PREPARATION AND CHARACTERIZATION OF COMBINED SALICYLIC ACID AND POVIDONE-IODINE CONTAINING NANOEMULGELS: A PRELIMINARY STUDY
Year 2022,
Volume: 46 Issue: 3, 764 - 780, 30.09.2022
Rukiye Sevinç Özakar
,
Şeyma Asan
,
Azra Elisa Özkan
,
Emrah Özakar
Abstract
Objective: The aim of this preliminary study is to prepare and characterize combined salicylic acid and povidone-iodine-containing nanoemulgels for use in disease models such as wounds and burns in the future.
Material and Method: Within the scope of the study, first of all, analytical method validation of salicylic acid was performed. Then, oil solubility studies were carried out and nanoemulsions and nanoemulgels were prepared. Morphology, zetasizer analysis, type and pH determination, FTIR analysis, spreadability, and in vitro release studies were performed to determine the characterization of the formulations.
Result and Discussion: Nanoemulsions and nanoemulgels have been prepared successfully. Nanoemulsions with spherical droplet structure and outer phase water were obtained, and their morphology and zeta sizer results were compatible. In the 1-month stability study, only the F1 formulation did not decompose. There was not much change in pH after holding. At the end of the FTIR analysis, it was seen that there was no interaction between the items. In the release study performed with pH 5.5 phosphate buffer, approximately 40% of the release occurred after 8 hours. This study is a preliminary study, and formulations with long-term stability and release rate can be developed by conducting more detailed studies in the future. Salicylic acid and povidone-iodine were used in combination for the first time. This combination can be translated into formulations that may be beneficial for skin diseases in the future.
Supporting Institution
Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Project Number
2021/10099
Thanks
The authors thank financial support for this work from the Atatürk University Scientific Research Project Foundation (Grant Number: TLP-2021-10099).
References
- 1. Richard, M.A., Paul, C., Nijsten, T., Gisondi, P., Salavastru, C., Taieb, C., Trakatelli, M., Puig, L., Stratigos, A., EADV burden of skin diseases project team. (2022). Prevalence of most common skin diseases in Europe: A population-based study. Journal of the European Academy of Dermatology and Venereology, 36(7), 1088-1096. [CrossRef]
- 2. Gupta, M., Agrawal, U., Vyas, S.P. (2012). Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opinion on Drug Delivery, 9(7), 783-804. [CrossRef]
- 3. Anand, K., Ray, S., Rahman, M., Shaharyar, A., Bhowmik, R., Bera, R., Karmakar, S. (2019). Nano-emulgel: Emerging as a smarter topical lipidic emulsion-based nanocarrier for skin healthcare applications. Recent Patents on Anti-infective Drug Discovery, 14(1), 16-35. [CrossRef]
- 4. Paudel, K.S., Milewski, M., Swadley, C.L., Brogden, N.K., Ghosh, P., Stinchcomb, A.L. (2010). Challenges and opportunities in dermal/transdermal delivery. Therapeutic Delivery, 1(1), 109-131. [CrossRef]
- 5. Phad, A.R., Dilip, N.T., Ganapathy, R.S. (2018) Emulgel: A comprehensive review for topical delivery of hydrophobic drugs. Asian Journal of Pharmaceutics, 12(2), S382 [CrossRef]
- 6. Singh, Y., Meher, J.G., Raval, K., Khan, F.A., Chaurasia, M., Jain, N.K., Chourasia, M.K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28-49. [CrossRef]
- 7. Yukuyama, M.N., Kato, E.T., Lobenberg, R., Bou-Chacra, N.A. (2017). Challenges and future prospects of nanoemulsion as a drug delivery system. Current Pharmaceutical Design, 23(3), 495-508. [CrossRef]
- 8. Tayeb, H.H., Sainsbury, F. (2018). Nanoemulsions in drug delivery: Formulation to medical application. Nanomedicine (London, England), 13(19), 2507-2525. [CrossRef]
- 9. Aithal, G.C., Narayan, R., Nayak, U.Y. (2020). Nanoemulgel: A promising phase in drug delivery. Current Pharmaceutical Design, 26(2), 279-291. [CrossRef]
- 10. Madan, R.K., Levitt, J. (2014). A review of toxicity from topical salicylic acid preparations. Journal of the American Academy of Dermatology, 70(4), 788-792. [CrossRef]
- 11. Bigliardi, P.L., Alsagoff, S.A.L., El-Kafrawi, H.Y., Pyon, J.K., Wa, C.T.C., Villa, M.A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44, 260-268. [CrossRef]
- 12. Sarma, P., Kaur, H., Medhi, B., Bhattacharyya, A. (2020). Possible prophylactic or preventive role of topical povidone iodine during accidental ocular exposure to 2019-nCoV. Graefe's Archive for Clinical and Experimental Ophthalmology, 258, 2563-2565. [CrossRef]
- 13. Ahmad, I., Vaid, F.H. (2009). Determination of benzoic acid and salicylic acid in commercial benzoic and salicylic acids ointments by spectrophotometric method. Pakistan Journal of Pharmaceutical Sciences, 22(1), 18-22.
