Research Article
BibTex RIS Cite

DESIGN, SYNTHESIS, AND EVALUATION OF ANTIBACTERIAL POTENTIAL OF HYDRAZONE-TETHERED PYRAZOLE-THIAZOLE DERIVATIVES

Year 2025, , 42 - 52, 20.01.2025
https://doi.org/10.33483/jfpau.1529096

Abstract

Objective: This study includes the investigation of the antimicrobial potential of a series of compounds designed by hybridization of thiazole, hydrazone and pyrazole systems identified as antimicrobial moieties in the literature. The aim was to filter the designed compounds with drugability parameters, synthesize the selected compounds and test their antibacterial potential in silico and in vitro.
Material and Method: The drugability properties of synthesized compounds were determined by online scanners and the potential effects of selected compounds on E. coli and S. aureus strains were determined by disk diffusion method. Also, Autodock 4.2 software was used to determine the inhibitory potential of compounds against the dihydrofolate reductase (DHFR) enzyme.
Result and Discussion: In our study, among the newly designed hydrazone-linked pyrazole-thiazole compounds, the compounds determined according to their drugability parameters (17a-c) were synthesized with high efficiency. Among the compounds tested for antibacterial activity, Compound 17c formed a zone diameter of 8 mm against E. coli strain and 9 mm against S. aureus strain at a concentration of 80 μg/ml. Also, compound 17c formed a zone diameter of 7 mm against E. coli strain and 8 mm against S. aureus strain at a concentration of 40 μg/ml. Furthermore, the ADMET profiles of the presented compounds indicate that they may have suitable drugability parameters as potential antibacterial agents.

