PHYTOCHEMICAL AND IN VITRO PHARMACOLOGICAL EVALUATION OF PHLOMIS PUNGENS
Year 2022,
Volume: 46 Issue: 1, 11 - 22, 29.01.2022
Mehmet Evren Okur
,
Ayşe Esra Karadağ
,
Rengin Reis
,
Hande Sipahi
,
Rana Arslan
,
Betül Demirci
,
Fatih Demirci
Abstract
Objective: This study aimed to investigate the in vitro wound healing, anti-inflammatory, antimicrobial and antioxidant activity of Phlomis pungens Willd. extract derived from the aerial parts.
Material and Method: The phytochemical analysis was performed using GC-MS in order to identify the volatile components of the bioactive Hex extract. The wound healing activity of P. pungens extract was evaluated based on in vitro antimicrobial, antioxidant, anti-inflammatory, and, scratch activity was studied. In addition, the in vitro cytotoxicity of the extract was also evaluated.
Result and Discussion: P. pungens methanol extract depicted a 5-LOX inhibitory activity at 78.2µg/mL (IC50), while the antioxidant activity by DPPH radical provided an IC50=2.41mg/mL, and the ABTS radical showed IC50=3.32mg/mL, respectively. The extract showed dose-dependently anti-inflammatory activity while L-NAME and P. pungens methanol extract significantly decreased LPS stimulated PGE2 production. According to the scratch assay results, all treatments led to an increase in cell migration rate with a dose-dependent effect. Our findings suggested that P. pungens methanol extract may have a role in wound healing according to the scratch test, and it is thought that its antioxidant and anti-inflammatory activity also contributed. Further evaluations are ongoing to confirm the in vitro activity under in vivo conditions.
Thanks
The authors are grateful to Prof. Dr. Şükran Kültür for identifying confirmation and Muhammet
Karadağ for harvesting the plant material. This research project was supported by Anadolu University
Scientific Research Projects (Project No:1807S259).
References
- 1. Tanrıverdi, S.T., Suat, B., Azizoğlu, E., Köse, F.A., Özer, Ö. (2018). In-vitro evaluation of dexpanthenol-loaded nanofiber mats for wound healing. Tropical Journal of Pharmaceutical Research, 17(3), 387–394. [CrossRef]
- 2. Chingwaru, C., Bagar, T., Maroyi, A., Kapewangolo, P.T., Chingwaru, W. (2019). Wound healing potential of selected Southern African medicinal plants: A review. Journal of Herbal Medicine, 17–18, 100263. [CrossRef]
- 3. Muthachan, T., Tewtrakul, S. (2019). Anti-inflammatory and wound healing effects of gel containing Kaempferia marginata extract. Journal of Ethnopharmacology, 240, 111964. [CrossRef]
- 4. Ghuman, S., Ncube, B., Finnie, J.F., McGaw, L.J., Mfotie Njoya, E., Coopoosamy, R.M., Van Staden, J. (2019). Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders. South African Journal of Botany, 126, 232–240. [CrossRef]
- 5. Okur, M.E., Karantas, I.D., Şenyiğit, Z., Okur, N.Ü., Siafaka, P.I. (2020). Recent trends on wound management; new therapeutic choices based on polymeric carriers. Asian Journal of Pharmaceutical Sciences, 15(6), 661-684. [CrossRef]
- 6. Demirci, B., Baser, K.H.C., Dadandi, M.Y. (2006). Composition of the Essential Oils of Phlomis rigida Labill. and P. samia L. Journal of Essential Oil Research, 18(3), 328–331. [CrossRef]
- 7. Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. [CrossRef]
- 8. Okur, M.E., Ayla, Ş., Çiçek Polat, D., Günal, M.Y., Yoltaş, A., Biçeroğlu, Ö. (2018). Novel insight into wound healing properties of methanol extract of Capparis ovata Desf. var. palaestina Zohary fruits. Journal of Pharmacy and Pharmacology, 70(10), 1401–1413. [CrossRef]
- 9. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237. [CrossRef]
- 10. Spanos, G.A., Wrolstad, R.E. (1990). Influence of processing and storage on the phenolic composition of Thompson Seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7), 1565–1571. [CrossRef]
