VALSARTAN İÇEREN KATI VE SIVI KENDİLİĞİNDEN EMÜLSİFİYE OLAN SİSTEMLER (SEDDS): STABİLİTE DEĞERLENDİRMESİ VE PERMEABİLİTE ÇALIŞMALARI
Year 2024,
Volume: 48 Issue: 2, 525 - 534, 20.05.2024
Gülbeyaz Yıldız Türkyılmaz
,
Mine Diril
,
Eda Gülmezoğlu
,
Yesim Karasulu
Abstract
Amaç: Valsartan (VST), biyoyararlanımı yaklaşık %25 olan Biyofarmasötik Sınıflandırma Sistemi (BSS) sınıf II aktif maddedir ve yüksek kan basıncını (hipertansiyon) tedavi etmek için kullanılır. Bu çalışmanın amacı, kendi kendine emülsifiye olan ilaç dağıtım sistemleri (SEDDS) ve katılaştırılmış SEDDS (S-SEDDS) formülasyonları geliştirerek VST'nin stabilitesini göstermek ve geçirgenliğini artırmaktır.
Gereç ve Yöntem: Bir önceki çalışmada bileşenlerin oranları üçgen faz diyagramı ile belirlenmiş olup, karakterizasyon çalışmaları yapılmıştır. Bu çalışmada, uzun süreli (25±2˚C, 60±5% bağıl nem) ve hızlandırılmış (40±2˚C, 75±5% bağıl nem) koşullarda stabilite çalışmaları gerçekleştirildi. SEDDS formülasyonlarının bağırsak geçirgenliği Caco-2 hücreleri tarafından değerlendirildi.
Sonuç ve Tartışma: Formülasyonların 12 ay boyunca partikül boyutları VST içeren SEDDS (VST-SEDDS) formülasyuonunda 67.52 ± 5.26 nm, VST içeren S-SEDDS (VST-S-SEDDS) formülasyonunda 176.93 ± 17.34 nm olarak bulundu. Bu süre boyunca VST-SEDDS ve VST-S-SEDDS formülasyonunun polidispersite indeksleri sırasıyla 0.56±0.1, 0.58±0.05 olarak bulundu. Her iki formülasyon da Caco-2 hücreleri boyunca VST geçirgenliğini artırdı: VST-SEDDS 2,32 kat (toz) ve 2,18 kat (ticari); VST-S-SEDDS 1,38x (toz) ve 1,30x (ticari). Formülasyonların bileşenlerinde sitotoksik etki görülmedi. Bu sonuçlar, yüksek geçirgenliğe sahip yeni geliştirilen VST-SEDDS ve VST-S-SEDDS formülasyonlarının antihipertansif tedavi için arzu edilen bir yaklaşım olabileceğini gösterdi.
References
- 1. World Health Organization Web site. (2023). Hypertension. Retrieved November 17, 2023, from https://www.who.int/news-room/fact-sheets/detail/hypertension. Accessed date: 16.03.2023.
- 2. European Medicines Agency (2010). Assessment report for DIOVAN and associated names, from https://www.ema.europa.eu/en/documents/referral/assessment-report-diovan-emeaha-29-pad1220_en.pdf. Accessed date: 19.03.2023.
- 3. Himawan, A., Djide, N.J.N., Mardikasari, S.A., Utami, R.N., Arjuna, A., Donnelly, R.F., Permana, A.D. (2022). A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. European Journal of Pharmaceutical Sciences, 168, 106057. [CrossRef]
- 4. Caliph, S.M., Charman, W.N., Porter, C.J.H. (2000). Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. Journal of Pharmaceutical Sciences, 89, 1073-1084. [CrossRef]
- 5. Czajkowska-Kos̈nik, A., Szekalska, M., Amelian, A., Szymańska, E., Winnicka, K. (2015). Development and evaluation of liquid and solid self-emulsifying drug delivery systems for atorvastatin. Molecules, 20, 21010-21022. [CrossRef]
- 6. Parmar, B., Patel, U., Bhimani, B., Sanghavi, K. (2012). SMEDDS: A dominant dosage form which improve bioavailability. American Journal of Pharmtech Research, 2, 54-72.
