Research Article
BibTex RIS Cite

Rapid Cumulative Impact Assessment for Land Use Planning in Dhaka City

Year 2021, Volume: 3 Issue: 2, 79 - 91, 31.12.2021

Abstract

In this study, the quantity of the cumulative impact assessment has been classified by the potential response of Valued environmental components (VEC) to pressures and resiliency, recoverability and compensability of them. In addition, the significance of the cumulative impacts of developments and projects over VECs’ future conditions has been assessed. It can be concluded that the anthropogenic interventions to be carried out to protect or develop Dhaka City with the goal of protecting the area in the context of the land use plan will increase negative impacts over VECs in the area. However, it can be argued that clearing the land around flooding zones and fault lines out of settlements to preserve the natural habitat of the region will yield more sustainable outcomes. Strengthening and increasing monitoring activities in the area and imposing sanctions on violators of environmental protection laws properly, by privatizing them would strengthen cumulative impact management in Dhaka City. This study tries to provide suggestions regarding land use planning to reduce cumulative impacts resulting from the failure of previously adopted policies or targeted projects but not implemented land use plans. Individual sponsors, planning team, government and stakeholders have to fully comprehend encountered cumulative impacts and risks, and make effort to develop consistent management strategies to mitigate risks.

References

  • Ahmed, K. (2012). Getting to green: a source book of pollution management policy tools for growth and competitiveness. Washington, DC: World Bank.
  • Al Jaber, S., Ghosh, A. K., &Mahmud, M. S. (2014). Using time series of satellite images to detect vegetation cover change in Dhaka city. Journal of Geographic Information System, 6(06), 653.
  • Alam, M. J., & Ahmad, M. M. (2010). Analysing the lacunae in planning and implementation: spatial development of Dhaka city and its impacts upon the built environment. International Journal of Urban Sustainable Development, 2(1-2), 85-106.
  • Anthony, K. R., Dambacher, J. M., Walshe, T., & Beeden, R. (2013). A framework for understanding cumulative impacts, supporting environmental decisions and informing resiliencebased management of the Great Barrier Reef World Heritage Area: Final Report to the Great Barrier Reef Marine Park Authority and Department of the Environment.
  • Ball, M. A., Noble, B. F., & Dubé, M. G. (2013). Valued ecosystem components for watershed cumulative effects: an analysis of environmental impact assessments in the South Saskatchewan River watershed, Canada. Integrated environmental assessment and management, 9(3), 469-479.
  • Barua, U., Akther, M. S., &Islam, I. (2016). Flood risk reduction approaches in Dhaka, Bangladesh. In Urban disasters and resilience in Asia (pp.209-226). Butterworth-Heinemann.
  • Cardinale, P., & Greig, L. (2013). Cumulative impact assessment and management: Guidance for the private sector in emerging markets.
  • Department of Environment (2012b). Emission inspection of in-use vehicle in Bangladesh. Environmental Impact Assessment of RAJUK Urban Resilience Unit Building Project, (2019). Bangladesh University of Engineering and Technology (BUET) Dhaka-1000, Bangladesh.
  • EPD Congress (2015). Review of global environmental evaluations of policies and proposals. Haroon, S. M., Bhakta, A. K., Shahabuddin, M., Rahman, N., &Mahmud, M. R. (2018). Bicycling as a mode of transportation in Dhaka City, status and prospects. 4th International Conference on Advances in Civil Engineering, CUET, Chittagong, Bangladesh.
  • Hossain, M. K. (2016). Bangladesh national conservation strategy biodiversity: Flora. Ministry of Environment and Forests, GoB, Dhaka.
  • Hossain, S. (2019). Most brick kilns burn wood, use illegal drum chimneys.
  • Ishtiaque, A., Mahmud, M. S., & Rafi, M. H. (2014). Encroachment of canals of Dhaka City, Bangladesh: an investigative approach. GeoScape, 8(2), 48-64.
  • Islam, M. T. (2019). More than 50 illegal brick kilns flout laws in Barguna.
  • Jie, L., Jing, Y., Wang, Y., & Shu-xia, Y. (2010). Environmental impact assessment of land use planning in Wuhan city based on ecological suitability analysis. Procedia Environmental Sciences, 2, 185-191.
  • Maria, S., Croitoru, L., Khaliquzzaman, M., Ferdausi, S. A., &Li, J. (2011). Introducing Energy-efficient Clean Technologies in the Brick Sector of Bangladesh. Government of Bangladesh. Washington DC: Energy Sector Management Assistance Program (ESMAP), The World Bank.
  • MoEF, (2016). Bangladesh National Conservation Strategy, Executive summary, Dhaka: IUCN, Bangladesh Forest Department, (NCS), (2016-2031).
  • Motalib, M. A., Lasco, R. D., Pacardo, E. P., Rebancos, C. M., &Dizon, J. T. (2015). Health impact of air pollution on Dhaka City by Different Technologies Brick Kilns. International Journal ofTechnologyEnhancements and Emerging Engineering Research, 3(05), 127.
  • Mukul, S. A., Biswas, S. R., &Rashid, A. M. (2018). Biodiversity in Bangladesh. Global Biodiversity: Volume 1: Selected Countries in Asia.
  • Plan, D. S. DhakaStructure Plan 2016–2035, (2015). City Region Development Project (CRDP) Package No.: CRDP/RAJUK//S-01 Loan No.: BAN-2695.
  • Roudgarmi, P. (2018). Cumulative effects assessment (CEA), a review. Journal of Environmental Assessment Policy and Management, 20(02), 1850008.
  • Scott-Brown, M. (2018). Rapid Cumulative Impact Assessment, Addendum to the Environmental and Social Impact Assessment. Project Number: 51274-001 018.
  • WHO (2019a). Health sustainable development, Air pollution.
  • World Bank, (2018). Enhancing opportunities for clean and resilient growth in urban Bangladesh: Country environmental analysis. Washington, DC: The World Bank Group.

