Review
BibTex RIS Cite

Hücre Dışı Veziküller ve Eksozom

Year 2023, Volume: 5 Issue: 2, 245 - 257, 26.08.2023

Abstract

İnsan vücudundaki tüm hücreler hem normal hem de patolojik süreçlerde hücre dışı ortama küçük moleküller salgılamaktadırlar. Hücre dışı veziküller olarak tanımlanan bu nanomoleküller, son dönemlerde giderek daha da önem kazanan bireysel tanı, takip ve tedavi stratejilerine paralel olarak hastalık biyobelirteçi veya ilaç adayı olabilir mi, araştırmalarına öncülük etmektedir. Yapılan çalışmalar göstermektedir ki, vücutta yer alan tüm hücrelerden ekstraselüler ortama salgılanan bu moleküller, her hücrenin kendi biyolojik karakterizasyonu ile eşdeğer olduğundan salgılandığı hücrenin kimliğini de yansıtmaktadırlar. Dolayısıyla vücut sıvılarında yer alan bu veziküller tanı, tedavi ve takipte hücreye ulaşılamadığında veya hücre eldesinin zor olduğu durumlarda kullanılabilecek ve belki de girişimsel işlemlerin de yerine geçebilecek biyobelirteç özelliği gösterebileceklerdir. Eksozom, insan vücudunda yer alan tüm hücreler tarafından hücre dışı ortama salgılanan veziküllerin en küçüğüdür. Taşıdıkları hücreler arası ve hücre içi kargo muhteviyatları ile haberleşme ve sinyal yolaklarında görevli olabilmeleri, lipid kompozisyonları ile hücre içine kolaylıkla girebilme potansiyelleri ve son çalışmalarda bildirilen DNA, RNA, miRNA, lncRNA gibi nükleik asit sekanslarına sahip olabilmeleri, biyobelirteç adayı olarak atfedilmelerine yol açmıştır.

