Research Article
BibTex RIS Cite

Giyilebilir hareket analiz sisteminin (G-walk) sağlıklı yetişkinlerde yürüyüş ve sıçrama değerlendirmesi üzerine güvenilirliğinin araştırılması

Year 2020, Volume: 7 Issue: 2, 159 - 167, 31.08.2020

Abstract

Amaç: Giyilebilir hareket analiz sistemleri kliniklerde yürüyüş ve sıçrama performansının değerlendirilmesinde yaygın olarak kullanılmaktadır. G-walk cihazı bu amaçla kullanılan cihazlardan biridir. Bu tür cihazları klinik değerlendirme için kullanmadan önce güvenilirliğinin belirlenmesi büyük önem taşımaktadır. Bu çalışmanın amacı, sağlıklı yetişkinlerde yürüyüş ve sıçrama parametreleri için G-walk giyilebilir hareket analiz sisteminin test-tekrar test güvenilirliğini incelemektir.

Yöntem: Çalışmaya kırk dokuz (30 kadın, 19 erkek, 23,58±2,65 yaş) sağlıklı gönüllü katıldı. Katılımcıların yürüyüş ve sıçrama parametreleri G-walk cihazı kullanılarak değerlendirildi. Yürüyüş parametreleri için; hız, kadans, adım uzunluğu, adım süresi, duruş süresi, salınım süresi, çift destek, tek destek süreleri ve pelvik açılar değerlendirildi. “Counter movement jump”, “squat jump” ve “countermovement jump with arms thrust” sıçramaların maksimum yüksekliği değerlendirildi. Test-tekrar test analizi için sınıf içi korelasyon katsayısı (ICC) yöntemi kullanıldı (p<0,05).

Bulgular: Pelvik açılar haricindeki yürüyüş parametresi ölçümlerinin tümünün yüksek veya mükemmele yakın test-tekrar test güvenilirliğine (ICC: 0,728-0,969) sahip olduğu, pelvik açıların ölçümlerinin ise orta derecede test-tekrar test güvenilirliğe sahip olduğu (ICC: 0,463-0,659) bulundu. Tüm sıçrama parametrelerinin ölçümlerinin mükemmele yakın test-tekrar test güvenilirliğe sahip olduğu göründü (ICC: 0,900-0,986).

Sonuç: Bu çalışmanın sonucunda G-walk cihazının yürüyüş ve sıçrama değerlendirmesinde kullanılacak güvenilir bir cihaz olduğu ortaya konmuştur. G-walk cihazının taşınabilir, kullanımı kolay ve uygun maliyetli olmasının yanı sıra sağlıklı yetişkinlerde yürüyüş ve atlama performansını ölçmede güvenilir olduğu bulunmuştur. Bu çalışma clinictrials.gov üzerinde kaydedildi: NCT04310982

Supporting Institution

yok

Project Number

yok

References

  • 1. Silsupadol P, Teja K, Lugade V. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: body, bag, belt, hand, and pocket. Gait Posture. 2017;58:516-522.
  • 2. Eltoukhy M, Oh J, Kuenze C, Signorile J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture. 2017;51:77-83.
  • 3. De Ridder R, Lebleu J, Willems T, et al. Concurrent validity of a commercial wireless trunk triaxial accelerometer system for gait analysis. J Sport Rehabil. 2019;28:6.
  • 4. Springer S, Yogev Seligmann G. Validity of the kinect for gait assessment: A focused review. Sensors. 2016;16:194.
  • 5. Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23:314-322.
  • 6. Kraan C, Tan A, Cornish K. The developmental dynamics of gait maturation with a focus on spatiotemporal measures. Gait Posture. 2017;51:208-217.
  • 7. Markovic G. Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med. 2007;41:349-355.
  • 8. Gallardo-Fuentes F, Gallardo-Fuentes J, Ramírez-Campillo R, et al. Intersession and intrasession reliability and validity of the My Jump app for measuring different jump actions in trained male and female athletes. J Strength Cond Res. 2016;30:2049-2056.
  • 9. Yingling VR, Castro DA, Duong JT, et al. The reliability of vertical jump tests between the Vertec and My Jump phone application. Peer J. 2018;6:e4669.
  • 10. Pijnappels M, Reeves ND, van Dieën JH. Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol.2008;102:585-592.
  • 11. LeMoyne R, Mastroianni T. Quantification systems appropriate for a clinical setting. Wearable and Wireless Systems for Healthcare. Singapore: Springer; 2018;31-44.
  • 12. Hsu C-Y, Tsai Y-S, Yau C-S, et al. Test-retest reliability of an automated infrared-assisted trunk accelerometer-based gait analysis system. Sensors. 2016;16:1156.
  • 13. Cruvinel-Cabral RM, Oliveira-Silva I, Medeiros AR, et al. The validity and reliability of the “My Jump App” for measuring jump height of the elderly. Peer J. 2018;6:e5804.
  • 14. Buckthorpe M, Morris J, Folland JP. Validity of vertical jump measurement devices. J Sports Sci. 2012;30:63-69.
  • 15. Beckerman H, Roebroeck M, Lankhorst G, et al. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res. 2001;10:571-578.
  • 16. Aragón LF. Evaluation of four vertical jump tests: Methodology, reliability, validity, and accuracy. Meas Phys Educ Exerc Sci. 2000;4:215-228.
  • 17. Malisoux L, Francaux M, Nielens H, et al. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol. 2006;100:771-779.
  • 18. Picerno P, Camomilla V, Capranica L. Countermovement jump performance assessment using a wearable 3D inertial measurement unit. J Sport Sci. 2011;29:139-146.
  • 19. Requena B, García I, Requena F, et al. Reliability and validity of a wireless micro electro mechanicals based system (KeimoveTM) for measuring vertical jumping performance. J Sports Sci Med. 2012;11:115.