- 7. Diril, M., Türkyılmaz, G.Y., Gülmezoğlu, E., Karasulu, H.Y. (2023). Development, characterization and in vitro evaluation of solid self-emulsifying drug delivery systems (S-SEDDS) containing valsartan. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. [CrossRef]
- 8. Yang, X., Gao, P., Jiang, Z., Luo, Q., Mu, C., Cui, M. (2021). Preparation and evaluation of self-emulsifying drug delivery system (SEDDS) of cepharanthine. AAPS PharmSciTech, 22, 1-12. [CrossRef]
- 9. Ali, M.S., Alam, M.S., Alam, N., Siddiqui, M.R. (2014). Preparation, characterization and stability study of dutasteride loaded nanoemulsion for treatment of benign prostatic hypertrophy. Iranian Journal of Pharmaceutical Research. 13, 1125-1140.
- 10. Şatana, E., Altinay, Ş., Göger, N.G., Özkan, S.A., Şentürk, Z. (2001). Simultaneous determination of valsartan and hydrochlorothiazide in tablets by first-derivative ultraviolet spectrophotometry and LC. Journal of Pharmaceutical and Biomedical Analysis, 25, 1009-1013. [CrossRef]
- 11. Scheeren, L.E., Nogueira-Librelotto, D.R., Fernandes, J.R., Macedo, L.B., Marcolino, A.I.P., Vinardell, M.P., Rolim, C.M.B. (2018). Comparative study of reversed-phase high-performance liquid chromatography and ultraviolet-visible spectrophotometry to determine doxorubicin in ph-sensitive nanoparticles. Analytical Letters, 51, 1445-1463. [CrossRef]
- 12. Karaküçük, A., Taşhan, E., Öztürk, N., Çelebi, N. (2021). In vitro caco-2 cell permeability studies of ziprasidone hydrochloride monohydrate nanocrystals. Turkish Journal of Pharmaceutical Sciences, 18, 223-227. [CrossRef]
- 13. Brück, S., Strohmeier, J., Busch, D., Drozdzik, M., Oswald, S. (2017). Caco-2 cells-expression, regulation and function of drug transporters compared with human jejunal tissue. Biopharmaceutics and Drug Disposition, 38, 115-126. [CrossRef]
- 14. Diril, M., Karasulu, Y., Toskas, M., Nikolakakis, I. (2019). Development and permeability testing of self-emulsifying atorvastatin calcium pellets and tablets of compressed pellets. Processes 7(6), 365. [CrossRef]
- 15. Matsumoto, T., Kaifuchi, N., Mizuhara, Y., Warabi, E., Watanabe, J. (2018). Use of a Caco-2 permeability assay to evaluate the effects of several Kampo medicines on the drug transporter P-glycoprotein. Journal of Natural Medicines, 72, 897-904. [CrossRef]
- 16. Sawadogo, W.R., Luo, Y., Elkington, B., He T.C., Wang, C.Z., Yuan, C.S. (2020). Assessment of the anti-proliferative effect and preliminary analysis of cell cycle arrest and pro-apoptotic effects of balanites aegyptiaca (L.) Delile on colorectal cancer cells HCT-116 and HT-29. Journal of Pharmaceutical Research International, 11, 9-21. [CrossRef]
- 17. Zein, R., Alghoraibi, I., Soukkarieh, C., Salman, A., Alahmad, A. (2020). In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus Camaldulensis leaves. Heliyon 6 (8), e04594. [CrossRef]
- 18. Suvarna, V., Pagdhar, U., Kadu, A., Oza, M. (2017). Development and characterization of solid self-emulsifying drug delivery system containing nateglinide. Asian Journal of Pharmaceutics, 11, 27-36 [CrossRef]
- 19. Pouton, C.W. (2000). Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems. European Journal of Pharmaceutical Sciences, 11, 93-98. [CrossRef]
- 20. Tengsh, S.D., Karande, K.M. (2020). A review on self micro-emulsifying drug del,very system: a tool for solubility enhancement. International Journal of Research and Analytical Reviews (IJRAR), 7, 101-114.