Supporting Institution

yok

Project Number

bu bir derlemedir

Thanks

yok

References

  • Bazzan, E., Tinè, M., Casara, A., Biondini, D., Semenzato, U., Cocconcelli, E., Balestro, E., Damin, M., Radu, C. M., Turato, G., Baraldo, S., Simioni, P., Spagnolo, P., Saetta, M., & Cosio, M. G. (2021). Critical Review of the Evolution of Extracellular Vesicles' Knowledge: From to Today. International journal of molecular sciences, 22(12), 6417. https://doi.org/10.3390/ijms22126417
  • Chargaff, E. ve West, R. (1946). The biological significance of the thromboplastic protein of blood. The Journal of biological chemistry, 166(1), 189–197.3. Wolf P. (1967). The nature and significance of platelet products in human plasma. British journal of haematology, 13(3), 269–288. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x
  • Aaronson, S., Behrens, U., Orner, R., & Haines, T. H. (1971). Ultrastructure of intracellular and extracellular vesicles, membranes, and myelin figures produced by Ochromonas danica. Journal of ultrastructure research, 35(5), 418–430. https://doi.org/10.1016/s0022-5320(71)80003-5
  • Dalton A. J. (1975). Microvesicles and vesicles of multivesicular bodies versus "virus-like" particles. Journal of the National Cancer Institute, 54(5), 1137–1148. https://doi.org/10.1093/jnci/54.5.1137
  • Fox, AS., Yoon, S. B.Gelbart, W. M. (1971). DNA-induced transformation in Drosophila: genetic analysis of transformed stocks. Proceedings of the National Academy of Sciences of the United States of America, 68(2), 342–346. https://doi.org/10.1073/pnas.68.2.342
  • Mishra, N. C., & Tatum, E. L. (1973). Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora. Proceedings of the National Academy of Sciences of the United States of America, 70(12), 3875–3879. https://doi.org/10.1073/pnas.70.12.3875
  • Trams EG, Lauter CJ, Salem Jr N, Heine U. Exfoliation of membrane ectoenzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981; 645: 63-70. 2. https://www.sciencedirect.com/journal/biochimica-et-biophysica-acta-bba-biomembranes/vol/645/issue/1
  • Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of biological chemistry, 262(19), 9412–9420. https://scirp.org/reference/referencespapers.aspx?referenceid=2611292
  • Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J., & Sixma, J. J. (1999). Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, 94(11), 3791–379. https://ashpublications.org/blood/article/94/11/3791/260424/Activated-Platelets-Release-Two-Types-of-Membrane
  • Wilson, J. M., Whitney, J. A., & Neutra, M. R. (1991). Biogenesis of the apical endosome-lysosome complex during differentiation of absorptive epithelial cells in rat ileum. Journal of cell science, 100 ( Pt 1), 133–143. https://doi.org/10.1242/jcs.100.1.133
  • Marzesco, A. M., Janich, P., Wilsch-Bräuninger, M., Dubreuil, V., Langenfeld, K., Corbeil, D., & Huttner, W. B. (2005). Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. Journal of cell science, 118(Pt 13), 2849–2858. https://doi.org/10.1242/jcs.02439
  • Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., & Geuze, H. J. (1996). B lymphocytes secrete antigen-presenting vesicles. The Journal of experimental medicine, 183(3), 1161–1172. https://doi.org/10.1084/jem.183.3.1161
  • Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends in cell biology, 19(2), 43–51. https://doi.org/10.1016/j.tcb.2008.11.003
  • Théry, C., Ostrowski, M., & Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nature reviews. Immunology, 9(8), 581–593. https://doi.org/10.1038/nri2567
  • Bobrie, A., Colombo, M., Raposo, G., & Théry, C. (2011). Exosome secretion: molecular mechanisms and roles in immune responses. Traffic (Copenhagen, Denmark), 12(12), 1659–1668. https://doi.org/10.1111/j.1600-0854.2011.01225.x
  • Larabi, A., Barnich, N., & Nguyen, H. (2020). Emerging Role of Exosomes in Diagnosis and Treatment of Infectious and Inflammatory Bowel Diseases. Cells, 9(5), 1111. https://doi.org/10.3390/cells9051111
  • Saeedi, S., Israel, S., Nagy, C., & Turecki, G. (2019). The emerging role of exosomes in mental disorders. Translational psychiatry, 9(1), 122. https://doi.org/10.1038/s41398-019-0459-9
  • Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science (New York, N.Y.), 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977 Ertekin TS. (2020). Eksozom yüklü sıkıştırılabilir kemik greftleri /Compressible bone gfafts loaded by exosomes.http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/22749?show=full
  • Gurunathan, S., Kang, M. H., Jeyaraj, M., Qasim, M., & Kim, J. H. (2021). Correction: Gurunathan, S. et al. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019, 8, 307. Cells, 10(2), 462. https://doi.org/10.3390/cells10020462
  • Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and molecular life sciences: CMLS, 75(2), 193–208. https://doi.org/10.1007/s00018-017-2595-9
  • Devhare, P. B., & Ray, R. B. (2018). Extracellular vesicles: Novel mediator for cell to cell communications in liver pathogenesis. Molecular aspects of medicine, 60, 115–122. https://doi.org/10.1016/j.mam.2017.11.001
  • Tamai, K., Shiina, M., Tanaka, N., Nakano, T., Yamamoto, A., Kondo, Y., Kakazu, E., Inoue, J., Fukushima, K., Sano, K., Ueno, Y., Shimosegawa, T., & Sugamura, K. (2012). Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway. Virology, 422(2), 377–385. https://doi.org/10.1016/j.virol.2011.11.009
