Research Article
BibTex RIS Cite

The Effect of Asphalt Surface Layer Thickness on the Stress Distribution in the Flexible Pavements

Year 2024, , 29 - 40, 30.06.2024
https://doi.org/10.60093/jiciviltech.1491851

Abstract

Heavy vehicles used for freight transportation cause deformation in road pavements, which are constructed at high cost. To prevent these damages, increasing the thickness of the pavement is one of the factors considered in design criteria. For this reason, using the finite element method to determine the pavement thicknesses and evaluating the data obtained before the road construction in the project design process can provide positive economic contributions. In this study, ANSYS, a finite element software, was used to determine the stresses occurring in the road layers as a result of heavy vehicle loads the flexible pavement according to the pavement thickness change. For 4 different pavement thicknesses, analyses were performed for flexible pavement with 30mm, 50mm, 70mm and 100mm pavement thickness for pavement stress analysis. According to the results of the study; it was observed that the stresses occurring in the loading condition decreased as the pavement thickness increased. It was concluded that flexible pavements with low pavement thickness can be deformed more quickly with the effect of heavy vehicles. Additionally, the study suggests that the most suitable pavement thickness for cost calculations can be determined using the finite element method, thereby allowing for more effective cost-benefit analyses.

References

  • Abejide, O. S., Mostafa, M. M. H. (2017). Moisture content numerical simulation on structural damage of hot mix asphaltic pavement, IOP Conference Series: Materials Science and Engineering, 216(2017) 012048. Doi10.1088/1757-899X/216/1/012048.
  • Al-Azzawi, A.A. (2012). Finite element analysis of flexible pavements strengthed with geogrid, ARPN Journal of Engineering and Applied Sciences, Vol:7, No:10, 1295-1299p.
  • Alwan, D.S., Joni, H. H., Hilal, M.M. (2024). Determination of flexible pavement thickness: A case study, AIP Conference Proceedings. Vol:3091, No:1 AIP Publishing. https://doi.org/10.1063/5.0207088.
  • Bostancıoğlu, M. (2019). A finite element investigation of the superelevated horizontal curve, Cumhuriyet Science Journal, Vol:40-2, 536-543p. http://dx.doi.org/10.17776/csj.414347.
  • Cao, M., Huang, W., Wu, Z.(2022). Influence of axle load and asphalt layer thickness on dynamic response of asphalt pavement, Hindawi Geofluids Volume 2022, Article ID9592960, 16p. https://doi.org/10.1155/2022/9592960.
  • Chun, S, Kim, K., Greene, J., Choubane, B.(2015). Evaluation of interlayer bonding condition on structural response characteristics of asphalt pavement using finite element analysis and full-scale field tests, Construction and Building Materials, Vol:96, 307-318p. https://doi.org/10.1016/j.conbuildmat.2015.08.031.
  • Gevrek, L. (2008). Yol Katmanlarında Meydana Gelen Gerilmelerin ANSYS Bilgisayar Programı ile Nonlineer Sonlu Eleman Analizi, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi, Afyon, Türkiye.
  • He, D., ve Yang, W. (2018). Effect of thickness of gravel base and asphalt pavement on road deformation, Advances in Civil Engineering, Vol 2018.https://doi.org/10.1155/2018/2076597.
  • İskender, E., Seymen, A., Aksoy, A. (2022). Asfalt kaplamalarda tabaka kalınlığının etkisinin araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi, Vol.10, no.1, 61-73. DOI: 10.21923/jesd.930124.
  • Mulungye, R.M., Owende, P.M.O., Mellon, K. (2007). Finite element modelling of flexible pavements on soft soil subgrades, Materials and Design, Vol:28, Issue:3, 739-756p. https://doi.org/10.1016/j.matdes.2005.12.006.
  • Ong, C.L., Newcomb, D.E., Siddharthan, R. (1991). Comparison of dynamic and static backcalculation modulus for three layer pavements, Transportation Research Board 1293, 86-92p.
  • Özcanan S., Akpınar, M. V. (2014). Esnek üstyapılarda kritik tekerlek ve aks konfigürasyonlarin mekanistik analizlere göre tespit edilmesi, İMO Teknik Dergi, Vol:25, Issue:121, 6625-6654p.
  • Saltan, M. (1999). Esnek üstyapilarin analitik değerlendirilmesi, Doktora Tezi, Süleyman Demirel Üniversitesi.Isparta, Türkiye.
  • Siddharthan, R., Norris, G.M., Epps, J.A. (1991). Use of FWD data for pavement material characterization and performance, Journal of Transportation Engineering, ASCE, 117 (6), 660-678p. https://doi.org/10.1061/(ASCE)0733-947X(1991)117:6(660).
  • Tohidi, M., Khayat, N., Telvari, A. (2023). Cost optimization of pavement thickness design using intelligent search versus linear programming algorithms, Ain Shams Engineering Journal, Volum:14 Issue:12, 102256. https://doi.org/10.1016/j.asej.2023.102256.
  • Valle, P. D., Thom, N. (2018). Pavement layer thickness variability evaluation and effect on performance life, İnternational Journal of Pavement Engineering, Vol:21, Issue:7, 930-938p. https://doi.org/10.1080/10298436.2018.1517873.
  • Walubita, L. F., Ven, M. F. C. (2000). Stresses and strains in asphalt-surfacing pavements, South African Transport Conference, 312 (2000), South Africa, 17–20 July (2000), pp. 17-20p.
  • Zhang, W. (2015). Evaluation of Field Transverse Cracking of Asphalt Pavements. Doctor of philosophy, Washington State University. ABD.