The reliability of a wearable movement analysis system (G-walk) on gait and jump assessment in healthy adults

Year 2020, Volume: 7 Issue: 2, 159 - 167, 31.08.2020

Abstract

Purpose: Wearable inertial sensor systems are generally used in the assessment of gait and jump performance in clinics. G- walk is one of these devices however, before using this device for clinical interpretation, the reliability of this device must be defined. The aim of this study was to investigate the test–retest reliability of the G-walk wearable movement analysis sensor
system for gait and jump assessments in healthy adults.

Methods: Forty-nine healthy volunteers (30 females, 19 males, 23.58±2.65 years of age) participated in the study. The jump and gait parameters of the participants were evaluated using G-walk. The gait parameters were; speed, cadence, stride length, stride duration, stance duration, swing duration, double support, single support and pelvic angles during gait. The maximum height of the following jumps was assessed; counter movement jump, squat jump and countermovement jump with arms thrust. The intraclass correlation coefficient (ICC) method was used for test-retest analysis (p<0.05).


Results: All gait parameter measurements had high or excellent test–retest reliability (ICC:0.728-0.969) with the exception of pelvic angles during gait. The assessment of pelvic angles had moderate test–retest reliability (ICC: 0.463-0.659). All of the jump parameters’ measurements had excellent test–retest reliability (ICC: 0.900-0.986).

Conclusion: In conclusion, this study shows that the G-walk is a reliable device for assessing gait and jump. Alongside being portable, easy to use and affordable at cost, the G-walk was found to be reliable in measuring gait and jump performance in healthy adults. The study was registered on clinicaltrials.gov: NCT04310982

Project Number

yok

References

  • 1. Silsupadol P, Teja K, Lugade V. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: body, bag, belt, hand, and pocket. Gait Posture. 2017;58:516-522.
  • 2. Eltoukhy M, Oh J, Kuenze C, Signorile J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture. 2017;51:77-83.
  • 3. De Ridder R, Lebleu J, Willems T, et al. Concurrent validity of a commercial wireless trunk triaxial accelerometer system for gait analysis. J Sport Rehabil. 2019;28:6.
  • 4. Springer S, Yogev Seligmann G. Validity of the kinect for gait assessment: A focused review. Sensors. 2016;16:194.
  • 5. Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23:314-322.
  • 6. Kraan C, Tan A, Cornish K. The developmental dynamics of gait maturation with a focus on spatiotemporal measures. Gait Posture. 2017;51:208-217.
  • 7. Markovic G. Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med. 2007;41:349-355.
  • 8. Gallardo-Fuentes F, Gallardo-Fuentes J, Ramírez-Campillo R, et al. Intersession and intrasession reliability and validity of the My Jump app for measuring different jump actions in trained male and female athletes. J Strength Cond Res. 2016;30:2049-2056.
  • 9. Yingling VR, Castro DA, Duong JT, et al. The reliability of vertical jump tests between the Vertec and My Jump phone application. Peer J. 2018;6:e4669.
  • 10. Pijnappels M, Reeves ND, van Dieën JH. Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol.2008;102:585-592.
  • 11. LeMoyne R, Mastroianni T. Quantification systems appropriate for a clinical setting. Wearable and Wireless Systems for Healthcare. Singapore: Springer; 2018;31-44.
  • 12. Hsu C-Y, Tsai Y-S, Yau C-S, et al. Test-retest reliability of an automated infrared-assisted trunk accelerometer-based gait analysis system. Sensors. 2016;16:1156.
  • 13. Cruvinel-Cabral RM, Oliveira-Silva I, Medeiros AR, et al. The validity and reliability of the “My Jump App” for measuring jump height of the elderly. Peer J. 2018;6:e5804.
  • 14. Buckthorpe M, Morris J, Folland JP. Validity of vertical jump measurement devices. J Sports Sci. 2012;30:63-69.
  • 15. Beckerman H, Roebroeck M, Lankhorst G, et al. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res. 2001;10:571-578.
  • 16. Aragón LF. Evaluation of four vertical jump tests: Methodology, reliability, validity, and accuracy. Meas Phys Educ Exerc Sci. 2000;4:215-228.
  • 17. Malisoux L, Francaux M, Nielens H, et al. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol. 2006;100:771-779.
  • 18. Picerno P, Camomilla V, Capranica L. Countermovement jump performance assessment using a wearable 3D inertial measurement unit. J Sport Sci. 2011;29:139-146.
  • 19. Requena B, García I, Requena F, et al. Reliability and validity of a wireless micro electro mechanicals based system (KeimoveTM) for measuring vertical jumping performance. J Sports Sci Med. 2012;11:115.
There are 19 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Gökhan Yazıcı 0000-0002-9270-2290

Melek Volkan 0000-0001-9686-0571

Gamze Çobanoğlu 0000-0003-0136-3607

Buse Küpeli 0000-0002-0439-9333

Cagla Ozkul 0000-0001-9367-9910

Deran Oskay 0000-0002-2217-076X

Nevin Atalay Güzel 0000-0003-0467-7310

Project Number yok
Publication Date August 31, 2020
Submission Date May 14, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Yazıcı G, Volkan M, Çobanoğlu G, Küpeli B, Ozkul C, Oskay D, Atalay Güzel N. The reliability of a wearable movement analysis system (G-walk) on gait and jump assessment in healthy adults. JETR. 2020;7(2):159-67.