- 14. Acharya, S.D., Tamane, P.K., Khante, S.N., Pokharkar, V.B. (2020). QbD based optimization of curcumin nanoemulsion: DoE and cytotoxicity studies. Indian Journal of Pharmaceutical Education and Research, 54(2), 329-336. [CrossRef]
- 15. Abdelmonem, R., Younis, M.K., Hassan, D.H., Ahmed, M.A.G.S., Hassanein, E., El-Batouty, K., Elfaham, A. (2019). Formulation and characterization of chlorhexidine HCl nanoemulsion as a promising antibacterial root canal irrigant: In-vitro and ex-vivo studies. International Journal of Nanomedicine, 2019(14), 4697-4708. [CrossRef]
- 16. Dalmolin, T.L., Lopez, R.F.V. (2018). Nanoemulsion as a platform for iontophoretic delivery of lipophilic drugs in skin tumors. Pharmaceutics, 10(4), 214. [CrossRef]
- 17. Kale, S.N., Deore, S.L. (2017). Emulsion micro emulsion and nano emulsion: A review. Systematic Reviews in Pharmacy, 8(1), 39-47. [CrossRef]
- 18. Sultan, M.H., Javed, S., Madkhali, O.A., Alam, M.I., Almoshari, Y., Bakkari, M.A., Sivadasan, D., Salawi, A., Jabeen, A., Ahsan, W. (2022). Development and optimization of methylcellulose based nanoemulgel loaded with nigella sativa oil for oral health management: Quadratic model approach. Molecules, 27(6), 1796. [CrossRef]
- 19. Gopalan, K., Jose, J. (2020). Development of amphotericin b based organogels against mucocutaneous fungal infections. Brazilian Journal of Pharmaceutical Sciences, 56, e17509. [CrossRef]
- 20. Topal, G.R., Kıymacı, M.E., Özkan, Y. (2022). Preparation and in vitro characterization of vancomycin loaded PLGA nanoparticles for the treatment of Enterococcus faecalis infections. Journal of Faculty of Pharmacy of Ankara University, 46(2), 350-363. [CrossRef]
- 21. Sevinç Özakar, R., Özakar, E. (2022). Different biopolymers' effects on the evaluation and characterization of floating tablets prepared by lyophilization technique to improve the quality control parameters. Polymer-Korea, 46(2), 145-158. [CrossRef]
- 22. Sinha, P., Srivastava, N., Rai, V.K., Mishra, R., Ajayakumar, P.V., Yadav, N.P. (2019). A novel approach for dermal controlled release of salicylic acid for improved anti-inflammatory action: Combination of hydrophilic-lipophilic balance and response surface methodology. Journal of Drug Delivery Science and Technology, 52, 870-884. [CrossRef]
- 23. Ashara, K.C., Shah, K.V. (2017). Nuts and bolts of oil and temperature in topical preparations of salicylic acid. Folia Medica, 59(3), 279-288. [CrossRef]
- 24. Teng, X., Wang, F., Li, K., Chen, S., Ye, P., He, L., Li, G. (2017). Determination of solubility and apparent oil/water partition cofficient of salicylic acid by RP-HPLC. Herald of Medicine, 12, 186-189.