Dakka Şehrinde Arazi Kullanım Planlaması için Hızlı Kümülatif Etki Değerlendirmesi

Year 2021, Volume: 3 Issue: 2, 79 - 91, 31.12.2021

Abstract

Bu çalışmada, kümülatif etki değerlendirmesinin miktarı, değerli çevresel bileşenlerin (VEC) baskılara karşı potansiyel tepkisine, bunların esnekliklerine, geri kazanılabilirliğine ve telafi edilebilirliğine göre sınıflandırılmıştır. Ayrıca, gelişme ve projelerin kümülatif etkilerinin değerli çevresel bileşenlerin gelecekteki koşulları üzerindeki önemi değerlendirilmiştir. Arazi kullanım planlaması kapsamında bölgenin korunması amacıyla Dhaka Şehri'nin korunması veya geliştirilmesi için yapılan antropojenik müdahalelerin, bölgedeki değerli çevresel bileşenler üzerindeki olumsuz etkileri arttıracağı sonucuna varılabilir. Ancak, bölgenin doğal yaşam alanını korumak için taşkın bölgeleri ve fay hatlarının etrafındaki arazilerin yerleşim yerlerinden arındırılmasının daha sürdürülebilir sonuçlar doğuracağı söylenebilir. Bölgedeki izleme faaliyetlerinin güçlendirilmesi ve arttırılması ve çevre koruma yasalarını ihlal edenlere ceza yaptırımların doğru şekilde uygulanması Dakka Şehrinde kümülatif etki yönetimini güçlendirecektir. Bu çalışma, daha önce benimsenen politikaların veya hedeflenen projelerin başarısızlığının neden olduğu ancak uygulanmayan arazi kullanım planlarından kaynaklanan kümülatif etkileri azaltmak için arazi kullanım planlamasına ilişkin öneriler sunmaktadır. Bireysel finansörler, planlama ekibi, hükümet ve paydaşlar, karşılaşılan kümülatif etkileri ve riskleri tam olarak anlamalı ve riskleri azaltmak için tutarlı yönetim stratejileri geliştirmek için çaba göstermelidir.