- 21. Council of Europe. European Pharmacopoeia, 6th ed. (2007). 20936 (01/2008). Strasbourg, France, p. 320-324.
- 22. Giri, T.K., Kumar, K., Alexande,r A., Ajazuddin, Badwaik, H., Tripathi, D.K. (2012). A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique. Bulletin of Faculty of Pharmacy, 50, 147-159. [CrossRef]
- 23. Bernkop-Schnurch A, Malkawi A, Jalil A, Nazir I, Matuszczak B, Kennedy R. (2020). Self-emulsifying drug delivery systems: Hydrophobic drug polymer complexes provide a sustained release in vitro. Molecular Pharmaceutics,17(10), 3709-3719.
- 24. Lea, T. (2015). Caco-2 Cell Line. In: Verhoeckx, K (Eds of Chief), The Impact of Food Bioactives on Health. Springer, Cham. [CrossRef]
- 25. Cárdenas, P.A., Kratz, J.M., Hernández, A., Costa, G.M., Ospina, F., Baena, Y., Maria, C., Simõe,s O., Jimenez-kairuz, Á., Aragon, M. (2017). In vitro intestinal permeability studies , pharmacokinetics and tissue distribution of 6-methylcoumarin after oral and intraperitoneal administration in Wistar rats. Brazilian Journal of Pharmaceutical Sciences, 53, 1-9. [CrossRef]
- 26. Timur, S.S., Gürsoy, R.N. (2020). Design and in vitro evaluation of solid SEDDS for breast cancer therapy. Journal of Drug Delivery Science and Technology, 60, 102023. [CrossRef]
- 27. Sha, X., Yan, G., Wu, Y., Li, J., Fang, X. (2005). Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells. European Journal of Pharmaceutical Sciences, 24, 477-486. [CrossRef]
- 28. Chen, S., Einspanier, R., Schoen, J. (2015). Transepithelial electrical resistance ( TEER ): A functional parameter to monitor the quality of oviduct epithelial cells cultured on filter supports. Histochemistry and Cell Biology, 144, 509-515. [CrossRef]
- 29. Silva, A.C., González-Mira, E., García, M.L., Egea, M.A., Fonseca, J., Silva, R., Santos, D., Souto, E.B., Ferreira, D. (2011). Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids and Surfaces B: Biointerfaces, 86, 158-165. [CrossRef]
LIQUID AND SOLID SELF-EMULSIFYING DRUG DELIVERY SYSTEMS (SEDDS) CONTAINING VALSARTAN: STABILITY ASSESSMENT AND PERMEABILITY STUDIES
Year 2024,
Volume: 48 Issue: 2, 525 - 534, 20.05.2024
Gülbeyaz Yıldız Türkyılmaz
,
Mine Diril
,
Eda Gülmezoğlu
,
Yesim Karasulu
Abstract
Objective: Valsartan (VST) is a Biopharmaceutical classification system (BSC) class II active ingredient with a bioavailability of approximately 25% and is utilized to treat high blood pressure (hypertension). This study aimed was to showcase the stability and increase the permeability of VST by developing self-emulsifying drug delivery systems (SEDDS) and solidified SEDDS (S-SEDDS) formulations.
Material and Method: The ratios of the components were determined by the pseudo-ternary phase diagram, and the characterization studies were conducted in the previous study. Stability was performed in long-term (25±2˚C, 60±5% relative humidity) and accelerated (40±2˚C, 75±5% relative humidity) conditions. The intestinal permeability of SEDDS formulations was evaluated by Caco-2 cells.
Result and Discussion: Formulations for 12 month, droplet sizes were found to be 67.52 ± 5.26 nm and 176.93 ± 17.34 nm for SEDDS of VST (VST-SEDDS) and S-SEDDS of VST (VST-S-SEDDS), respectively. During this period, polydispersity indexes were: VST-SEDDS, 0.56±0.1; VST-S-SEDDS, 0.58±0.05. Both formulations increased VST permeability across Caco-2 cells: VST-SEDDS by 2.32x (powder) and 2.18x (commercial); VST-S-SEDDS by 1.38x (powder) and 1.30x (commercial). The formulation components did not have cytotoxic effects. These results demonstrated that newly developed VST-SEDDS and VST-S-SEDDS formulations with high permeability may be a desirable approach for antihypertensive therapy.