- 11. Baylac, S., Racine, P. (2003). Inhibition of 5-lipoxygenase by essential oils and other natural fragment extracts. International Journal of Aromatherapy, 13(2-3), 138–142. [CrossRef]
- 12. Reis, R., Sipahi, H., Zeybekoğlu, G., Çelik, N., Kırmızıbekmez, H., Kaklıkkaya, N., Aydın, A. (2018). Hydroxytyrosol: The phytochemical responsible for bioactivity of traditionally used Olive Pits. Euroasian Journal of Hepatogastroenterology, 8(2), 126–132. [CrossRef]
- 13. Aparna, V., Dileep, K.V., Mandal, P.K., Karthe, P., Sadasivan, C., Haridas, M. (2012). Anti-Inflammatory Property of n-Hexadecanoic Acid: Structural Evidence and Kinetic Assessment. Chemical Biology&Drug Design, 80(3), 434–439. [CrossRef]
- 14. Okur, M.E., Karadağ, A.E., Üstündağ Okur, N., Özhan, Y., Sipahi, H., Ayla, Ş., Daylan, B., Demirci, B., Demirci, F. (2020). In Vivo Wound Healing and In Vitro Anti-Inflammatory Activity Evaluation of Phlomis russeliana Extract Gel Formulations. Molecules, 25(11), 2695. [CrossRef]
- 15. Sarikurkcu, C., Uren, M. C., Tepe, B., Cengiz, M., Kocak, M.S. (2014). Phenolic content, enzyme inhibitory and antioxidative activity potentials of Phlomis nissolii and P. pungens var. pungens. Industrial Crops and Products, 62, 333–340. [CrossRef]
- 16. Taskin, T., Bulut, G., Hazar, A.N. (2018). Antioxidant and anti-inflammatory activities of Phlomis pungens and Coridothymus capitatus. Marmara Pharmaceutical Journal, 22(1), 80–85. [CrossRef]
- 17. Brogliato, A.R., Moor, A.N., Kesl, S.L., Guilherme, R.F., Georgii, J.L., Peters-Golden, M., Canetti, C., Gould, L.J., Benjamim, C.F. (2014). Critical Role of 5-Lipoxygenase and Heme Oxygenase-1 in Wound Healing. Journal of Investigative Dermatology, 134(5), 1436–1445. [CrossRef]
- 18. Guimarães, F.R., Sales-Campos, H., Nardini, V., da Costa, T.A., Fonseca, M.T.C., Júnior, V.R., Sorgi, C.A., da Silva, J.S., Chica, J.E.L., Faccioli, L.H. (2018). The inhibition of 5-Lipoxygenase (5-LO) products leukotriene B4 (LTB 4) and cysteinyl leukotrienes (cysLTs) modulates the inflammatory response and improves cutaneous wound healing. Clinical Immunology, 190, 74–83. [CrossRef]
- 19. Chen, R., Salisbury, A., Percival, S.L. (2019). In vitro cellular viability studies on a concentrated surfactant‐based wound dressing. International Wound Journal, 16(3), 703–712. [CrossRef]
- 20. Su, W.H., Cheng, M.H., Lee, W.L., Tsou, T.S., Chang, W.H., Chen, C.S., Wang, P.H. (2010). Nonsteroidal Anti-Inflammatory Drugs for Wounds: Pain Relief or Excessive Scar Formation? Mediators of Inflammation, 2010, 413238. [CrossRef]
- 21. Li, W., Fan, J., Chen, M., Guan, S., Sawcer, D., Bokoch, G.M., Woodley, D.T. (2004). Mechanism of Human Dermal Fibroblast Migration Driven by Type I Collagen and Platelet-derived Growth Factor-BB. Molecular Biology of the Cell, 15(1), 294–309. [CrossRef]
- 22. Bolla, S.R., Mohammed Al-Subaie, A., Yousuf Al-Jindan, R., Papayya Balakrishna, J., Kanchi Ravi, P., Veeraraghavan, V.P., Arumugam Pillai, A., Gollapalli, S.S.R., Palpath Joseph, J., Surapaneni, K.M. (2019). In vitro wound healing potency of methanolic leaf extract of Aristolochia saccata is possibly mediated by its stimulatory effect on collagen-1 expression. Heliyon, 5(5), e01648. [CrossRef]
PHLOMIS PUNGENS’İN FİTOKİMYA VE İN VİTRO FARMAKOLOJİK ETKİLERİNİN DEĞERLENDİRİLMESİ
Year 2022,
Volume: 46 Issue: 1, 11 - 22, 29.01.2022
Mehmet Evren Okur
,
Ayşe Esra Karadağ
,
Rengin Reis
,
Hande Sipahi
,
Rana Arslan
,
Betül Demirci
,
Fatih Demirci
Abstract
Amaç: Bu çalışmada, Phlomis pungens Willd. topraküstü kısımlarından elde edilen ekstrelerin in vitro yara iyileşmesi, antiinflamatuar, antimikrobiyal ve antioksidan aktivitesinin araştırılması amaçlanmıştır.