References

  • Ahmed, K. (2012). Getting to green: a source book of pollution management policy tools for growth and competitiveness. Washington, DC: World Bank.
  • Al Jaber, S., Ghosh, A. K., &Mahmud, M. S. (2014). Using time series of satellite images to detect vegetation cover change in Dhaka city. Journal of Geographic Information System, 6(06), 653.
  • Alam, M. J., & Ahmad, M. M. (2010). Analysing the lacunae in planning and implementation: spatial development of Dhaka city and its impacts upon the built environment. International Journal of Urban Sustainable Development, 2(1-2), 85-106.
  • Anthony, K. R., Dambacher, J. M., Walshe, T., & Beeden, R. (2013). A framework for understanding cumulative impacts, supporting environmental decisions and informing resiliencebased management of the Great Barrier Reef World Heritage Area: Final Report to the Great Barrier Reef Marine Park Authority and Department of the Environment.
  • Ball, M. A., Noble, B. F., & Dubé, M. G. (2013). Valued ecosystem components for watershed cumulative effects: an analysis of environmental impact assessments in the South Saskatchewan River watershed, Canada. Integrated environmental assessment and management, 9(3), 469-479.
  • Barua, U., Akther, M. S., &Islam, I. (2016). Flood risk reduction approaches in Dhaka, Bangladesh. In Urban disasters and resilience in Asia (pp.209-226). Butterworth-Heinemann.
  • Cardinale, P., & Greig, L. (2013). Cumulative impact assessment and management: Guidance for the private sector in emerging markets.
  • Department of Environment (2012b). Emission inspection of in-use vehicle in Bangladesh. Environmental Impact Assessment of RAJUK Urban Resilience Unit Building Project, (2019). Bangladesh University of Engineering and Technology (BUET) Dhaka-1000, Bangladesh.
  • EPD Congress (2015). Review of global environmental evaluations of policies and proposals. Haroon, S. M., Bhakta, A. K., Shahabuddin, M., Rahman, N., &Mahmud, M. R. (2018). Bicycling as a mode of transportation in Dhaka City, status and prospects. 4th International Conference on Advances in Civil Engineering, CUET, Chittagong, Bangladesh.
  • Hossain, M. K. (2016). Bangladesh national conservation strategy biodiversity: Flora. Ministry of Environment and Forests, GoB, Dhaka.
  • Hossain, S. (2019). Most brick kilns burn wood, use illegal drum chimneys.
  • Ishtiaque, A., Mahmud, M. S., & Rafi, M. H. (2014). Encroachment of canals of Dhaka City, Bangladesh: an investigative approach. GeoScape, 8(2), 48-64.
  • Islam, M. T. (2019). More than 50 illegal brick kilns flout laws in Barguna.
  • Jie, L., Jing, Y., Wang, Y., & Shu-xia, Y. (2010). Environmental impact assessment of land use planning in Wuhan city based on ecological suitability analysis. Procedia Environmental Sciences, 2, 185-191.
  • Maria, S., Croitoru, L., Khaliquzzaman, M., Ferdausi, S. A., &Li, J. (2011). Introducing Energy-efficient Clean Technologies in the Brick Sector of Bangladesh. Government of Bangladesh. Washington DC: Energy Sector Management Assistance Program (ESMAP), The World Bank.
  • MoEF, (2016). Bangladesh National Conservation Strategy, Executive summary, Dhaka: IUCN, Bangladesh Forest Department, (NCS), (2016-2031).
  • Motalib, M. A., Lasco, R. D., Pacardo, E. P., Rebancos, C. M., &Dizon, J. T. (2015). Health impact of air pollution on Dhaka City by Different Technologies Brick Kilns. International Journal ofTechnologyEnhancements and Emerging Engineering Research, 3(05), 127.
  • Mukul, S. A., Biswas, S. R., &Rashid, A. M. (2018). Biodiversity in Bangladesh. Global Biodiversity: Volume 1: Selected Countries in Asia.
  • Plan, D. S. DhakaStructure Plan 2016–2035, (2015). City Region Development Project (CRDP) Package No.: CRDP/RAJUK//S-01 Loan No.: BAN-2695.
  • Roudgarmi, P. (2018). Cumulative effects assessment (CEA), a review. Journal of Environmental Assessment Policy and Management, 20(02), 1850008.
  • Scott-Brown, M. (2018). Rapid Cumulative Impact Assessment, Addendum to the Environmental and Social Impact Assessment. Project Number: 51274-001 018.
  • WHO (2019a). Health sustainable development, Air pollution.
  • World Bank, (2018). Enhancing opportunities for clean and resilient growth in urban Bangladesh: Country environmental analysis. Washington, DC: The World Bank Group.
There are 23 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Elham Aghlara 0000-0002-5302-7771

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA Aghlara, E. (2021). Rapid Cumulative Impact Assessment for Land Use Planning in Dhaka City. Journal of Innovations in Civil Engineering and Technology, 3(2), 79-91.