  • Hirsova, P., Ibrahim, S. H., Verma, V. K., Morton, L. A., Shah, V. H., LaRusso, N. F., Gores, G. J., & Malhi, H. (2016). Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology (Baltimore, Md.), 64(6), 2219–2233. https://doi.org/10.1002/hep.28814
  • Bowers, E. C., Hassanin, A., & Ramos, K. S. (2020). In vitro models of exosome biology and toxicology: New frontiers in biomedical research. Toxicology in vitro : an international journal published in association with BIBRA, 64, 104462. https://doi.org/10.1016/j.tiv.2019.02.016
  • Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., & Simpson, R. J. (2013). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular&cellular proteomics MCP, 12(3), 587–598. https://doi.org/10.1074/mcp.M112.021303
  • Shrivastava, S., Devhare, P., Sujijantarat, N., Steele, R., Kwon, Y. C., Ray, R., & Ray, R. B. (2015). Knockdown of Autophagy Inhibits Infectious Hepatitis C Virus Release by the Exosomal Pathway. Journal of virology, 90(3), 1387–1396. https://doi.org/10.1128/JVI.02383-15
  • Yue, B., Yang, H., Wang, J., Ru, W., Wu, J., Huang, Y., Lan, X., Lei, C., & Chen, H. (2020). Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell proliferation, 53(7), e12857. https://doi.org/10.1111/cpr.12857
  • Isaac, R., Reis, F., Ying, W., & Olefsky, J. M. (2021). Exosomes as mediators of intercellular crosstalk in metabolism. Cell metabolism, 33(9), 1744–1762. https://doi.org/10.1016/j.cmet.2021.08.006
  • Zhang, P., Samuel, G., Crow, J., Godwin, A. K., & Zeng, Y. (2018). Molecular assessment of circulating exosomes toward liquid biopsy diagnosis of Ewing sarcoma family of tumors. Translational research : the journal of laboratory and clinical medicine, 201, 136–153. https://doi.org/10.1016/j.trsl.2018.05.007
  • Zhang, G., & Yang, P. (2018). A novel cell-cell communication mechanism in the nervous system: exosomes. Journal of neuroscience research, 96(1), 45–52. https://doi.org/10.1002/jnr.24113
  • Zech, D., Rana, S., Büchler, M. W., & Zöller, M. (2012). Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell communication and signaling : CCS, 10(1), 37. https://doi.org/10.1186/1478-811X-10-37
  • Mulcahy, L. A., Pink, R. C., & Carter, D. R. (2014). Routes and mechanisms of extracellular vesicle uptake. Journal of extracellular vesicles, 3, 10.3402/jev.v3.24641. https://doi.org/10.3402/jev.v3.24641
  • Rana, S., Yue, S., Stadel, D., & Zöller, M. (2012). Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. The international journal of biochemistry & cell biology, 44(9), 1574–1584. https://doi.org/10.1016/j.biocel.2012.06.018
  • Sandvig, K., Torgersen, M. L., Raa, H. A., & van Deurs, B. (2008). Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochemistry and cell biology, 129(3), 267–276. https://doi.org/10.1007/s00418-007-0376-5
  • Kerr, M. C., & Teasdale, R. D. (2009). Defining macropinocytosis. Traffic (Copenhagen, Denmark), 10(4), 364–371. https://doi.org/10.1111/j.1600-0854.2009.00878.x
  • Keerthikumar, S., Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L., & Mathivanan, S. (2016). ExoCarta: A Web-Based Compendium of Exosomal Cargo. Journal of molecular biology, 428(4), 688–692. https://doi.org/10.1016/j.jmb.2015.09.019 http://www.exocarta.org
  • Kourembanas S. (2015). Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annual review of physiology, 77, 13–27. https://doi.org/10.1146/annurev-physiol-021014-071641
  • Gurung, S., Perocheau, D., Touramanidou, L., & Baruteau, J. (2021). The exosome journey: from biogenesis to uptake and intracellular signalling. Cell communication and signaling:CCS, 19(1), 47. https://doi.org/10.1186/s12964-021-00730-1
  • Hoehn, H., Bryant, E. M., Karp, L. E., & Martin, G. M. (1975). Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. II. Cytogenetic parameters as functions of clonal type and preparative technique. Clinical genetics, 7(1), 29–36. https://europepmc.org/article/med/1176144
  • Yin, P., Lv, H., Li, Y., Deng, Y., Zhang, L., & Tang, P. (2017). Exosome-Mediated Genetic Information Transfer, a Missing Piece of Osteoblast-Osteoclast Communication Puzzle. Frontiers in endocrinology, 8, 336. https://doi.org/10.3389/fendo.2017.00336
  • Sharma, P., Ludwig, S., Muller, L., Hong, C. S., Kirkwood, J. M., Ferrone, S., & Whiteside, T. L. (2018). Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. Journal of extracellular vesicles, 7(1), 1435138. https://doi.org/10.1080/20013078.2018.1435138
  • Popovic M, de Marco A. (2018) Canonical and selective approaches in exosome purification and their implications for diagnostic accuracy. Translational Cancer Research, vol. 7(Suppl 2), S209-S225. https://tcr.amegroups.com/article/view/15820
  • Guerreiro, E. M., Vestad, B., Steffensen, L. A., Aass, H., Saeed, M., Øvstebø, R., Costea, D. E., Galtung, H. K., & Søland, T. M. (2018). Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PloS one, 13(9), e0204276. https://doi.org/10.1371/journal.pone.0204276
  • An, M., Wu, J., Zhu, J., & Lubman, D. M. (2018). Comparison of an Optimized Ultracentrifugation Method versus Size-Exclusion Chromatography for Isolation of Exosomes from Human Serum. Journal of proteome research, 17(10), 3599–3605. https://doi.org/10.1021/acs.jproteome.8b00479
  • Kurian, T. K., Banik, S., Gopal, D., Chakrabarti, S., & Mazumder, N. (2021). Elucidating Methods for Isolation and Quantification of Exosomes: A Review. Molecular biotechnology, 63(4), 249–266. https://doi.org/10.1007/s12033-021-00300-3

