, Turkish Journal of Mathematics 45(3) (2021) : 1270–1286.
- Srivastava, H.M., Murugusundaramoorthy, G., Bulboaca, T., “The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 116(4) (2022) : 145.
- Srivastava, H.M., Sabir, P.O., Abdullah K.I., Mohammed N.H., Chorfi N., Mohammed P.O., “A comprehensive subclass of bi-univalent functions defined by a linear combination and satisfying subordination conditions”, AIMS Mathematics 8(12) (2023) : 29975–29994.
- Srivastava, H.M., Wanas, A.K., Güney, H.Ö., “New Families of Bi-univalent Functions Associated with the Bazilevič Functions and the λ-Pseudo-Starlike Functions”, Iranian Journal of Science and Technology, Transactions A: Science 45 (2021) : 1799–1804.
- Srivastava, H.M., Sabir, P.O., Eker, S.S., Wanas, A.K., Mohammed, P.O., Chorfi, N., Baleanu, D., “Some m-fold symmetric bi-univalent function classes and their associated Taylor-Maclaurin coefficient bounds”, Journal of Inequalities and Applications 2024(1) (2024) : 47.
- Srivastava, H.M., Hussain, S., Ahmad, I., Shah, S.G.A., “Coefficient bounds for analytic and bi-univalent functions associated with some conic domains”, Journal of Nonlinear and Convex Analysis 23(4) (2022) : 741–753.
- Sabir, P.O., Srivastava, H.M., Atshan, W.G., Mohammed, P.O., Chorfi, N., Vivas-Cortez, M., “A Family of Holomorphic and m-Fold Symmetric Bi-Univalent Functions Endowed with Coefficient Estimate Problems”, Mathematics 11 (2023) : 3970.
- Srivastava, H.M., Wanas, A.K., Srivastava, R., “Applications of the q-Srivastava-Attiya Operator Involving a Certain Family of Bi-Univalent Functions Associated with the Horadam Polynomials”, Symmetry 13(2021) : 1230.
- Pommerenke, C., “Univalent functions”, Vandenhoeck & Ruprecht, Göttingen, Germany (1975).
Coefficient Estimate Problems For A New Subclass of Bi-univalent Functions Linked with the Generalized Bivariate Fibonacci-Like Polynomial
Year 2024,
Volume: 9 Issue: 2, 71 - 84, 30.08.2024
Hasan Hüseyin Güleç
,
İbrahim Aktaş
Abstract
In this article, using the definition of generalized bivariate Fibonacci-like polynomials that include Horadam and Chebyshev polynomials a novel subclass of bi-univalent functions are introduced. Then, some bounds are determined for the initial Taylor-Maclaurin coefficients of the functions belonging to this new subclass. Further, the well-known Fekete-Szeg\"{o} problem is discussed for the defined subclass. Finally, certain remarks and corollaries are indicated for the some special values of variables.
References
- Duren, P.L., “Univalent Functions In: Grundlehren der Mathematischen Wissenschaften”, Springer-Verlag (1983).
- Fekete, M., Szegö, G., “Eine bemerkung über ungerade schlichte funktionen”, Journal of London Mathematical Society 1(2) (1933) : 85–89.
- Zaprawa, P., “On the Fekete-Szegö problem for classes of bi-univalent functions”, Bulletin of the Belgian Mathematical Society-Simon Stevin 21(1) (2014) : 169–178.
- Srivastava, H.M., Mishra, A.K., Gochhayat, P., “Certain subclasses of analytic and bi-univalent functions”, Applied Mathematics Letters 23 (2010) : 1188–1192.
- Lewin, M., “On a coefficient problem for bi-univalent functions”, Proceedings of the American Mathematical Society 18 (1967) : 63–68.
- Brannan, D., Clunie, J., “Aspects of contemporary complex analysis”, Academic Press (1980).
- Netanyahu, E., “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1”, Archive for Rational Mechanics and Analysis 32(2) (1969) : 100–112.
- Tan, D.L., “Coefficient estimates for bi-univalent functions”, Chinese Annals of Mathematics Series A 5(5) (1984) : 559–568.
