Research Article
BibTex RIS Cite

Kot Atık Liflerinin Çimento Esaslı Hafif Kompozit Harçların Teknik Özelliklerine Etkisi

Year 2023, Volume: 5 Issue: 2, 71 - 90, 31.12.2023
https://doi.org/10.60093/jiciviltech.1304330

Abstract

Bu çalışmanın amacı geri dönüştürülmüş kot atık liflerinin (KAL), çimento esaslı hafif kompozit harç (ÇHKH) takviyesi için kullanımını incelemektir. Bu araştırma, KAL eklemesinin, kıvam, taze ve sertleşmiş birim ağırlık, gözeneklilik, su emme, eğilme dayanımı, basınç dayanımı ve yük-deformasyon gibi ÇHKH'lerin çeşitli özelliklerini nasıl etkilediğini değerlendirmeye odaklanmaktadır. Farklı lif oranları (çimentonun ağırlıkça %0, %0.25, %0.50, %0.75, %1.00, %1.25 ve %1.50) ÇHKH'lara ilave edilerek kullanılmıştır. Test sonuçları, referans numunesine kıyasla hem taze hem de sertleşmiş birim ağırlıklarda hafif bir azalma olduğunu göstermiştir. Harçların kıvamının lif eklemesi arttıkça azaldığı gözlemlenmiştir. Ayrıca, çalışma kapsamında kullanılan bütün lif dozajlarının eklenmesinin hafif harçların mekanik özelliklerini artırdığı görülmüştür. Bu sonuçlara ilave olarak, referans harcı yük altında daha az deformasyon sergilemiş, bu da daha referans harcı için yüksek kırılganlığına işaret etmiştir. Ayrıca, bu çalışmada KAL’lerin harçların hem nihai yük taşıma kapasitesini hem de deformasyonunu aynı anda artırma yeteneğine sahip olduğunu tespit edilmiştir.