Gereç ve Yöntem: Biyoaktif hekzan ekstresinin uçucu bileşenlerini belirlemek için fitokimyasal analiz GC-MS kullanılarak yapılmıştır. P. pungens ekstresinin yara iyileştirme aktivitesi, in vitro antimikrobiyal, antioksidan, antiinflamatuar etkinlikleri değerlendirilmiş ve ek olarak ekstrenin in vitro sitotoksisitesi de değerlendirilmiştir.
Sonuç ve Tartışma: P. pungens metanol ekstresi, 78,2 µg/mL'de (IC50) 5-LOX inhibe edici aktivite gösterirken, DPPH yöntemi ile antioksidan aktivitesi IC50=2.41mg/mL ve ABTS IC50=3.32 mg/mL olarak bulunmuştur. Ekstre, doza bağlı olarak anti-inflamatuar aktivite gösterirken, L-NAME ve P. pungens metanol ekstresi, LPS ile uyarılan PGE2 üretimini önemli ölçüde azaltmıştır. Strach metodu sonuçlarına göre doza bağlı etki ile hücre göç hızında bir artış gözlemlenmiştir. Bulgularımız, starch testine göre P. pungens metanol ekstresinin yara iyileşmesinde rol oynayabileceğini ve antioksidan ve antiinflamatuar aktivitesinin de katkıda bulunduğu düşündürmüştür. İn vivo koşullar altında in vitro aktiviteyi doğrulamak için başka değerlendirmeler devam etmektedir.
References
- 1. Tanrıverdi, S.T., Suat, B., Azizoğlu, E., Köse, F.A., Özer, Ö. (2018). In-vitro evaluation of dexpanthenol-loaded nanofiber mats for wound healing. Tropical Journal of Pharmaceutical Research, 17(3), 387–394. [CrossRef]
- 2. Chingwaru, C., Bagar, T., Maroyi, A., Kapewangolo, P.T., Chingwaru, W. (2019). Wound healing potential of selected Southern African medicinal plants: A review. Journal of Herbal Medicine, 17–18, 100263. [CrossRef]
- 3. Muthachan, T., Tewtrakul, S. (2019). Anti-inflammatory and wound healing effects of gel containing Kaempferia marginata extract. Journal of Ethnopharmacology, 240, 111964. [CrossRef]
- 4. Ghuman, S., Ncube, B., Finnie, J.F., McGaw, L.J., Mfotie Njoya, E., Coopoosamy, R.M., Van Staden, J. (2019). Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders. South African Journal of Botany, 126, 232–240. [CrossRef]
- 5. Okur, M.E., Karantas, I.D., Şenyiğit, Z., Okur, N.Ü., Siafaka, P.I. (2020). Recent trends on wound management; new therapeutic choices based on polymeric carriers. Asian Journal of Pharmaceutical Sciences, 15(6), 661-684. [CrossRef]
- 6. Demirci, B., Baser, K.H.C., Dadandi, M.Y. (2006). Composition of the Essential Oils of Phlomis rigida Labill. and P. samia L. Journal of Essential Oil Research, 18(3), 328–331. [CrossRef]
- 7. Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. [CrossRef]
- 8. Okur, M.E., Ayla, Ş., Çiçek Polat, D., Günal, M.Y., Yoltaş, A., Biçeroğlu, Ö. (2018). Novel insight into wound healing properties of methanol extract of Capparis ovata Desf. var. palaestina Zohary fruits. Journal of Pharmacy and Pharmacology, 70(10), 1401–1413. [CrossRef]
- 9. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237. [CrossRef]
- 10. Spanos, G.A., Wrolstad, R.E. (1990). Influence of processing and storage on the phenolic composition of Thompson Seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7), 1565–1571. [CrossRef]
- 11. Baylac, S., Racine, P. (2003). Inhibition of 5-lipoxygenase by essential oils and other natural fragment extracts. International Journal of Aromatherapy, 13(2-3), 138–142. [CrossRef]