- Brannan, D., Taha, T.S., “On some classes of bi-univalent functions”, Proceedings of the International Conference on Mathematical Analysis and its Applications. Kuwait, (1985) : 53–60.
- Aktaş, İ., Yılmaz, N., “Initial coefficients estimate and Fekete-Szegő problems for two new subclasses of bi-univalent functions”, Konuralp Journal of Mathematics 10(1) (2022) : 138–148.
- Alamoush, A.G., “Coefficient estimates for certain subclass of bi-Bazilević functions associated with Chebyshev polynomials”, Acta Universitatis Apulensis: Mathematics-Informatics 60 (2019) : 53–59.
- Alamoush, A.G., “On a subclass of bi-univalent functions associated to Horadam polynomials”, International Journal of Open Problems in Complex Analysis 12(1) (2020) : 58–65.
- Amourah, A., Al-Hawary, T., Frasin, B.A., “Application of Chebyshev polynomials to certain class of bi-Bazilevic functions of order α+iß”, Afrika Mathematika 32(5) (2021) : 1059–1066.
- Altınkaya, Ş., Yalçın, S., “On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions”, Gulf Journal of Mathematics 5(3) (2017) : 34–40.
- Altınkaya, Ş., Yalçın, S., “On the Chebyshev polynomial coefficient problem of bi-Bazilevič function”, TWMS Journal of Applied and Engineering Mathematics 10(1) (2020) : 251–258.
- Bulut, S., Magesh, N., Balaji, V.K., “Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials”, Journal of Classical Analysis 11(1) (2017) : 83–89.
- Çağlar, M., “Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions”, Comptes Rendus de l’Acad´emie Bulgare des Sciences 72(12) (2019) : 1608–1615.
- Kamali, M., Çağlar, M., Deniz, E., Turabaev, M., “Fekete-Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials”, Turkish Journal of Mathematics 45(3) (2021) : 1195–1208.
- Srivastava, H.M., Altınkaya, Ş., Yalçın, S., “Certain subclasses of bi-univalent functions associated with the Horadam polynomials”, Iranian Journal of Science and Technology, Transactions A: Science 43(4) (2019) : 1873–1879.
- Srivastava, H.M., Murugusundaramoorthy, G., Vijaya, K., “Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator”, Journal of Classical Analysis 2(2) (2013) : 167–181.
- Swamy, S.R., Sailaja, Y., “Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions”, International Journal of Mathematics Trends and Technology 66(8) (2020) : 131–138.
- Wanas, A.K., Alina, A.L., “Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions”, Journal of Physics: Conference Series, IOP Publishing 1294(3) (2019).
- Miller, S.S., Mocanu, P.T., “Differential Subordinations: Theory and Applications”, CRC Press (2000).
- Koshy, T., “Fibonacci and Lucas Numbers with Applications”, John Wiley and Sons Incorparation (2001).
- Panwar, Y.K., Singh, M., “Generalized bivariate Fibonacci-like polynomials”, International Journal of Pure Mathematics 1 (2014) : 8–13.
- Altınkaya, Ş., Yalçın, S., “Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions”, arXiv : 1605.08224v2 (2017).
- Bulut, S., Magesh, N., Abirami, C., “A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials”, Journal of Fractional Calculus and Applications 8(2) (2017) : 32–39.
- Murugusundaramoorthy, G., Vijaya, K., Güney, H.Ö., “Certain subclasses of bi-univalent functions associated with the Chebyshev polynomials based on Hohlov operator”, Tbilisi Mathematical Journal 11(2) (2018) : 153–166.
- Patil, A.B., Shaba, T.G., “On sharp Chebyshev polynomial bounds for a general subclass of bi-univalent functions”, Balkan Society of Geometers, Geometry Balkan Press, Applied Sciences 23 (2021) : 109–117.
- Aouf, M.K., Mostafa, A.O., El-Morsy, R.E., “Coefficient bounds for general class of bi-univalent functions of complex order”, Electronic Journal of Mathematical Analysis and Applications 8(2) (2020) : 251–260.