Esnek Üstyapılarda Asfalt Kaplama Kalınlığının Gerilme Dağılımına Etkisi

Year 2024, , 29 - 40, 30.06.2024
https://doi.org/10.60093/jiciviltech.1491851

Abstract

Yük taşımacılığı amacıyla karayollarını kullanan ağır araçların, yüksek maliyetlerle inşa edilen yol kaplamalarında deformasyona neden olduğu bilinmektedir. Bu zararları önlemek için kaplama kalınlığının arttırılması tasarım kriterlerinde dikkate alınan faktörlerden biridir. Fakat kaplama kalınlıklarının artırılması ile yüksek ekonomik maliyetler ortaya çıkmaktadır. Bu sebeple kaplama kalınlıklarının tayininde sonlu elemanlar yöntemini kullanarak yol yapımı öncesi elde edilen verilerin projelendirme sürecinde değerlendirilmesi ekonomik açıdan olumlu katkılar sağlayabilir. Bu çalışmada; esnek yol üstyapısına uygulanan yükleme sonucu yol katmanlarında meydana gelen gerilmelerin kaplama kalınlığı değişimine göre tespiti için sonlu elemanlar yazılımı olan ANSYS bilgisayar programı kullanılmıştır. 30mm, 50mm, 70mm ve 100mm olmak üzere dört farklı kaplama kalınlığına göre üstyapı gerilme analizleri yapılmıştır. Çalışma sonucuna göre; kaplama kalınlığı arttıkça yükleme durumunda meydana gelen gerilmelerin azaldığı gözlemlenmiştir. Düşük kaplama kalınlığına sahip esnek üstyapıların ağır taşıtların etkisi ile daha fazla deformasyona uğrayabileceği ortaya konulmuştur. Ayrıca yapılan çalışma ile maliyet hesapları için, ihtiyaç duyulacak en uygun kaplama kalınlığının sonlu elemanlar yöntemi ile belirlenebileceği ve böylece fayda-maliyet analizlerinin daha etkili bir şekilde gerçekleştirilebileceği öngörülmektedir.