Extracellular Vesicles and Exosomes

Year 2023, Volume: 5 Issue: 2, 245 - 257, 26.08.2023

Abstract

Project Number

bu bir derlemedir

References

  • Bazzan, E., Tinè, M., Casara, A., Biondini, D., Semenzato, U., Cocconcelli, E., Balestro, E., Damin, M., Radu, C. M., Turato, G., Baraldo, S., Simioni, P., Spagnolo, P., Saetta, M., & Cosio, M. G. (2021). Critical Review of the Evolution of Extracellular Vesicles' Knowledge: From to Today. International journal of molecular sciences, 22(12), 6417. https://doi.org/10.3390/ijms22126417
  • Chargaff, E. ve West, R. (1946). The biological significance of the thromboplastic protein of blood. The Journal of biological chemistry, 166(1), 189–197.3. Wolf P. (1967). The nature and significance of platelet products in human plasma. British journal of haematology, 13(3), 269–288. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x
  • Aaronson, S., Behrens, U., Orner, R., & Haines, T. H. (1971). Ultrastructure of intracellular and extracellular vesicles, membranes, and myelin figures produced by Ochromonas danica. Journal of ultrastructure research, 35(5), 418–430. https://doi.org/10.1016/s0022-5320(71)80003-5
  • Dalton A. J. (1975). Microvesicles and vesicles of multivesicular bodies versus "virus-like" particles. Journal of the National Cancer Institute, 54(5), 1137–1148. https://doi.org/10.1093/jnci/54.5.1137
  • Fox, AS., Yoon, S. B.Gelbart, W. M. (1971). DNA-induced transformation in Drosophila: genetic analysis of transformed stocks. Proceedings of the National Academy of Sciences of the United States of America, 68(2), 342–346. https://doi.org/10.1073/pnas.68.2.342
  • Mishra, N. C., & Tatum, E. L. (1973). Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora. Proceedings of the National Academy of Sciences of the United States of America, 70(12), 3875–3879. https://doi.org/10.1073/pnas.70.12.3875
  • Trams EG, Lauter CJ, Salem Jr N, Heine U. Exfoliation of membrane ectoenzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981; 645: 63-70. 2. https://www.sciencedirect.com/journal/biochimica-et-biophysica-acta-bba-biomembranes/vol/645/issue/1
  • Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of biological chemistry, 262(19), 9412–9420. https://scirp.org/reference/referencespapers.aspx?referenceid=2611292
  • Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J., & Sixma, J. J. (1999). Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, 94(11), 3791–379. https://ashpublications.org/blood/article/94/11/3791/260424/Activated-Platelets-Release-Two-Types-of-Membrane
  • Wilson, J. M., Whitney, J. A., & Neutra, M. R. (1991). Biogenesis of the apical endosome-lysosome complex during differentiation of absorptive epithelial cells in rat ileum. Journal of cell science, 100 ( Pt 1), 133–143. https://doi.org/10.1242/jcs.100.1.133
  • Marzesco, A. M., Janich, P., Wilsch-Bräuninger, M., Dubreuil, V., Langenfeld, K., Corbeil, D., & Huttner, W. B. (2005). Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. Journal of cell science, 118(Pt 13), 2849–2858. https://doi.org/10.1242/jcs.02439
  • Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., & Geuze, H. J. (1996). B lymphocytes secrete antigen-presenting vesicles. The Journal of experimental medicine, 183(3), 1161–1172. https://doi.org/10.1084/jem.183.3.1161
  • Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends in cell biology, 19(2), 43–51. https://doi.org/10.1016/j.tcb.2008.11.003
  • Théry, C., Ostrowski, M., & Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nature reviews. Immunology, 9(8), 581–593. https://doi.org/10.1038/nri2567
  • Bobrie, A., Colombo, M., Raposo, G., & Théry, C. (2011). Exosome secretion: molecular mechanisms and roles in immune responses. Traffic (Copenhagen, Denmark), 12(12), 1659–1668. https://doi.org/10.1111/j.1600-0854.2011.01225.x
