Research Article
BibTex RIS Cite

Preterm erken membran rüptürü ile komplike olan gebeliklerde seçilen eser elementler ve ağır metallerin maternal serum seviyeleri

Year 2021, Volume: 18 Issue: 2, 762 - 769, 01.07.2021
https://doi.org/10.38136/jgon.782847

Abstract

Amaç: Alüminyum(Al), krom(Cr), manganez(Mn), kobalt(Co), nikel(Ni), bakır(Cu), çinko(Zn), arsenik(As), molibden(Mo), kadmiyum(Cd), kalay(Sn), antimon(Sb), civa(Hg) ve kurşun(Pb) isimli eser element ve ağır metallerin maternal serum seviyelerini, preterm erken membran rüptürü (pP-ROM) ile komplike olmuş gebelerde ve sağlıklı gebelerde karşılaştırmaktır.
Gereçler ve Yöntem: pP-ROM ile komplike 55 gebeden oluşan çalışma grubu ile, anne yaşı ve gebelik haftası açısından benzer olan 60 sağlıklı gebenin (kontrol grubu) Al, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Sb, Hg ve Pb serum düzeyleri ölçüldü. Her iki gruptaki eser elementlerin ve ağır metallerin maternal serum seviyeleri, indüktif olarak eşleşmiş plazma kütle spektrometrisi kullanılarak ölçülmüş ve karşılaştırılmıştır.
Bulgular: Anne yaşı, vücut kitle indeksi, gebelik sayısı, doğum sayısı ve gebelik haftaları ortalamaları incelendiğinde, iki grupta anlamlı bir fark görülmedi (p≥0.05). Ortalama serum beyaz kan hücresi seviyesi, pP-ROM grubunda sağlıklı kontrollerden daha yüksekti (sırasıyla, 12.2 ± 3.5 LL / mL vs 10.1 ± 2.6 LL / mL; p: 0.001). Ortalama serum C-reaktif protein düzeyi, pP-ROM grubunda sağlıklı kontrollerden daha yüksekti (sırasıyla, 0.99 ± 1.47 mg / L'ye karşılık 0.40 ± 0.27 mg / L; p: 0.003). Ayrıca, ortalama doğum ağırlığı, pP-ROM grubunda sağlıklı kontrollere göre anlamlı derecede düşüktü (sırasıyla 1859 ± 567 gram, 3209 ± 471 gram; p: 0.001). Gruplar arasında Al, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Sb, Hg ve Pb ortalama maternal serum düzeyleri açısından anlamlı fark bulunmadı (p≥0.05).
Sonuç: Maternal serumda ölçülen bu seçilmiş eser elementler ve ağır metaller, pP-ROM'un patogenezinde önemli gözükmemektedir.