- 25. Şanlı, H., Kalay Yıldızhan İ. (2020). Topikal tedaviler. Turkderm-Turkish Archives of Dermatology and Venerology, 54, 23-29. [CrossRef]
- 26. Bowe, W.P., Shalita, A.R. (2008). Effective over-the-counter acne treatments. Seminars in Cutaneous Medicine and Surgery. 27(3), 170-176. [CrossRef]
- 27. Malik, M.R., Al-Harbi, F.F., Nawaz, A., Amin, A., Farid, A., Mohaini, M.A., Alsalman, A.J., Hawaj, M.A.A., Alhashem, Y.N. (2022). Formulation and characterization of chitosan-decorated multiple nanoemulsion for topical delivery in vitro and ex vivo. Molecules, 27(10), 3183. [CrossRef]
- 28. Khani, S., Keyhanfar, F., Amani, A. (2016) Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Delivery, 23(6), 2035-2043. [CrossRef]
- 29. Kassem, M.A., Ghalwash, M.M., Abdou, E.M. (2020) Development of nanoemulsion gel drug delivery systems of cetirizine; factorial optimisation of composition, in vitro evaluation and clinical study. Journal of Microencapsulation, 37(6), 413-430. [CrossRef]
- 30. Koca, M., Özakar, E., Sevinç Özakar, R. (2021). Triiyodoanilin’in sentezlenmesi, nanosüspansiyonlarının hazırlanması, in vitro karakterizasyonu ve radyokontrast özelliklerinin incelenmesi. Journal of Faculty of Pharmacy of Ankara University, 45(2), 265-284. [CrossRef]
- 31. Arbain, N.H., Basri, M., Salim, N., Wui, W.T., Abdul Rahman, M.B. (2018). Development and characterization of aerosol nanoemulsion system encapsulating low water soluble quercetin for lung cancer treatment. Materials Today: Proceedings, 5, S137-S142. [CrossRef]
- 32. Kim, S.S., Yu, S.B., Kim, J.D., Ryu, S.J. (2013). Comparison of disinfective power according to application order of 70% isopropyl alcohol and 10% povidone-iodine. Korean Journal of Anesthesiology, 65(6), 519-524. [CrossRef]
- 33. Sızlan, A., Dündaröz, R., Dakak, M., Yıldıran, T., Dağlı, G., Özyurt, M. (2001). Povidon-iyot solüsyonların güvenilirliği. SDÜ Tıp Fakültesi Dergisi, 8(1), 14-17.
- 34. Sharma P., Tailang, M. (2020). Design, optimization, and evaluation of hydrogel of primaquine loaded nanoemulsion for malaria therapy. Future Journal of Pharmaceutical Sciences, 6, 26. [CrossRef]
- 35. Dhawan, B., Aggarwal, G., Harikumar, S.L. (2014). Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation. International Journal of Pharmaceutical Investigation, 4(2), 65-76. [CrossRef]
- 36. Woo, J.O., Misran, M., Lee, P.F., Tan, L.P. (2014). Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery, The Scientific World Journal, 2014, Article ID 205703. [CrossRef]
- 37. Hashemi, A., Bahari, A. (2017). Structural and dielectric characteristic of povidone-silica nanocomposite films on the Si (n) substrate. Applied Physics A, 123, 535. [CrossRef]
- 38. Gundlach, M., Paulsen, K., Garry, M., Lowry, S. Yin and Yang in Chemistry Education: The Complementary Nature of FT-IR and NMR Spectroscopies. Thermo Fisher Scientific, No:52742.
- 39. Trivedi, M.K., Branton, A., Trivedi, D., Shettigar, H., Bairwa, K., Jana, S. (2015). Fourier transform infrared and ultraviolet-visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin. Natural Products Chemistry & Research, 3(5), 1000186. [CrossRef]
KOMBİNE SALİSİLİK ASİT VE POVİDON-İYOT İÇEREN NANOEMÜLJELLERİN HAZIRLANMASI VE KARAKTERİZASYONU: ÖN ÇALIŞMA
Year 2022,
Volume: 46 Issue: 3, 764 - 780, 30.09.2022
Rukiye Sevinç Özakar
,
Şeyma Asan
,
Azra Elisa Özkan
,
Emrah Özakar
Abstract
Amaç: Bu ön çalışmanın amacı, gelecekte yapılması planlanan yara ve yanık gibi hastalık modellerinde kullanılmak üzere kombine salisilik asit ve povidone-iyot içeren nanoemüljeller hazırlamak ve karakterize etmektir.