- Abirami, C., Magesh, N., Yamini, J., “Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials”, Abstract and Applied Analysis (2020) : 7391058.
- Güney, H.Ö., Murugusundaramoorthy, G., Vijaya, K., “Coefficient bounds for subclasses of bi-univalent functions associated with the Chebyshev polynomials”, Journal of Complex Analysis (2017) : 4150210
- Magesh, N., Bulut, S., “Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions”, Afrika Mathematika 29 (2018) : 203–209.
- Al-Shbeil, I., Wanas, A.K., AlAqad, H., Cătaş, A., Alohali, H., “Applications of Horadam Polynomials for Bazilevič and λ-Pseudo-Starlike Bi-Univalent Functions Associated with Sakaguchi Type Functions”, Symmetry 16 (2024) : 218.
- Almalki, Y., Wanas, A.K., Shaba, T.G., Lupaş, A.A., Abdalla, M., “Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials”, Axioms 12(11) (2023) : 1018.
- Wanas, A.K., “Upper Bound to Second Hankel Determinant for a family of Bi-Univalent Functions”, Boletim da Sociedade Paranaense de Matematica 41 (2023) : 1–8.
- Güney, H.Ö., Murugusundaramoorthy, G., Sokøł J., “Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers”, Acta Universitatis Sapientiae, Mathematica 10(1) (2018) : 70–84.
- Deniz, E., “Certain subclasses of bi-univalent functions satisfying subordinate conditions”, Journal of Classical Analysis 2(1) (2013) : 49–60.
- Murugusundaramoorthy, G., Kaliappan, V., “Certain subclasses of analytic functions associated with generalized telephone numbers”, Symmetry 14 (5) (2022) : 1053.
- Mustafa, N., Murugusundaramoorthy, G., “Second Hankel determinant for Mocanu type bi-starlike functionsrelated to shell-shaped region”, Turkish Journal of Mathematics 45(3) (2021) : 1270–1286.
- Srivastava, H.M., Murugusundaramoorthy, G., Bulboaca, T., “The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 116(4) (2022) : 145.
- Srivastava, H.M., Sabir, P.O., Abdullah K.I., Mohammed N.H., Chorfi N., Mohammed P.O., “A comprehensive subclass of bi-univalent functions defined by a linear combination and satisfying subordination conditions”, AIMS Mathematics 8(12) (2023) : 29975–29994.
- Srivastava, H.M., Wanas, A.K., Güney, H.Ö., “New Families of Bi-univalent Functions Associated with the Bazilevič Functions and the λ-Pseudo-Starlike Functions”, Iranian Journal of Science and Technology, Transactions A: Science 45 (2021) : 1799–1804.
- Srivastava, H.M., Sabir, P.O., Eker, S.S., Wanas, A.K., Mohammed, P.O., Chorfi, N., Baleanu, D., “Some m-fold symmetric bi-univalent function classes and their associated Taylor-Maclaurin coefficient bounds”, Journal of Inequalities and Applications 2024(1) (2024) : 47.
- Srivastava, H.M., Hussain, S., Ahmad, I., Shah, S.G.A., “Coefficient bounds for analytic and bi-univalent functions associated with some conic domains”, Journal of Nonlinear and Convex Analysis 23(4) (2022) : 741–753.
- Sabir, P.O., Srivastava, H.M., Atshan, W.G., Mohammed, P.O., Chorfi, N., Vivas-Cortez, M., “A Family of Holomorphic and m-Fold Symmetric Bi-Univalent Functions Endowed with Coefficient Estimate Problems”, Mathematics 11 (2023) : 3970.
- Srivastava, H.M., Wanas, A.K., Srivastava, R., “Applications of the q-Srivastava-Attiya Operator Involving a Certain Family of Bi-Univalent Functions Associated with the Horadam Polynomials”, Symmetry 13(2021) : 1230.
- Pommerenke, C., “Univalent functions”, Vandenhoeck & Ruprecht, Göttingen, Germany (1975).