Ethical Statement
The authors declare that ethics committee approval is not mandatory for this study.
Supporting Institution
This study was supported by The Scientific and Technological Council of Turkey (TUBİTAK Project No: 117S821).
Thanks
This study was supported by The Scientific and Technological Council of Turkey (TUBİTAK Project No: 117S821).
References
- 1. World Health Organization Web site. (2023). Hypertension. Retrieved November 17, 2023, from https://www.who.int/news-room/fact-sheets/detail/hypertension. Accessed date: 16.03.2023.
- 2. European Medicines Agency (2010). Assessment report for DIOVAN and associated names, from https://www.ema.europa.eu/en/documents/referral/assessment-report-diovan-emeaha-29-pad1220_en.pdf. Accessed date: 19.03.2023.
- 3. Himawan, A., Djide, N.J.N., Mardikasari, S.A., Utami, R.N., Arjuna, A., Donnelly, R.F., Permana, A.D. (2022). A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. European Journal of Pharmaceutical Sciences, 168, 106057. [CrossRef]
- 4. Caliph, S.M., Charman, W.N., Porter, C.J.H. (2000). Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. Journal of Pharmaceutical Sciences, 89, 1073-1084. [CrossRef]
- 5. Czajkowska-Kos̈nik, A., Szekalska, M., Amelian, A., Szymańska, E., Winnicka, K. (2015). Development and evaluation of liquid and solid self-emulsifying drug delivery systems for atorvastatin. Molecules, 20, 21010-21022. [CrossRef]
- 6. Parmar, B., Patel, U., Bhimani, B., Sanghavi, K. (2012). SMEDDS: A dominant dosage form which improve bioavailability. American Journal of Pharmtech Research, 2, 54-72.
- 7. Diril, M., Türkyılmaz, G.Y., Gülmezoğlu, E., Karasulu, H.Y. (2023). Development, characterization and in vitro evaluation of solid self-emulsifying drug delivery systems (S-SEDDS) containing valsartan. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. [CrossRef]
- 8. Yang, X., Gao, P., Jiang, Z., Luo, Q., Mu, C., Cui, M. (2021). Preparation and evaluation of self-emulsifying drug delivery system (SEDDS) of cepharanthine. AAPS PharmSciTech, 22, 1-12. [CrossRef]
- 9. Ali, M.S., Alam, M.S., Alam, N., Siddiqui, M.R. (2014). Preparation, characterization and stability study of dutasteride loaded nanoemulsion for treatment of benign prostatic hypertrophy. Iranian Journal of Pharmaceutical Research. 13, 1125-1140.
- 10. Şatana, E., Altinay, Ş., Göger, N.G., Özkan, S.A., Şentürk, Z. (2001). Simultaneous determination of valsartan and hydrochlorothiazide in tablets by first-derivative ultraviolet spectrophotometry and LC. Journal of Pharmaceutical and Biomedical Analysis, 25, 1009-1013. [CrossRef]
- 11. Scheeren, L.E., Nogueira-Librelotto, D.R., Fernandes, J.R., Macedo, L.B., Marcolino, A.I.P., Vinardell, M.P., Rolim, C.M.B. (2018). Comparative study of reversed-phase high-performance liquid chromatography and ultraviolet-visible spectrophotometry to determine doxorubicin in ph-sensitive nanoparticles. Analytical Letters, 51, 1445-1463. [CrossRef]
- 12. Karaküçük, A., Taşhan, E., Öztürk, N., Çelebi, N. (2021). In vitro caco-2 cell permeability studies of ziprasidone hydrochloride monohydrate nanocrystals. Turkish Journal of Pharmaceutical Sciences, 18, 223-227. [CrossRef]
- 13. Brück, S., Strohmeier, J., Busch, D., Drozdzik, M., Oswald, S. (2017). Caco-2 cells-expression, regulation and function of drug transporters compared with human jejunal tissue. Biopharmaceutics and Drug Disposition, 38, 115-126. [CrossRef]