- 12. Reis, R., Sipahi, H., Zeybekoğlu, G., Çelik, N., Kırmızıbekmez, H., Kaklıkkaya, N., Aydın, A. (2018). Hydroxytyrosol: The phytochemical responsible for bioactivity of traditionally used Olive Pits. Euroasian Journal of Hepatogastroenterology, 8(2), 126–132. [CrossRef]
- 13. Aparna, V., Dileep, K.V., Mandal, P.K., Karthe, P., Sadasivan, C., Haridas, M. (2012). Anti-Inflammatory Property of n-Hexadecanoic Acid: Structural Evidence and Kinetic Assessment. Chemical Biology&Drug Design, 80(3), 434–439. [CrossRef]
- 14. Okur, M.E., Karadağ, A.E., Üstündağ Okur, N., Özhan, Y., Sipahi, H., Ayla, Ş., Daylan, B., Demirci, B., Demirci, F. (2020). In Vivo Wound Healing and In Vitro Anti-Inflammatory Activity Evaluation of Phlomis russeliana Extract Gel Formulations. Molecules, 25(11), 2695. [CrossRef]
- 15. Sarikurkcu, C., Uren, M. C., Tepe, B., Cengiz, M., Kocak, M.S. (2014). Phenolic content, enzyme inhibitory and antioxidative activity potentials of Phlomis nissolii and P. pungens var. pungens. Industrial Crops and Products, 62, 333–340. [CrossRef]
- 16. Taskin, T., Bulut, G., Hazar, A.N. (2018). Antioxidant and anti-inflammatory activities of Phlomis pungens and Coridothymus capitatus. Marmara Pharmaceutical Journal, 22(1), 80–85. [CrossRef]
- 17. Brogliato, A.R., Moor, A.N., Kesl, S.L., Guilherme, R.F., Georgii, J.L., Peters-Golden, M., Canetti, C., Gould, L.J., Benjamim, C.F. (2014). Critical Role of 5-Lipoxygenase and Heme Oxygenase-1 in Wound Healing. Journal of Investigative Dermatology, 134(5), 1436–1445. [CrossRef]
- 18. Guimarães, F.R., Sales-Campos, H., Nardini, V., da Costa, T.A., Fonseca, M.T.C., Júnior, V.R., Sorgi, C.A., da Silva, J.S., Chica, J.E.L., Faccioli, L.H. (2018). The inhibition of 5-Lipoxygenase (5-LO) products leukotriene B4 (LTB 4) and cysteinyl leukotrienes (cysLTs) modulates the inflammatory response and improves cutaneous wound healing. Clinical Immunology, 190, 74–83. [CrossRef]
- 19. Chen, R., Salisbury, A., Percival, S.L. (2019). In vitro cellular viability studies on a concentrated surfactant‐based wound dressing. International Wound Journal, 16(3), 703–712. [CrossRef]
- 20. Su, W.H., Cheng, M.H., Lee, W.L., Tsou, T.S., Chang, W.H., Chen, C.S., Wang, P.H. (2010). Nonsteroidal Anti-Inflammatory Drugs for Wounds: Pain Relief or Excessive Scar Formation? Mediators of Inflammation, 2010, 413238. [CrossRef]
- 21. Li, W., Fan, J., Chen, M., Guan, S., Sawcer, D., Bokoch, G.M., Woodley, D.T. (2004). Mechanism of Human Dermal Fibroblast Migration Driven by Type I Collagen and Platelet-derived Growth Factor-BB. Molecular Biology of the Cell, 15(1), 294–309. [CrossRef]
- 22. Bolla, S.R., Mohammed Al-Subaie, A., Yousuf Al-Jindan, R., Papayya Balakrishna, J., Kanchi Ravi, P., Veeraraghavan, V.P., Arumugam Pillai, A., Gollapalli, S.S.R., Palpath Joseph, J., Surapaneni, K.M. (2019). In vitro wound healing potency of methanolic leaf extract of Aristolochia saccata is possibly mediated by its stimulatory effect on collagen-1 expression. Heliyon, 5(5), e01648. [CrossRef]