References

  • 1. Muteeb, G., Rehman, M.T., Shahwan, M., Aatif, M. (2023). Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals, 16(11), 1615. [CrossRef]
  • 2. Bassani, D., Moro, S. (2023). Past, present, and future perspectives on computer-aided drug design methodologies. Molecules, 28(9), 3906. [CrossRef]
  • 3. Lounnas, V., Ritschel, T., Kelder, J., McGuire, R., Bywater, R.P., Foloppe, N. (2013). Current progress in structure-based rational drug design marks a new mindset in drug discovery. Computational and Structural Biotechnology Journal, 5(6), e201302011. [CrossRef]
  • 4. Bhunia, S.S., Saxena, M., Saxena, A.K. (2021). Ligand-and structure-based virtual screening in drug discovery. In: Biophysical and Computational Tools in Drug Discovery (pp. 281-339). Cham: Springer International Publishing. [CrossRef]
  • 5. de Sena Murteira Pinheiro, P., Franco, L.S., Montagnoli, T.L., Fraga, C.A.M. (2024). Molecular hybridization: A powerful tool for multitarget drug discovery. Expert Opinion on Drug Discovery, 19(4), 451-470.
  • 6. Oselusi, S.O., Dube, P., Odugbemi, A.I., Akinyede, K.A., Ilori, T.L., Egieyeh, E., Egieyeh, S.A. (2024). The role and potential of computer-aided drug discovery strategies in the discovery of novel antimicrobials. Computers in Biology and Medicine, 107927. [CrossRef]
  • 7. Shallcross, L.J., Howard, S.J., Fowler, T., Davies, S.C. (2015). Tackling the threat of antimicrobial resistance: From policy to sustainable action. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1670), 20140082. [CrossRef]
  • 8. Petrou, A., Fesatidou, M., Geronikaki, A. (2021). Thiazole ring-A biologically active scaffold. Molecules, 26(11), 3166. [CrossRef]
  • 9. Gümüş, M., Yakan, M., Koca, İ. (2019). Recent advances of thiazole hybrids in biological applications. Future Medicinal Chemistry, 11(15), 1979-1998. [CrossRef]
  • 10. Althagafi, I., El-Metwaly, N., Farghaly, T.A. (2019). New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules, 24(9), 1741. [CrossRef]
  • 11. Ammar, Y.A., Abd El-Hafez, S.M., Hessein, S.A., Ali, A.M., Askar, A.A., Ragab, A. (2021). One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (DHFR) inhibitors with molecular docking study. Journal of Molecular Structure, 1242, 130748. [CrossRef]
  • 12. de Oliveira Cardoso, M.V., de Siqueira, L.R.P., da Silva, E.B., Costa, L.B., Hernandes, M.Z., Rabello, M.M., Leite, A.C.L. (2014). 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation. European Journal of Medicinal Chemistry, 86, 48-59. [CrossRef]
  • 13. Arshad, A., Osman, H., Bagley, M.C., Lam, C.K., Mohamad, S., Zahariluddin, A.S.M. (2011). Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. European Journal of Medicinal Chemistry, 46(9), 3788-3794. [CrossRef]
  • 14. Lino, C.I., de Souza, I.G., Borelli, B.M., Matos, T.T.S., Teixeira, I.N.S., Ramos, J.P., de Oliveira, R.B. (2018). Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. European Journal of Medicinal Chemistry, 151, 248-260. [CrossRef]
  • 15. Gondru, R., Kanugala, S., Raj, S., Kumar, C.G., Pasupuleti, M., Banothu, J., Bavantula, R. (2021). 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorganic Medicinal Chemistry Letters, 33, 127746. [CrossRef]
  • 16. Alnufaie, R., Alsup, N., Kc, H R., Newman, M., Whitt, J., Chambers, S.A., Alam, M.A. (2020). Design and synthesis of 4-[4-formyl-3-(2-naphthyl) pyrazol-1-yl] benzoic acid derivatives as potent growth inhibitors of drug-resistant Staphylococcus aureus. The Journal of Antibiotics, 73(12), 818-827. [CrossRef]
  • 17. Li, Y.R., Li, C., Liu, J.C., Guo, M., Zhang, T.Y., Sun, L.P., Piao, H.R. (2015). Synthesis and biological evaluation of 1, 3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorganic Medicinal Chemistry Letters, 25(22), 5052-5057. [CrossRef]
  • 18. Ebenezer, O., Singh-Pillay, A., Koorbanally, N.A., Singh, P. (2021). Antibacterial evaluation and molecular docking studies of pyrazole-thiosemicarbazones and their pyrazole-thiazolidinone conjugates. Molecular Diversity, 25, 191-204. [CrossRef]
  • 19. Gondru, R., Banothu, J., Thatipamula, R.K., Althaf Hussain, SK., Bavantula, R. (2015). 3-(1-Phenyl-4-((2-(4-arylthiazol-2-yl)hydrazono)methyl)-1H-pyrazol-3-yl)-2H-chromen-2-ones: One-pot three component condensation, in vitro antimicrobial, antioxidant and molecular docking studies. RSC Advances, 5(42), 33562-33569. [CrossRef]
  • 20. Harikrishna, N., Isloor, A.M., Ananda, K., Obaid, A., Fun, H.K. (2015). 1, 3, 4-Trisubstituted pyrazole bearing a 4-(chromen-2-one) thiazole: Synthesis, characterization and its biological studies. RSC Advances, 5(54), 43648-43659. [CrossRef]
  • 21. Banerjee, P., Kemmler, E., Dunkel, M., Preissner, R. (2024). ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(1), 513-520. [CrossRef]
  • 22. Lebedev, A.V., Lebedeva, A.B., Sheludyakov, V.D., Kovaleva, E.A., Ustinova, O. L., Kozhevnikov, I. B. (2005). Synthesis of 3-substituted arylpyrazole-4-carboxylic acids. Russian Journal of General Chemistry, 75, 782-789. [CrossRef]
  • 23. Kuzu, B., Ergüç, A., Karakuş, F., Arzuk, E. (2023). Design, synthesis, and antiproliferative activities of novel thiazolyl-pyrazole hybrid derivatives. Medicinal Chemistry Research, 32(8), 1690-1700. [CrossRef]
  • 24. Kuzu, E., Kuzu, B. (2023). Tandem synthesis of novel thiazole-substitutedpyrrolo[1,2-d][1,2,4] triazin-4(3H)-one derivatives and their theoretical pharmacokinetic profiles. Chemistry of Heterocyclic Compounds, 59(1), 80-87. [CrossRef]
  • 25. Malladi, S., Isloor, A. M., Peethambar, S.K., Shivananda, K.N. (2012). Synthesis and evaluation of antioxidant, antimicrobial activities of new 2,4-disubstituted thiazoles. International Journal of Pharmaceutical Research, 4(3), 81-88.
  • 26. Jorgensen, J.H., Turnidge, J.D. (2015). Susceptibility test methods: Dilution and disk diffusion methods. Manual of Clinical Microbiology, 1253-1273. [CrossRef]