Gereç ve Yöntem: Çalışma kapsamında öncelikle salisilik asitin analitik yöntem validasyonu yapılmıştır. Daha sonra yağda çözünürlük çalışması yapılıp, nanoemülsiyonlar ve nanoemüljeller hazırlanmıştır. Hazırlanan formülasyonların karakterizasyonunu belirlemek için morfoloji, zetasizer analizi, tip ve pH tayini, FTIR analizi, yayılabilirlik ve in vitro salım çalışmaları yapılmıştır.
Sonuç ve Tartışma: Nanoemülsiyonlar ve nanoemüljeller başarıyla hazırlanmıştır. Küresel damlacık yapısına sahip dış fazı su olan nanoemülsiyonlar elde edilmiştir ve morfolojileri ile zetasizer sonuçları uyumlu çıkmıştır. Yapılan 1 aylık stabilite çalışmasında sadece F1 formülasyonunda ayrışma gerçekleşmemiştir. Bekletme sonrasında pH’larda fazla değişim olmamıştır. FTIR analizi sonunda maddeler arasında etkileşimin olmadığı görülmüştür. pH 5.5 fosfat tamponuyla yapılan salım çalışmasında 8 saat sonunda yaklaşık % 40 oranında salım gerçekleşmiştir. Bu çalışma bir ön çalışma olup ilerde daha detaylı çalışmalar yapılarak uzun süreli stabiliteye ve salım oranına sahip formülasyonlar geliştirilebilir. Salisilik asit ve povidon-iyot ilk defa kombine halde kullanılmıştır. Bu kombinasyon gelecekte cilt hastalıkları için faydalı olabilecek formülasyonlara dönüştürülebilir.
Project Number
2021/10099
References
- 1. Richard, M.A., Paul, C., Nijsten, T., Gisondi, P., Salavastru, C., Taieb, C., Trakatelli, M., Puig, L., Stratigos, A., EADV burden of skin diseases project team. (2022). Prevalence of most common skin diseases in Europe: A population-based study. Journal of the European Academy of Dermatology and Venereology, 36(7), 1088-1096. [CrossRef]
- 2. Gupta, M., Agrawal, U., Vyas, S.P. (2012). Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opinion on Drug Delivery, 9(7), 783-804. [CrossRef]
- 3. Anand, K., Ray, S., Rahman, M., Shaharyar, A., Bhowmik, R., Bera, R., Karmakar, S. (2019). Nano-emulgel: Emerging as a smarter topical lipidic emulsion-based nanocarrier for skin healthcare applications. Recent Patents on Anti-infective Drug Discovery, 14(1), 16-35. [CrossRef]
- 4. Paudel, K.S., Milewski, M., Swadley, C.L., Brogden, N.K., Ghosh, P., Stinchcomb, A.L. (2010). Challenges and opportunities in dermal/transdermal delivery. Therapeutic Delivery, 1(1), 109-131. [CrossRef]
- 5. Phad, A.R., Dilip, N.T., Ganapathy, R.S. (2018) Emulgel: A comprehensive review for topical delivery of hydrophobic drugs. Asian Journal of Pharmaceutics, 12(2), S382 [CrossRef]
- 6. Singh, Y., Meher, J.G., Raval, K., Khan, F.A., Chaurasia, M., Jain, N.K., Chourasia, M.K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28-49. [CrossRef]
- 7. Yukuyama, M.N., Kato, E.T., Lobenberg, R., Bou-Chacra, N.A. (2017). Challenges and future prospects of nanoemulsion as a drug delivery system. Current Pharmaceutical Design, 23(3), 495-508. [CrossRef]
- 8. Tayeb, H.H., Sainsbury, F. (2018). Nanoemulsions in drug delivery: Formulation to medical application. Nanomedicine (London, England), 13(19), 2507-2525. [CrossRef]
- 9. Aithal, G.C., Narayan, R., Nayak, U.Y. (2020). Nanoemulgel: A promising phase in drug delivery. Current Pharmaceutical Design, 26(2), 279-291. [CrossRef]
- 10. Madan, R.K., Levitt, J. (2014). A review of toxicity from topical salicylic acid preparations. Journal of the American Academy of Dermatology, 70(4), 788-792. [CrossRef]