  • Larabi, A., Barnich, N., & Nguyen, H. (2020). Emerging Role of Exosomes in Diagnosis and Treatment of Infectious and Inflammatory Bowel Diseases. Cells, 9(5), 1111. https://doi.org/10.3390/cells9051111
  • Saeedi, S., Israel, S., Nagy, C., & Turecki, G. (2019). The emerging role of exosomes in mental disorders. Translational psychiatry, 9(1), 122. https://doi.org/10.1038/s41398-019-0459-9
  • Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science (New York, N.Y.), 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977 Ertekin TS. (2020). Eksozom yüklü sıkıştırılabilir kemik greftleri /Compressible bone gfafts loaded by exosomes.http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/22749?show=full
  • Gurunathan, S., Kang, M. H., Jeyaraj, M., Qasim, M., & Kim, J. H. (2021). Correction: Gurunathan, S. et al. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019, 8, 307. Cells, 10(2), 462. https://doi.org/10.3390/cells10020462
  • Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and molecular life sciences: CMLS, 75(2), 193–208. https://doi.org/10.1007/s00018-017-2595-9
  • Devhare, P. B., & Ray, R. B. (2018). Extracellular vesicles: Novel mediator for cell to cell communications in liver pathogenesis. Molecular aspects of medicine, 60, 115–122. https://doi.org/10.1016/j.mam.2017.11.001
  • Tamai, K., Shiina, M., Tanaka, N., Nakano, T., Yamamoto, A., Kondo, Y., Kakazu, E., Inoue, J., Fukushima, K., Sano, K., Ueno, Y., Shimosegawa, T., & Sugamura, K. (2012). Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway. Virology, 422(2), 377–385. https://doi.org/10.1016/j.virol.2011.11.009
  • Hirsova, P., Ibrahim, S. H., Verma, V. K., Morton, L. A., Shah, V. H., LaRusso, N. F., Gores, G. J., & Malhi, H. (2016). Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology (Baltimore, Md.), 64(6), 2219–2233. https://doi.org/10.1002/hep.28814
  • Bowers, E. C., Hassanin, A., & Ramos, K. S. (2020). In vitro models of exosome biology and toxicology: New frontiers in biomedical research. Toxicology in vitro : an international journal published in association with BIBRA, 64, 104462. https://doi.org/10.1016/j.tiv.2019.02.016
  • Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., & Simpson, R. J. (2013). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular&cellular proteomics MCP, 12(3), 587–598. https://doi.org/10.1074/mcp.M112.021303
  • Shrivastava, S., Devhare, P., Sujijantarat, N., Steele, R., Kwon, Y. C., Ray, R., & Ray, R. B. (2015). Knockdown of Autophagy Inhibits Infectious Hepatitis C Virus Release by the Exosomal Pathway. Journal of virology, 90(3), 1387–1396. https://doi.org/10.1128/JVI.02383-15
  • Yue, B., Yang, H., Wang, J., Ru, W., Wu, J., Huang, Y., Lan, X., Lei, C., & Chen, H. (2020). Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell proliferation, 53(7), e12857. https://doi.org/10.1111/cpr.12857
  • Isaac, R., Reis, F., Ying, W., & Olefsky, J. M. (2021). Exosomes as mediators of intercellular crosstalk in metabolism. Cell metabolism, 33(9), 1744–1762. https://doi.org/10.1016/j.cmet.2021.08.006
  • Zhang, P., Samuel, G., Crow, J., Godwin, A. K., & Zeng, Y. (2018). Molecular assessment of circulating exosomes toward liquid biopsy diagnosis of Ewing sarcoma family of tumors. Translational research : the journal of laboratory and clinical medicine, 201, 136–153. https://doi.org/10.1016/j.trsl.2018.05.007
  • Zhang, G., & Yang, P. (2018). A novel cell-cell communication mechanism in the nervous system: exosomes. Journal of neuroscience research, 96(1), 45–52. https://doi.org/10.1002/jnr.24113
  • Zech, D., Rana, S., Büchler, M. W., & Zöller, M. (2012). Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell communication and signaling : CCS, 10(1), 37. https://doi.org/10.1186/1478-811X-10-37
  • Mulcahy, L. A., Pink, R. C., & Carter, D. R. (2014). Routes and mechanisms of extracellular vesicle uptake. Journal of extracellular vesicles, 3, 10.3402/jev.v3.24641. https://doi.org/10.3402/jev.v3.24641