References

  • 1. Menon R, Richardson LS. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Seminars in perinatology. 2017;41(7):409-19.
  • 2. Prelabor Rupture of Membranes: ACOG Practice Bulletin Summary, Number 217. Obstetrics and gynecology. 2020;135(3):739-43.
  • 3. Jalali LM, Koski KG. Amniotic fluid minerals, trace elements, and prenatal supplement use in humans emerge as determinants of fetal growth. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS). 2018;50:139-45.
  • 4. Shen PJ, Gong B, Xu FY, Luo Y. Four trace elements in pregnant women and their relationships with adverse pregnancy outcomes. European review for medical and pharmacological sciences. 2015;19(24):4690-7.
  • 5. Kashanian M, Hadizadeh H, Faghankhani M, Nazemi M, Sheikhansari N. Evaluating the effects of copper supplement during pregnancy on premature rupture of membranes and pregnancy outcome. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2018;31(1):39-46.
  • 6. Aliyev V, Kayaalti Z, Kaplan B, Soylemezoglu TJTL. Effect of GST polymorphisms on As levels of placental and maternal biological samples. 2012(211):S67.
  • 7. Bosco CB, Díaz EGJIJoRiMS. Placentophagy: a controversial trend. 2018;6(6):1841.
  • 8. Kucukaydin Z, Kurdoglu M, Kurdoglu Z, Demir H, Yoruk IH. Selected maternal, fetal and placental trace element and heavy metal and maternal vitamin levels in preterm deliveries with or without preterm premature rupture of membranes. The journal of obstetrics and gynaecology research. 2018;44(5):880-9.
  • 9. Schmitz T, Sentilhes L, Lorthe E, Gallot D, Madar H, Doret-Dion M, et al. Preterm premature rupture of the membranes: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). European journal of obstetrics, gynecology, and reproductive biology. 2019;236:1-6.
  • 10. Cetin O, Karaman E, Boza B, Cim N, Erel O, Alisik M, et al. The maternal thiol/disulfide homeostasis does not change in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neona. 2018;31(6):783-90.
  • 11. McClung JP, Scrimgeour AG. Zinc: an essential trace element with potential benefits to soldiers. Military medicine. 2005;170(12):1048-52.
  • 12. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L. Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicology. 2017;387:43-56.
  • 13. Rahmani J, Fakhri Y, Shahsavani A, Bahmani Z, Urbina MA, Chirumbolo S, et al. A systematic review and meta-analysis of metal concentrations in canned tuna fish in Iran and human health risk assessment. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018;118:753-65.
  • 14. Radnai M, Gorzo I, Urban E, Eller J, Novak T, Pal A. Possible association between mother's periodontal status and preterm delivery. Journal of clinical periodontology. 2006;33(11):791-6.
  • 15. England MC, Benjamin A, Abenhaim HA. Increased risk of preterm premature rupture of membranes at early gestational ages among maternal cigarette smokers. American journal of perinatology. 2013;30(10):821-6.
  • 16. Mestaghanimi H, El Amrani S, Dauca M, Saile RJRMdSAeV. Effects of aluminium chloride on some essential elements in pregnant rats and their offspring. 2002;22(4):227-34.
  • 17. Banu SK, Stanley JA, Sivakumar KK, Arosh JA, Taylor RJ, Burghardt RC. Chromium VI - Induced developmental toxicity of placenta is mediated through spatiotemporal dysregulation of cell survival and apoptotic proteins. Reproductive toxicology (Elmsford, NY). 2017;68:171-90.
  • 18. Huang S, Xia W, Li Y, Zhang B, Zhou A, Zheng T, et al. Association between maternal urinary chromium and premature rupture of membranes in the Healthy Baby Cohort study in China. Environmental pollution (Barking, Essex : 1987). 2017;230:53-60.
  • 19. Huang S, Xia W, Sheng X, Qiu L, Zhang B, Chen T, et al. Maternal lead exposure and premature rupture of membranes: a birth cohort study in China. BMJ open. 2018;8(7):e021565.
  • 20. Lewicka I, Kocylowski R, Grzesiak M, Gaj Z, Oszukowski P, Suliburska J. Selected trace elements concentrations in pregnancy and their possible role - literature review. Ginekologia polska. 2017;88(9):509-14.
  • 21. Aschner M, Erikson K. Manganese. Advances in nutrition (Bethesda, Md). 2017;8(3):520-1.
  • 22. Rahmanian M, Jahed FS, Yousefi B, Ghorbani R. Maternal serum copper and zinc levels and premature rupture of the foetal membranes. JPMA The Journal of the Pakistan Medical Association. 2014;64(7):770-4.
  • 23. Milton AH, Hussain S, Akter S, Rahman M, Mouly TA, Mitchell K. A Review of the Effects of Chronic Arsenic Exposure on Adverse Pregnancy Outcomes. International journal of environmental research and public health. 2017;14(6).
  • 24. Solan TD, Lindow SW. Mercury exposure in pregnancy: a review. Journal of perinatal medicine. 2014;42(6):725-9.
  • 25. McDermott S, Salzberg DC, Anderson AP, Shaw T, Lead J. Systematic Review of Chromium and Nickel Exposure During Pregnancy and Impact on Child Outcomes. Journal of toxicology and environmental health Part A. 2015;78(21-22):1348-68.
  • 26. Schwarz G, Belaidi AA. Molybdenum in human health and disease. Metal ions in life sciences. 2013;13:415-50.
  • 27. Shirai S, Suzuki Y, Yoshinaga J, Mizumoto Y. Maternal exposure to low-level heavy metals during pregnancy and birth size. Journal of environmental science and health Part A, Toxic/hazardous substances & environmental engineering. 2010;45(11):1468-74.
  • 28. Iwai-Shimada M, Kameo S, Nakai K, Yaginuma-Sakurai K, Tatsuta N, Kurokawa N, et al. Exposure profile of mercury, lead, cadmium, arsenic, antimony, copper, selenium and zinc in maternal blood, cord blood and placenta: the Tohoku Study of Child Development in Japan. Environmental health and preventive medicine. 2019;24(1):35.
  • 29. Li A, Zhuang T, Shi J, Liang Y, Song M. Heavy metals in maternal and cord blood in Beijing and their efficiency of placental transfer. Journal of environmental sciences (China). 2019;80:99-106.
  • 30. Young SM, Gryder LK, David WB, Teng Y, Gerstenberger S, Benyshek DC. Human placenta processed for encapsulation contains modest concentrations of 14 trace minerals and elements. Nutrition research (New York, NY). 2016;36(8):872-8.