- 11. Bigliardi, P.L., Alsagoff, S.A.L., El-Kafrawi, H.Y., Pyon, J.K., Wa, C.T.C., Villa, M.A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44, 260-268. [CrossRef]
- 12. Sarma, P., Kaur, H., Medhi, B., Bhattacharyya, A. (2020). Possible prophylactic or preventive role of topical povidone iodine during accidental ocular exposure to 2019-nCoV. Graefe's Archive for Clinical and Experimental Ophthalmology, 258, 2563-2565. [CrossRef]
- 13. Ahmad, I., Vaid, F.H. (2009). Determination of benzoic acid and salicylic acid in commercial benzoic and salicylic acids ointments by spectrophotometric method. Pakistan Journal of Pharmaceutical Sciences, 22(1), 18-22.
- 14. Acharya, S.D., Tamane, P.K., Khante, S.N., Pokharkar, V.B. (2020). QbD based optimization of curcumin nanoemulsion: DoE and cytotoxicity studies. Indian Journal of Pharmaceutical Education and Research, 54(2), 329-336. [CrossRef]
- 15. Abdelmonem, R., Younis, M.K., Hassan, D.H., Ahmed, M.A.G.S., Hassanein, E., El-Batouty, K., Elfaham, A. (2019). Formulation and characterization of chlorhexidine HCl nanoemulsion as a promising antibacterial root canal irrigant: In-vitro and ex-vivo studies. International Journal of Nanomedicine, 2019(14), 4697-4708. [CrossRef]
- 16. Dalmolin, T.L., Lopez, R.F.V. (2018). Nanoemulsion as a platform for iontophoretic delivery of lipophilic drugs in skin tumors. Pharmaceutics, 10(4), 214. [CrossRef]
- 17. Kale, S.N., Deore, S.L. (2017). Emulsion micro emulsion and nano emulsion: A review. Systematic Reviews in Pharmacy, 8(1), 39-47. [CrossRef]
- 18. Sultan, M.H., Javed, S., Madkhali, O.A., Alam, M.I., Almoshari, Y., Bakkari, M.A., Sivadasan, D., Salawi, A., Jabeen, A., Ahsan, W. (2022). Development and optimization of methylcellulose based nanoemulgel loaded with nigella sativa oil for oral health management: Quadratic model approach. Molecules, 27(6), 1796. [CrossRef]
- 19. Gopalan, K., Jose, J. (2020). Development of amphotericin b based organogels against mucocutaneous fungal infections. Brazilian Journal of Pharmaceutical Sciences, 56, e17509. [CrossRef]
- 20. Topal, G.R., Kıymacı, M.E., Özkan, Y. (2022). Preparation and in vitro characterization of vancomycin loaded PLGA nanoparticles for the treatment of Enterococcus faecalis infections. Journal of Faculty of Pharmacy of Ankara University, 46(2), 350-363. [CrossRef]
- 21. Sevinç Özakar, R., Özakar, E. (2022). Different biopolymers' effects on the evaluation and characterization of floating tablets prepared by lyophilization technique to improve the quality control parameters. Polymer-Korea, 46(2), 145-158. [CrossRef]
- 22. Sinha, P., Srivastava, N., Rai, V.K., Mishra, R., Ajayakumar, P.V., Yadav, N.P. (2019). A novel approach for dermal controlled release of salicylic acid for improved anti-inflammatory action: Combination of hydrophilic-lipophilic balance and response surface methodology. Journal of Drug Delivery Science and Technology, 52, 870-884. [CrossRef]
- 23. Ashara, K.C., Shah, K.V. (2017). Nuts and bolts of oil and temperature in topical preparations of salicylic acid. Folia Medica, 59(3), 279-288. [CrossRef]
- 24. Teng, X., Wang, F., Li, K., Chen, S., Ye, P., He, L., Li, G. (2017). Determination of solubility and apparent oil/water partition cofficient of salicylic acid by RP-HPLC. Herald of Medicine, 12, 186-189.