HİDRAZON BAĞLI PİRAZOL-TİYAZOL TÜREVLERİNİN TASARIMI, SENTEZİ VE ANTİBAKTERİYEL POTANSİYELİNİN DEĞERLENDİRİLMESİ

Year 2025, , 42 - 52, 20.01.2025
https://doi.org/10.33483/jfpau.1529096

Abstract

Amaç: Bu çalışma, literatürdeki antimikrobiyal kısım olarak belirlenen tiyazol, hidrazon ve pirazol sistemlerinin hibridizasyonu ile tasarlanan bir seri bileşiğin antimikrobiyal etki potansiyelinin araştırılmasını içermektedir. Tasarlanan bileşiklerin ilaçlanabilirlik parametreleri ile filtrasyonu, seçilen bileşiklerin sentezi ve antibakteriyel etki potansiyelinin in siliko ve in vitro test edilmesi hedeflenmiştir.
Gereç ve Yöntem: Sentezlenen bileşiklerin ilaçlanabilirlik özellikleri online tarayıcılar ile belirlenmiş ve en düşük toksisite profiline sahip bileşiklerin E. coli ve S. aureus şujlarındaki potansiyel etkisi disk difüzyon yöntemi ile belirlenmiştir. Ayrıca bileşiklerin dihidrofolat redüktaz (DHFR) enzimine karşı inhibisyon potansiyelini belirlemek için Autodock 4.2 yazılımı kullanılmıştır.
Sonuç ve Tartışma: Çalışmamızda, yeni tasarlanan hidrazon bağlı pirazol-tiyazol bileşikleri arasında, ilaçlanabilirlik parametrelerine (17a-c) göre belirlenen bileşikler yüksek verimlilikle sentezlendi. Antibakteriyel aktivite için test edilen bileşikler arasında, Bileşik 17c, 80 μg/ml konsantrasyonunda E. coli suşuna karşı 8 mm ve S. aureus suşuna karşı 9 mm'lik bir zon çapı oluşturdu. Ayrıca, Bileşik 17c, 40 μg/ml konsantrasyonunda E. coli bakteri suşunda 7 mm'lik, S. aureus bakteri suşunda 8 mm’lik bir zon çapı oluşturdu. İlaveten, sunulan bileşiklerin ADMET profilleri, bunların potansiyel antibakteriyel ajanlar olarak uygun ilaçlanabilirlik parametrelerine sahip olabileceğini göstermektedir.