References

  • Abbas, W. A., Gorgis, I. N., & Hussein, M. J. (2019). Performance of Cement Mortar Composites Reinforced with Polyvinyl Alcohol Fibres. IOP Conference Series: Materials Science and Engineering, 518(2), 22045. doi: 10.1088/1757-899X/518/2/022045
  • Aghaee, K., & Foroughi, M. (2013). Construction of lightweight concrete partitions using textile waste. In ICSDEC 2012: Developing the Frontier of Sustainable Design, Engineering, and Construction (pp. 793–800).
  • Aspiras, F. F., & Manalo, J. R. I. (1995). Utilization of textile waste cuttings as building material. Journal of Materials Processing Technology, 48(1–4), 379–384. doi: 10.1016/0924-0136(94)01672-N
  • ASTM. (2013). ASTM C642-13: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA, USA.
  • ASTM. (2014). ASTM C349-14: Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure). West Conshohocken, PA, USA.
  • ASTM. (2014). ASTM C348-14: Test Method for Flexural Strength of Hydraulic-Cement Mortars. West Conshohocken, PA, USA.
  • ASTM. (2013). C1437-13: Standard Test Method for Flow of Hydraulic Cement Mortar. West Conshohocken, PA, USA.
  • Banthia, N., & Sheng, J. (1996). Fracture toughness of micro-fibre reinforced cement composites. Cement and Concrete Composites, 18(4), 251–269. doi: 10.1016/0958-9465(95)00030-5 Benaniba, S., Driss, Z., Djendel, M., Raouache, E., & Boubaaya, R. (2020). Thermo-mechanical characterization of a bio-composite mortar reinforced with date palm fibre. Journal of Engineered Fibres and Fabrics, 15, 1558925020948234. doi: 10.1177/1558925020948234
  • Binici, H., & Aksogan, O. (2015). Engineering properties of insulation material made with cotton waste and fly ash. Journal of Material Cycles and Waste Management, 17, 157–162. doi: 10.1007/s10163-013-0218-6
  • Briga-Sa, A., Nascimento, D., Teixeira, N., Pinto, J., Caldeira, F., Varum, H., & Paiva, A. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155–160. doi: 10.1016/j.conbuildmat.2012.08.037
  • Calis, G., Akpinar, M. E., Yildizel, S. A., & Çöğürcü, M. T. (2021). Evaluation and optimization Of PVA reinforced cementitious composite containing metakaolin and fly ash. Revista Romana de Materiale, 51(1), 53–66.
  • Coppola, B., Courard, L., Michel, F., Incarnato, L., Scarfato, P., & Di Maio, L. (2018). Hygro-thermal and durability properties of a lightweight mortar made with foamed plastic waste aggregates. Construction and Building Materials, 170, 200–206. doi: 10.1016/j.conbuildmat.2018.03.083
  • Çankal, D., Kalkan, Ş. O., Öztürk, A. U., & Gündüz, L. (2023). An Investigation of the Usage of Glass Wastes in Cement Mortars Using Full Factorial Design. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 25(74), 405–416. doi: 10.21205/deufmd.2023257412
  • Çomak, B., Bideci, A., & Bideci, Ö. S. (2018). Effects of hemp fibres on characteristics of cement based mortar. Construction and Building Materials, 169, 794–799. doi: 10.1016/j.conbuildmat.2018.03.029 De Azevedo, A. R. G., Klyuev, S., Marvila, M. T., Vatin, N., Alfimova, N., de Lima, T. E. S., Fediuk, R., & Olisov, A. (2020). Investigation of the potential use of curauá fibre for reinforcing mortars. Fibres, 8(11), 69. doi: 10.3390/fib8110069
  • de Azevedo, A. R. G., Marvila, M. T., Antunes, M. L. P., Rangel, E. C., & Fediuk, R. (2021). Technological perspective for use the natural pineapple fibre in mortar to repair structures. Waste and Biomass Valorization, 12, 5131–5145. doi: 10.1007/s12649-021-01374-5
  • de França, M. S., Cardoso, F. A., & Pileggi, R. G. (2016). Influence of the addition sequence of PVA-fibres and water on mixing and rheological behavior of mortars. Revista IBRACON de Estruturas e Materiais, 9, 226–243. doi: 10.1590/S1983-41952016000200005
  • dos Santos Alberton, K., do Nascimento, C. B., Cavalheiro, R. B., de Oliveira, V. C., Gonzaga, L. B. T., & Pierozan, R. C. (2023). Properties of coconut fibre-reinforced mortars for sustainable solutions. Journal of Building Pathology and Rehabilitation, 8(1), 44. doi: 10.1007/s41024-023-00288-0
  • Elsanadedy, H. M., Almusallam, T. H., Alsayed, S. H., & Al-Salloum, Y. A. (2013). Flexural strengthening of RC beams using textile reinforced mortar–Experimental and numerical study. Composite Structures, 97, 40–55. doi: 10.1016/j.compstruct.2012.09.053
  • Faghihmaleki, H., Nejati, F., & Masoumi, H. (2017). In vitro evaluation of additives allowed for high strength concrete (HSC) and foam concrete. Pamukkale University Journal of Engineering Sciences, 23(3), 177-183. doi: 10.5505/pajes.2016.82584
  • Fediuk, R. S., Smoliakov, A. K., Timokhin, R. A., Batarshin, V. O., & Yevdokimova, Y. G. (2017). Using thermal power plants waste for building materials. IOP Conference Series. Earth and Environmental Science, 87(9), 092010. doi: 10.1088/1755-1315/87/9/092010
  • Garmendia, L., Larrinaga, P., García, D., & Marcos, I. (2014). Textile-reinforced mortar as strengthening material for masonry arches. International Journal of Architectural Heritage, 8(5), 627–648. doi: 10.1080/15583058.2012.704480
  • Glenn, G. M., Klamczynski, A. K., Chiou, B.-S., Wood, D., Orts, W. J., & Imam, S. H. (2004). Lightweight concrete containing an alkaline resistant starch-based aquagel. Journal of Polymers and the Environment, 12(3), 189–196. doi: 10.1023/B:JOOE.0000038551.78645.3b
  • Grabois, T. M., Cordeiro, G. C., & Toledo Filho, R. D. (2016). Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibres. Construction and Building Materials, 104, 284–292. doi: 10.1016/j.conbuildmat.2015.12.060
  • Gündüz, L., Kalkan, Ş. O., & Özgüven, A. (2020). Genleşmiş kil agregaların teknik özelliklerinin karşılaştırılması üzerine bir çalışma: ankara kalecik bölgesi örneği. Hazır Beton,Ocak-Şubat-2020, 65-72.