Maternal serum concentrations of selected elements in pregnancies complicated with preterm prelabor rupture of membranes

Year 2021, Volume: 18 Issue: 2, 762 - 769, 01.07.2021
https://doi.org/10.38136/jgon.782847

Abstract

Aim: To measure maternal blood elements namely, antimony (Sb), aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) in pregnant women complicated by preterm prelabor rupture of the membranes (pP-ROM) and to compare the results with healthy controls.
Materials and Methods: Maternal blood concentrations of Al, As, Cd, Co, Cu, Cr, Hg, Mn, Mo, Ni, Pb, Sb, Sn, and Zn were evaluated in the pP-ROM group, which included fifty-five pregnant women complicated with pP-ROM and sixty healthy participants (control group) with respect to gestational weeks and maternal age. The maternal blood concentrations of these elements in both groups were measured using an ICP-MS and also compared.
Results: No significant differences regarding gestational week, BMI, parity, gravidity, and maternal age were observed (p≥0.05). The meYan blood white blood cell concentration was higher in the pP-ROM group compared to healthy controls (12.2 ± 3.5 µL/mL vs. 10.1 ± 2.6 µL/mL, respectively; p=0.001). The mean C-reactive protein concentration was higher in the pP-ROM group than the healthy group (0.99 ± 1.47 mg/ Lt vss.. 0,40±0,27 mg/ Lt, respectively; Pp=0.003). There were no differences in terms of mean maternal serum concentrations of Al, As, Cd, Co, Cu, Cr, Hg, Mn, Mo, Ni, Pb, Sb, Sn, and Zn between the study and contrrol grup (P≥0,05).
Conclusion: These elements in maternal blood are not involved in the pathogenesis of pP-ROM.