References

  • 1. Muteeb, G., Rehman, M.T., Shahwan, M., Aatif, M. (2023). Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals, 16(11), 1615. [CrossRef]
  • 2. Bassani, D., Moro, S. (2023). Past, present, and future perspectives on computer-aided drug design methodologies. Molecules, 28(9), 3906. [CrossRef]
  • 3. Lounnas, V., Ritschel, T., Kelder, J., McGuire, R., Bywater, R.P., Foloppe, N. (2013). Current progress in structure-based rational drug design marks a new mindset in drug discovery. Computational and Structural Biotechnology Journal, 5(6), e201302011. [CrossRef]
  • 4. Bhunia, S.S., Saxena, M., Saxena, A.K. (2021). Ligand-and structure-based virtual screening in drug discovery. In: Biophysical and Computational Tools in Drug Discovery (pp. 281-339). Cham: Springer International Publishing. [CrossRef]
  • 5. de Sena Murteira Pinheiro, P., Franco, L.S., Montagnoli, T.L., Fraga, C.A.M. (2024). Molecular hybridization: A powerful tool for multitarget drug discovery. Expert Opinion on Drug Discovery, 19(4), 451-470.
  • 6. Oselusi, S.O., Dube, P., Odugbemi, A.I., Akinyede, K.A., Ilori, T.L., Egieyeh, E., Egieyeh, S.A. (2024). The role and potential of computer-aided drug discovery strategies in the discovery of novel antimicrobials. Computers in Biology and Medicine, 107927. [CrossRef]
  • 7. Shallcross, L.J., Howard, S.J., Fowler, T., Davies, S.C. (2015). Tackling the threat of antimicrobial resistance: From policy to sustainable action. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1670), 20140082. [CrossRef]
  • 8. Petrou, A., Fesatidou, M., Geronikaki, A. (2021). Thiazole ring-A biologically active scaffold. Molecules, 26(11), 3166. [CrossRef]
  • 9. Gümüş, M., Yakan, M., Koca, İ. (2019). Recent advances of thiazole hybrids in biological applications. Future Medicinal Chemistry, 11(15), 1979-1998. [CrossRef]
  • 10. Althagafi, I., El-Metwaly, N., Farghaly, T.A. (2019). New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules, 24(9), 1741. [CrossRef]
  • 11. Ammar, Y.A., Abd El-Hafez, S.M., Hessein, S.A., Ali, A.M., Askar, A.A., Ragab, A. (2021). One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (DHFR) inhibitors with molecular docking study. Journal of Molecular Structure, 1242, 130748. [CrossRef]
  • 12. de Oliveira Cardoso, M.V., de Siqueira, L.R.P., da Silva, E.B., Costa, L.B., Hernandes, M.Z., Rabello, M.M., Leite, A.C.L. (2014). 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation. European Journal of Medicinal Chemistry, 86, 48-59. [CrossRef]
  • 13. Arshad, A., Osman, H., Bagley, M.C., Lam, C.K., Mohamad, S., Zahariluddin, A.S.M. (2011). Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. European Journal of Medicinal Chemistry, 46(9), 3788-3794. [CrossRef]
  • 14. Lino, C.I., de Souza, I.G., Borelli, B.M., Matos, T.T.S., Teixeira, I.N.S., Ramos, J.P., de Oliveira, R.B. (2018). Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. European Journal of Medicinal Chemistry, 151, 248-260. [CrossRef]
  • 15. Gondru, R., Kanugala, S., Raj, S., Kumar, C.G., Pasupuleti, M., Banothu, J., Bavantula, R. (2021). 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorganic Medicinal Chemistry Letters, 33, 127746. [CrossRef]
  • 16. Alnufaie, R., Alsup, N., Kc, H R., Newman, M., Whitt, J., Chambers, S.A., Alam, M.A. (2020). Design and synthesis of 4-[4-formyl-3-(2-naphthyl) pyrazol-1-yl] benzoic acid derivatives as potent growth inhibitors of drug-resistant Staphylococcus aureus. The Journal of Antibiotics, 73(12), 818-827. [CrossRef]
  • 17. Li, Y.R., Li, C., Liu, J.C., Guo, M., Zhang, T.Y., Sun, L.P., Piao, H.R. (2015). Synthesis and biological evaluation of 1, 3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorganic Medicinal Chemistry Letters, 25(22), 5052-5057. [CrossRef]
  • 18. Ebenezer, O., Singh-Pillay, A., Koorbanally, N.A., Singh, P. (2021). Antibacterial evaluation and molecular docking studies of pyrazole-thiosemicarbazones and their pyrazole-thiazolidinone conjugates. Molecular Diversity, 25, 191-204. [CrossRef]
  • 19. Gondru, R., Banothu, J., Thatipamula, R.K., Althaf Hussain, SK., Bavantula, R. (2015). 3-(1-Phenyl-4-((2-(4-arylthiazol-2-yl)hydrazono)methyl)-1H-pyrazol-3-yl)-2H-chromen-2-ones: One-pot three component condensation, in vitro antimicrobial, antioxidant and molecular docking studies. RSC Advances, 5(42), 33562-33569. [CrossRef]
  • 20. Harikrishna, N., Isloor, A.M., Ananda, K., Obaid, A., Fun, H.K. (2015). 1, 3, 4-Trisubstituted pyrazole bearing a 4-(chromen-2-one) thiazole: Synthesis, characterization and its biological studies. RSC Advances, 5(54), 43648-43659. [CrossRef]
  • 21. Banerjee, P., Kemmler, E., Dunkel, M., Preissner, R. (2024). ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(1), 513-520. [CrossRef]
  • 22. Lebedev, A.V., Lebedeva, A.B., Sheludyakov, V.D., Kovaleva, E.A., Ustinova, O. L., Kozhevnikov, I. B. (2005). Synthesis of 3-substituted arylpyrazole-4-carboxylic acids. Russian Journal of General Chemistry, 75, 782-789. [CrossRef]
  • 23. Kuzu, B., Ergüç, A., Karakuş, F., Arzuk, E. (2023). Design, synthesis, and antiproliferative activities of novel thiazolyl-pyrazole hybrid derivatives. Medicinal Chemistry Research, 32(8), 1690-1700. [CrossRef]
  • 24. Kuzu, E., Kuzu, B. (2023). Tandem synthesis of novel thiazole-substitutedpyrrolo[1,2-d][1,2,4] triazin-4(3H)-one derivatives and their theoretical pharmacokinetic profiles. Chemistry of Heterocyclic Compounds, 59(1), 80-87. [CrossRef]
  • 25. Malladi, S., Isloor, A. M., Peethambar, S.K., Shivananda, K.N. (2012). Synthesis and evaluation of antioxidant, antimicrobial activities of new 2,4-disubstituted thiazoles. International Journal of Pharmaceutical Research, 4(3), 81-88.
  • 26. Jorgensen, J.H., Turnidge, J.D. (2015). Susceptibility test methods: Dilution and disk diffusion methods. Manual of Clinical Microbiology, 1253-1273. [CrossRef]
There are 26 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Research Article
Authors