- 14. Diril, M., Karasulu, Y., Toskas, M., Nikolakakis, I. (2019). Development and permeability testing of self-emulsifying atorvastatin calcium pellets and tablets of compressed pellets. Processes 7(6), 365. [CrossRef]
- 15. Matsumoto, T., Kaifuchi, N., Mizuhara, Y., Warabi, E., Watanabe, J. (2018). Use of a Caco-2 permeability assay to evaluate the effects of several Kampo medicines on the drug transporter P-glycoprotein. Journal of Natural Medicines, 72, 897-904. [CrossRef]
- 16. Sawadogo, W.R., Luo, Y., Elkington, B., He T.C., Wang, C.Z., Yuan, C.S. (2020). Assessment of the anti-proliferative effect and preliminary analysis of cell cycle arrest and pro-apoptotic effects of balanites aegyptiaca (L.) Delile on colorectal cancer cells HCT-116 and HT-29. Journal of Pharmaceutical Research International, 11, 9-21. [CrossRef]
- 17. Zein, R., Alghoraibi, I., Soukkarieh, C., Salman, A., Alahmad, A. (2020). In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus Camaldulensis leaves. Heliyon 6 (8), e04594. [CrossRef]
- 18. Suvarna, V., Pagdhar, U., Kadu, A., Oza, M. (2017). Development and characterization of solid self-emulsifying drug delivery system containing nateglinide. Asian Journal of Pharmaceutics, 11, 27-36 [CrossRef]
- 19. Pouton, C.W. (2000). Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems. European Journal of Pharmaceutical Sciences, 11, 93-98. [CrossRef]
- 20. Tengsh, S.D., Karande, K.M. (2020). A review on self micro-emulsifying drug del,very system: a tool for solubility enhancement. International Journal of Research and Analytical Reviews (IJRAR), 7, 101-114.
- 21. Council of Europe. European Pharmacopoeia, 6th ed. (2007). 20936 (01/2008). Strasbourg, France, p. 320-324.
- 22. Giri, T.K., Kumar, K., Alexande,r A., Ajazuddin, Badwaik, H., Tripathi, D.K. (2012). A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique. Bulletin of Faculty of Pharmacy, 50, 147-159. [CrossRef]
- 23. Bernkop-Schnurch A, Malkawi A, Jalil A, Nazir I, Matuszczak B, Kennedy R. (2020). Self-emulsifying drug delivery systems: Hydrophobic drug polymer complexes provide a sustained release in vitro. Molecular Pharmaceutics,17(10), 3709-3719.
- 24. Lea, T. (2015). Caco-2 Cell Line. In: Verhoeckx, K (Eds of Chief), The Impact of Food Bioactives on Health. Springer, Cham. [CrossRef]
- 25. Cárdenas, P.A., Kratz, J.M., Hernández, A., Costa, G.M., Ospina, F., Baena, Y., Maria, C., Simõe,s O., Jimenez-kairuz, Á., Aragon, M. (2017). In vitro intestinal permeability studies , pharmacokinetics and tissue distribution of 6-methylcoumarin after oral and intraperitoneal administration in Wistar rats. Brazilian Journal of Pharmaceutical Sciences, 53, 1-9. [CrossRef]
- 26. Timur, S.S., Gürsoy, R.N. (2020). Design and in vitro evaluation of solid SEDDS for breast cancer therapy. Journal of Drug Delivery Science and Technology, 60, 102023. [CrossRef]
- 27. Sha, X., Yan, G., Wu, Y., Li, J., Fang, X. (2005). Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells. European Journal of Pharmaceutical Sciences, 24, 477-486. [CrossRef]
- 28. Chen, S., Einspanier, R., Schoen, J. (2015). Transepithelial electrical resistance ( TEER ): A functional parameter to monitor the quality of oviduct epithelial cells cultured on filter supports. Histochemistry and Cell Biology, 144, 509-515. [CrossRef]
- 29. Silva, A.C., González-Mira, E., García, M.L., Egea, M.A., Fonseca, J., Silva, R., Santos, D., Souto, E.B., Ferreira, D. (2011). Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids and Surfaces B: Biointerfaces, 86, 158-165. [CrossRef]