  • Rana, S., Yue, S., Stadel, D., & Zöller, M. (2012). Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. The international journal of biochemistry & cell biology, 44(9), 1574–1584. https://doi.org/10.1016/j.biocel.2012.06.018
  • Sandvig, K., Torgersen, M. L., Raa, H. A., & van Deurs, B. (2008). Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochemistry and cell biology, 129(3), 267–276. https://doi.org/10.1007/s00418-007-0376-5
  • Kerr, M. C., & Teasdale, R. D. (2009). Defining macropinocytosis. Traffic (Copenhagen, Denmark), 10(4), 364–371. https://doi.org/10.1111/j.1600-0854.2009.00878.x
  • Keerthikumar, S., Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L., & Mathivanan, S. (2016). ExoCarta: A Web-Based Compendium of Exosomal Cargo. Journal of molecular biology, 428(4), 688–692. https://doi.org/10.1016/j.jmb.2015.09.019 http://www.exocarta.org
  • Kourembanas S. (2015). Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annual review of physiology, 77, 13–27. https://doi.org/10.1146/annurev-physiol-021014-071641
  • Gurung, S., Perocheau, D., Touramanidou, L., & Baruteau, J. (2021). The exosome journey: from biogenesis to uptake and intracellular signalling. Cell communication and signaling:CCS, 19(1), 47. https://doi.org/10.1186/s12964-021-00730-1
  • Hoehn, H., Bryant, E. M., Karp, L. E., & Martin, G. M. (1975). Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. II. Cytogenetic parameters as functions of clonal type and preparative technique. Clinical genetics, 7(1), 29–36. https://europepmc.org/article/med/1176144
  • Yin, P., Lv, H., Li, Y., Deng, Y., Zhang, L., & Tang, P. (2017). Exosome-Mediated Genetic Information Transfer, a Missing Piece of Osteoblast-Osteoclast Communication Puzzle. Frontiers in endocrinology, 8, 336. https://doi.org/10.3389/fendo.2017.00336
  • Sharma, P., Ludwig, S., Muller, L., Hong, C. S., Kirkwood, J. M., Ferrone, S., & Whiteside, T. L. (2018). Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. Journal of extracellular vesicles, 7(1), 1435138. https://doi.org/10.1080/20013078.2018.1435138
  • Popovic M, de Marco A. (2018) Canonical and selective approaches in exosome purification and their implications for diagnostic accuracy. Translational Cancer Research, vol. 7(Suppl 2), S209-S225. https://tcr.amegroups.com/article/view/15820
  • Guerreiro, E. M., Vestad, B., Steffensen, L. A., Aass, H., Saeed, M., Øvstebø, R., Costea, D. E., Galtung, H. K., & Søland, T. M. (2018). Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PloS one, 13(9), e0204276. https://doi.org/10.1371/journal.pone.0204276
  • An, M., Wu, J., Zhu, J., & Lubman, D. M. (2018). Comparison of an Optimized Ultracentrifugation Method versus Size-Exclusion Chromatography for Isolation of Exosomes from Human Serum. Journal of proteome research, 17(10), 3599–3605. https://doi.org/10.1021/acs.jproteome.8b00479
  • Kurian, T. K., Banik, S., Gopal, D., Chakrabarti, S., & Mazumder, N. (2021). Elucidating Methods for Isolation and Quantification of Exosomes: A Review. Molecular biotechnology, 63(4), 249–266. https://doi.org/10.1007/s12033-021-00300-3
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derlemeler
Authors

Makbule Nihan Somuncu 0000-0001-6041-457X

Ayşe Gül Zamani 0000-0003-0329-9047

M. Selman Yıldırım 0000-0002-3986-5517

Project Number bu bir derlemedir
Early Pub Date August 26, 2023
Publication Date August 26, 2023
Submission Date August 3, 2022
Acceptance Date November 10, 2022
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Somuncu, M. N., Zamani, A. G., & Yıldırım, M. S. (2023). Hücre Dışı Veziküller ve Eksozom. Genel Sağlık Bilimleri Dergisi, 5(2), 245-257.


                                                Journal of General Health Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).