References

  • Abejide, O. S., Mostafa, M. M. H. (2017). Moisture content numerical simulation on structural damage of hot mix asphaltic pavement, IOP Conference Series: Materials Science and Engineering, 216(2017) 012048. Doi10.1088/1757-899X/216/1/012048.
  • Al-Azzawi, A.A. (2012). Finite element analysis of flexible pavements strengthed with geogrid, ARPN Journal of Engineering and Applied Sciences, Vol:7, No:10, 1295-1299p.
  • Alwan, D.S., Joni, H. H., Hilal, M.M. (2024). Determination of flexible pavement thickness: A case study, AIP Conference Proceedings. Vol:3091, No:1 AIP Publishing. https://doi.org/10.1063/5.0207088.
  • Bostancıoğlu, M. (2019). A finite element investigation of the superelevated horizontal curve, Cumhuriyet Science Journal, Vol:40-2, 536-543p. http://dx.doi.org/10.17776/csj.414347.
  • Cao, M., Huang, W., Wu, Z.(2022). Influence of axle load and asphalt layer thickness on dynamic response of asphalt pavement, Hindawi Geofluids Volume 2022, Article ID9592960, 16p. https://doi.org/10.1155/2022/9592960.
  • Chun, S, Kim, K., Greene, J., Choubane, B.(2015). Evaluation of interlayer bonding condition on structural response characteristics of asphalt pavement using finite element analysis and full-scale field tests, Construction and Building Materials, Vol:96, 307-318p. https://doi.org/10.1016/j.conbuildmat.2015.08.031.
  • Gevrek, L. (2008). Yol Katmanlarında Meydana Gelen Gerilmelerin ANSYS Bilgisayar Programı ile Nonlineer Sonlu Eleman Analizi, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi, Afyon, Türkiye.
  • He, D., ve Yang, W. (2018). Effect of thickness of gravel base and asphalt pavement on road deformation, Advances in Civil Engineering, Vol 2018.https://doi.org/10.1155/2018/2076597.
  • İskender, E., Seymen, A., Aksoy, A. (2022). Asfalt kaplamalarda tabaka kalınlığının etkisinin araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi, Vol.10, no.1, 61-73. DOI: 10.21923/jesd.930124.
  • Mulungye, R.M., Owende, P.M.O., Mellon, K. (2007). Finite element modelling of flexible pavements on soft soil subgrades, Materials and Design, Vol:28, Issue:3, 739-756p. https://doi.org/10.1016/j.matdes.2005.12.006.
  • Ong, C.L., Newcomb, D.E., Siddharthan, R. (1991). Comparison of dynamic and static backcalculation modulus for three layer pavements, Transportation Research Board 1293, 86-92p.
  • Özcanan S., Akpınar, M. V. (2014). Esnek üstyapılarda kritik tekerlek ve aks konfigürasyonlarin mekanistik analizlere göre tespit edilmesi, İMO Teknik Dergi, Vol:25, Issue:121, 6625-6654p.
  • Saltan, M. (1999). Esnek üstyapilarin analitik değerlendirilmesi, Doktora Tezi, Süleyman Demirel Üniversitesi.Isparta, Türkiye.
  • Siddharthan, R., Norris, G.M., Epps, J.A. (1991). Use of FWD data for pavement material characterization and performance, Journal of Transportation Engineering, ASCE, 117 (6), 660-678p. https://doi.org/10.1061/(ASCE)0733-947X(1991)117:6(660).
  • Tohidi, M., Khayat, N., Telvari, A. (2023). Cost optimization of pavement thickness design using intelligent search versus linear programming algorithms, Ain Shams Engineering Journal, Volum:14 Issue:12, 102256. https://doi.org/10.1016/j.asej.2023.102256.
  • Valle, P. D., Thom, N. (2018). Pavement layer thickness variability evaluation and effect on performance life, İnternational Journal of Pavement Engineering, Vol:21, Issue:7, 930-938p. https://doi.org/10.1080/10298436.2018.1517873.
  • Walubita, L. F., Ven, M. F. C. (2000). Stresses and strains in asphalt-surfacing pavements, South African Transport Conference, 312 (2000), South Africa, 17–20 July (2000), pp. 17-20p.
  • Zhang, W. (2015). Evaluation of Field Transverse Cracking of Asphalt Pavements. Doctor of philosophy, Washington State University. ABD.
There are 18 citations in total.

Details

Primary Language English
Subjects Transportation and Traffic
Journal Section Research Articles
Authors

Lale Atılgan Gevrek 0000-0003-2015-9679

Early Pub Date June 28, 2024
Publication Date June 30, 2024
Submission Date May 29, 2024
Acceptance Date June 19, 2024
Published in Issue Year 2024

Cite

APA Atılgan Gevrek, L. (2024). The Effect of Asphalt Surface Layer Thickness on the Stress Distribution in the Flexible Pavements. Journal of Innovations in Civil Engineering and Technology, 6(1), 29-40. https://doi.org/10.60093/jiciviltech.1491851