- 25. Şanlı, H., Kalay Yıldızhan İ. (2020). Topikal tedaviler. Turkderm-Turkish Archives of Dermatology and Venerology, 54, 23-29. [CrossRef]
- 26. Bowe, W.P., Shalita, A.R. (2008). Effective over-the-counter acne treatments. Seminars in Cutaneous Medicine and Surgery. 27(3), 170-176. [CrossRef]
- 27. Malik, M.R., Al-Harbi, F.F., Nawaz, A., Amin, A., Farid, A., Mohaini, M.A., Alsalman, A.J., Hawaj, M.A.A., Alhashem, Y.N. (2022). Formulation and characterization of chitosan-decorated multiple nanoemulsion for topical delivery in vitro and ex vivo. Molecules, 27(10), 3183. [CrossRef]
- 28. Khani, S., Keyhanfar, F., Amani, A. (2016) Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Delivery, 23(6), 2035-2043. [CrossRef]
- 29. Kassem, M.A., Ghalwash, M.M., Abdou, E.M. (2020) Development of nanoemulsion gel drug delivery systems of cetirizine; factorial optimisation of composition, in vitro evaluation and clinical study. Journal of Microencapsulation, 37(6), 413-430. [CrossRef]
- 30. Koca, M., Özakar, E., Sevinç Özakar, R. (2021). Triiyodoanilin’in sentezlenmesi, nanosüspansiyonlarının hazırlanması, in vitro karakterizasyonu ve radyokontrast özelliklerinin incelenmesi. Journal of Faculty of Pharmacy of Ankara University, 45(2), 265-284. [CrossRef]
- 31. Arbain, N.H., Basri, M., Salim, N., Wui, W.T., Abdul Rahman, M.B. (2018). Development and characterization of aerosol nanoemulsion system encapsulating low water soluble quercetin for lung cancer treatment. Materials Today: Proceedings, 5, S137-S142. [CrossRef]
- 32. Kim, S.S., Yu, S.B., Kim, J.D., Ryu, S.J. (2013). Comparison of disinfective power according to application order of 70% isopropyl alcohol and 10% povidone-iodine. Korean Journal of Anesthesiology, 65(6), 519-524. [CrossRef]
- 33. Sızlan, A., Dündaröz, R., Dakak, M., Yıldıran, T., Dağlı, G., Özyurt, M. (2001). Povidon-iyot solüsyonların güvenilirliği. SDÜ Tıp Fakültesi Dergisi, 8(1), 14-17.
- 34. Sharma P., Tailang, M. (2020). Design, optimization, and evaluation of hydrogel of primaquine loaded nanoemulsion for malaria therapy. Future Journal of Pharmaceutical Sciences, 6, 26. [CrossRef]
- 35. Dhawan, B., Aggarwal, G., Harikumar, S.L. (2014). Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation. International Journal of Pharmaceutical Investigation, 4(2), 65-76. [CrossRef]
- 36. Woo, J.O., Misran, M., Lee, P.F., Tan, L.P. (2014). Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery, The Scientific World Journal, 2014, Article ID 205703. [CrossRef]
- 37. Hashemi, A., Bahari, A. (2017). Structural and dielectric characteristic of povidone-silica nanocomposite films on the Si (n) substrate. Applied Physics A, 123, 535. [CrossRef]
- 38. Gundlach, M., Paulsen, K., Garry, M., Lowry, S. Yin and Yang in Chemistry Education: The Complementary Nature of FT-IR and NMR Spectroscopies. Thermo Fisher Scientific, No:52742.
- 39. Trivedi, M.K., Branton, A., Trivedi, D., Shettigar, H., Bairwa, K., Jana, S. (2015). Fourier transform infrared and ultraviolet-visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin. Natural Products Chemistry & Research, 3(5), 1000186. [CrossRef]