References

  • 1. Menon R, Richardson LS. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Seminars in perinatology. 2017;41(7):409-19.
  • 2. Prelabor Rupture of Membranes: ACOG Practice Bulletin Summary, Number 217. Obstetrics and gynecology. 2020;135(3):739-43.
  • 3. Jalali LM, Koski KG. Amniotic fluid minerals, trace elements, and prenatal supplement use in humans emerge as determinants of fetal growth. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS). 2018;50:139-45.
  • 4. Shen PJ, Gong B, Xu FY, Luo Y. Four trace elements in pregnant women and their relationships with adverse pregnancy outcomes. European review for medical and pharmacological sciences. 2015;19(24):4690-7.
  • 5. Kashanian M, Hadizadeh H, Faghankhani M, Nazemi M, Sheikhansari N. Evaluating the effects of copper supplement during pregnancy on premature rupture of membranes and pregnancy outcome. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2018;31(1):39-46.
  • 6. Aliyev V, Kayaalti Z, Kaplan B, Soylemezoglu TJTL. Effect of GST polymorphisms on As levels of placental and maternal biological samples. 2012(211):S67.
  • 7. Bosco CB, Díaz EGJIJoRiMS. Placentophagy: a controversial trend. 2018;6(6):1841.
  • 8. Kucukaydin Z, Kurdoglu M, Kurdoglu Z, Demir H, Yoruk IH. Selected maternal, fetal and placental trace element and heavy metal and maternal vitamin levels in preterm deliveries with or without preterm premature rupture of membranes. The journal of obstetrics and gynaecology research. 2018;44(5):880-9.
  • 9. Schmitz T, Sentilhes L, Lorthe E, Gallot D, Madar H, Doret-Dion M, et al. Preterm premature rupture of the membranes: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). European journal of obstetrics, gynecology, and reproductive biology. 2019;236:1-6.
  • 10. Cetin O, Karaman E, Boza B, Cim N, Erel O, Alisik M, et al. The maternal thiol/disulfide homeostasis does not change in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neona. 2018;31(6):783-90.
  • 11. McClung JP, Scrimgeour AG. Zinc: an essential trace element with potential benefits to soldiers. Military medicine. 2005;170(12):1048-52.
  • 12. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L. Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicology. 2017;387:43-56.
  • 13. Rahmani J, Fakhri Y, Shahsavani A, Bahmani Z, Urbina MA, Chirumbolo S, et al. A systematic review and meta-analysis of metal concentrations in canned tuna fish in Iran and human health risk assessment. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018;118:753-65.
  • 14. Radnai M, Gorzo I, Urban E, Eller J, Novak T, Pal A. Possible association between mother's periodontal status and preterm delivery. Journal of clinical periodontology. 2006;33(11):791-6.
  • 15. England MC, Benjamin A, Abenhaim HA. Increased risk of preterm premature rupture of membranes at early gestational ages among maternal cigarette smokers. American journal of perinatology. 2013;30(10):821-6.
  • 16. Mestaghanimi H, El Amrani S, Dauca M, Saile RJRMdSAeV. Effects of aluminium chloride on some essential elements in pregnant rats and their offspring. 2002;22(4):227-34.
  • 17. Banu SK, Stanley JA, Sivakumar KK, Arosh JA, Taylor RJ, Burghardt RC. Chromium VI - Induced developmental toxicity of placenta is mediated through spatiotemporal dysregulation of cell survival and apoptotic proteins. Reproductive toxicology (Elmsford, NY). 2017;68:171-90.
  • 18. Huang S, Xia W, Li Y, Zhang B, Zhou A, Zheng T, et al. Association between maternal urinary chromium and premature rupture of membranes in the Healthy Baby Cohort study in China. Environmental pollution (Barking, Essex : 1987). 2017;230:53-60.
  • 19. Huang S, Xia W, Sheng X, Qiu L, Zhang B, Chen T, et al. Maternal lead exposure and premature rupture of membranes: a birth cohort study in China. BMJ open. 2018;8(7):e021565.
  • 20. Lewicka I, Kocylowski R, Grzesiak M, Gaj Z, Oszukowski P, Suliburska J. Selected trace elements concentrations in pregnancy and their possible role - literature review. Ginekologia polska. 2017;88(9):509-14.
  • 21. Aschner M, Erikson K. Manganese. Advances in nutrition (Bethesda, Md). 2017;8(3):520-1.
  • 22. Rahmanian M, Jahed FS, Yousefi B, Ghorbani R. Maternal serum copper and zinc levels and premature rupture of the foetal membranes. JPMA The Journal of the Pakistan Medical Association. 2014;64(7):770-4.
  • 23. Milton AH, Hussain S, Akter S, Rahman M, Mouly TA, Mitchell K. A Review of the Effects of Chronic Arsenic Exposure on Adverse Pregnancy Outcomes. International journal of environmental research and public health. 2017;14(6).
  • 24. Solan TD, Lindow SW. Mercury exposure in pregnancy: a review. Journal of perinatal medicine. 2014;42(6):725-9.
  • 25. McDermott S, Salzberg DC, Anderson AP, Shaw T, Lead J. Systematic Review of Chromium and Nickel Exposure During Pregnancy and Impact on Child Outcomes. Journal of toxicology and environmental health Part A. 2015;78(21-22):1348-68.
  • 26. Schwarz G, Belaidi AA. Molybdenum in human health and disease. Metal ions in life sciences. 2013;13:415-50.
  • 27. Shirai S, Suzuki Y, Yoshinaga J, Mizumoto Y. Maternal exposure to low-level heavy metals during pregnancy and birth size. Journal of environmental science and health Part A, Toxic/hazardous substances & environmental engineering. 2010;45(11):1468-74.
  • 28. Iwai-Shimada M, Kameo S, Nakai K, Yaginuma-Sakurai K, Tatsuta N, Kurokawa N, et al. Exposure profile of mercury, lead, cadmium, arsenic, antimony, copper, selenium and zinc in maternal blood, cord blood and placenta: the Tohoku Study of Child Development in Japan. Environmental health and preventive medicine. 2019;24(1):35.
  • 29. Li A, Zhuang T, Shi J, Liang Y, Song M. Heavy metals in maternal and cord blood in Beijing and their efficiency of placental transfer. Journal of environmental sciences (China). 2019;80:99-106.
  • 30. Young SM, Gryder LK, David WB, Teng Y, Gerstenberger S, Benyshek DC. Human placenta processed for encapsulation contains modest concentrations of 14 trace minerals and elements. Nutrition research (New York, NY). 2016;36(8):872-8.
There are 30 citations in total.

Details

Primary Language English
Subjects Obstetrics and Gynaecology
Journal Section Research Articles
Authors

Ali Ovayolu 0000-0003-0234-3026

Nuray Bostancıeri 0000-0002-3765-8274

Selver Güler 0000-0003-2984-4306

İlkay Doğan 0000-0001-7552-6478

Ali Türksoy 0000-0002-3545-3945

Ali Kolusarı 0000-0001-5678-8958

Publication Date July 1, 2021
Submission Date August 21, 2020
Acceptance Date February 13, 2021
Published in Issue Year 2021 Volume: 18 Issue: 2

Cite

Vancouver Ovayolu A, Bostancıeri N, Güler S, Doğan İ, Türksoy A, Kolusarı A. Maternal serum concentrations of selected elements in pregnancies complicated with preterm prelabor rupture of membranes. JGON. 2021;18(2):762-9.