Burak Kuzu 0000-0002-7305-7177

Aybek Yiğit 0000-0001-8279-5908

Fuat Karakuş 0000-0002-5260-3650

Early Pub Date January 13, 2025
Publication Date January 20, 2025
Submission Date August 6, 2024
Acceptance Date October 1, 2024
Published in Issue Year 2025

Cite

APA Kuzu, B., Yiğit, A., & Karakuş, F. (2025). DESIGN, SYNTHESIS, AND EVALUATION OF ANTIBACTERIAL POTENTIAL OF HYDRAZONE-TETHERED PYRAZOLE-THIAZOLE DERIVATIVES. Journal of Faculty of Pharmacy of Ankara University, 49(1), 42-52. https://doi.org/10.33483/jfpau.1529096
AMA Kuzu B, Yiğit A, Karakuş F. DESIGN, SYNTHESIS, AND EVALUATION OF ANTIBACTERIAL POTENTIAL OF HYDRAZONE-TETHERED PYRAZOLE-THIAZOLE DERIVATIVES. Ankara Ecz. Fak. Derg. January 2025;49(1):42-52. doi:10.33483/jfpau.1529096
Chicago Kuzu, Burak, Aybek Yiğit, and Fuat Karakuş. “DESIGN, SYNTHESIS, AND EVALUATION OF ANTIBACTERIAL POTENTIAL OF HYDRAZONE-TETHERED PYRAZOLE-THIAZOLE DERIVATIVES”. Journal of Faculty of Pharmacy of Ankara University 49, no. 1 (January 2025): 42-52. https://doi.org/10.33483/jfpau.1529096.
EndNote Kuzu B, Yiğit A, Karakuş F (January 1, 2025) DESIGN, SYNTHESIS, AND EVALUATION OF ANTIBACTERIAL POTENTIAL OF HYDRAZONE-TETHERED PYRAZOLE-THIAZOLE DERIVATIVES. Journal of Faculty of Pharmacy of Ankara University 49 1 42–52.
IEEE B. Kuzu, A. Yiğit, and F. Karakuş, “DESIGN, SYNTHESIS, AND EVALUATION OF ANTIBACTERIAL POTENTIAL OF HYDRAZONE-TETHERED PYRAZOLE-THIAZOLE DERIVATIVES”, Ankara Ecz. Fak. Derg., vol. 49, no. 1, pp. 42–52, 2025, doi: 10.33483/jfpau.1529096.
ISNAD Kuzu, Burak et al. “DESIGN, SYNTHESIS, AND EVALUATION OF ANTIBACTERIAL POTENTIAL OF HYDRAZONE-TETHERED PYRAZOLE-THIAZOLE DERIVATIVES”. Journal of Faculty of Pharmacy of Ankara University 49/1 (January 2025), 42-52. https://doi.org/10.33483/jfpau.1529096.
JAMA Kuzu B, Yiğit A, Karakuş F. DESIGN, SYNTHESIS, AND EVALUATION OF ANTIBACTERIAL POTENTIAL OF HYDRAZONE-TETHERED PYRAZOLE-THIAZOLE DERIVATIVES. Ankara Ecz. Fak. Derg. 2025;49:42–52.
MLA Kuzu, Burak et al. “DESIGN, SYNTHESIS, AND EVALUATION OF ANTIBACTERIAL POTENTIAL OF HYDRAZONE-TETHERED PYRAZOLE-THIAZOLE DERIVATIVES”. Journal of Faculty of Pharmacy of Ankara University, vol. 49, no. 1, 2025, pp. 42-52, doi:10.33483/jfpau.1529096.
Vancouver Kuzu B, Yiğit A, Karakuş F. DESIGN, SYNTHESIS, AND EVALUATION OF ANTIBACTERIAL POTENTIAL OF HYDRAZONE-TETHERED PYRAZOLE-THIAZOLE DERIVATIVES. Ankara Ecz. Fak. Derg. 2025;49(1):42-5.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.