  • Huang, J., Wang, Z., Li, D., & Li, G. (2022). Effect of nano-sio2/pva fibre on sulfate resistance of cement mortar containing high-volume fly ash. Nanomaterials, 12(3), 323. doi: 10.3390/nano12030323
  • Ji, Y., Zou, Y., Wan, X., & Li, W. (2022). Mechanical ınvestigation on fibre-doped cementitious materials. Polymers, 14(9), 1663. doi: 10.3390/polym14091663
  • Kalkan, S. O., & Gündüz, L. (2016). A study on the usage of denim waste as reinforcement element in composite mortars on exterior building application. 12 International Congress on Advances in Civil Engineering. İstanbul, Türkiye.
  • Kalkan, Ş. O., & Gündüz, L. (2022). Structural strength properties of waste textile fibre reinforced cementitious lightweight composite mortars. Sakarya University Journal of Science, 26(6), 1180–1195. doi: 10.16984/saufenbilder.1107127
  • Kalkan, Ş. O., Yavaş, A., Güler, S., Kayalar, M. T., Sütçü, M., & Gündüz, L. (2022). An experimental approach to a cementitious lightweight composite mortar using synthetic wollastonite. Construction and Building Materials, 341, 127911. doi: 10.1016/j.conbuildmat.2022.127911
  • Kazım, T., & Ceren, K. (2017). Çimento esaslı kompozitlerde karma lif kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 671–678. doi: 10.5505/pajes.2016.17047
  • Larrinaga, P., Chastre, C., Biscaia, H. C., & San-José, J. T. (2014). Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress. Materials & Design, 55, 66–74. doi: Experimental and numerical modeling of basalt textile reinforced mortar behavior under
  • Lertwattanaruk, P., & Suntijitto, A. (2015). Properties of natural fibre cement materials containing coconut coir and oil palm fibres for residential building applications. Construction and Building Materials, 94, 664–669. doi: 10.1016/j.conbuildmat.2015.07.154
  • Marikunte, S., Aldea, C., & Shah, S. P. (1997). Durability of glass fibre reinforced cement composites:: Effect of silica fume and metakaolin. Advanced Cement Based Materials, 5(3–4), 100–108. doi: 10.1016/S1065-7355(97)00003-5
  • Martins, A. P. S., Silva, F. A., & Toledo Filho, R. D. (2015). Mechanical behavior of self-compacting soil-cement-sisal fibre composites. Key Engineering Materials, 634, 421–432. doi: 10.4028/www.scientific.net/KEM.634.421
  • Mostafa, M., & Uddin, N. (2016). Experimental analysis of Compressed Earth Block (CEB) with banana fibres resisting flexural and compression forces. Case Studies in Construction Materials, 5, 53–63. doi: 10.1016/j.cscm.2016.07.001
  • Murathan, A., Murathan, A., & Karadavut, S. (2014). Yüksek yoğunluklu polipropilen tekstil atıklarının kompozit malzeme üretiminde kullanılabilirliği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(1), 9-14. doi: 10.17341/gummfd.95195
  • Okasha, M. A. T. A., Abdel Razek, M., & El-Esnawi, H. (2020). Strengthening of existing RC buildings by using autoclaved aerated concrete infill wall. HBRC Journal, 16(1), 143–155. doi: 10.1080/16874048.2020.1789392
  • Özcan, Ş. P., & Gündüz, L. (2021). Pamuk-sentetik bileşenli lif katkısı ve genleştirme ajanı miktarlarının otoklavsız gazbetonun teknik özelliklerine etkileri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(6), 1404–1423. doi: 10.35414/akufemubid.933359
  • Papanicolaou, C. G., Triantafillou, T. C., Papathanasiou, M., & Karlos, K. (2008). Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading. Materials and Structures, 41, 143–157. doi: 10.1617/s11527-007-9226-0
  • Pinto, J., Peixoto, A., Vieira, J., Fernandes, L., Morais, J., Cunha, V. M. C. F., & Varum, H. (2013). Render reinforced with textile threads. Construction and Building Materials, 40, 26–32. doi: 10.1016/j.conbuildmat.2012.09.099
  • Pogorelov, S. N., & Semenyak, G. S. (2016). Frost resistance of the steel fibre reinforced concrete containing active mineral additives. Procedia Engineering, 150, 1491–1495. doi: 10.1016/j.proeng.2016.07.088
  • Reis, J. M. L. dos. (2009). Effect of textile waste on the mechanical properties of polymer concrete. Materials Research, 12, 63–67. doi: 10.1590/S1516-14392009000100007
  • Rodier, L., da Costa Correia, V., & Junior, H. S. (2020). Elaboration of eco-efficient vegetable fibres reinforced cement-based composites using glass powder residue. Cement and Concrete Composites, 110, 103599. doi: 10.1016/j.cemconcomp.2020.103599
  • Ryu, C., Phan, A. N., Sharifi, V. N., & Swithenbank, J. (2007). Co-combustion of textile residues with cardboard and waste wood in a packed bed. Experimental Thermal and Fluid Science, 32(2), 450–458. doi: 10.1016/j.expthermflusci.2007.05.008
  • Safiuddin, M., Abdel-Sayed, G., & Hearn, N. (2021). Absorption and strength properties of short carbon fibre reinforced mortar composite. Buildings, 11(7), 300. doi: 10.3390/buildings11070300
  • Savastano Jr, H., Turner, A., Mercer, C., & Soboyejo, W. O. (2006). Mechanical behavior of cement-based materials reinforced with sisal fibres. Journal of Materials Science, 41(21), 6938–6948. doi: 10.1007/s10853-006-0218-1
  • Savastano Jr, H., Warden, P. G., & Coutts, R. S. P. (2003). Mechanically pulped sisal as reinforcement in cementitious matrices. Cement and Concrete Composites, 25(3), 311–319. doi: 10.1016/S0958-9465(02)00055-0
  • Sellami, A., Bouayad, D., Benazzouk, A., Amziane, S., & Merzoud, M. (2022). Study of toughness and thermal properties of bio-composite reinforced with diss fibres for use as an insulating material. Energy and Buildings, 276, 112527. doi: Study of toughness and thermal properties of bio-composite reinforced with diss fibres for use as an insulating material
  • Shah, S. P., Ludirdja, D., Daniel, J. I., & Mobasher, B. (1988). Toughness-durability of glass fibre reinforced concrete systems. ACI Materials Journal, 85(5), 352–360.
  • Shannag, M. J. (2011). Characteristics of lightweight concrete containing mineral admixtures. Construction and Building Materials, 25(2), 658–662. 10.1016/j.conbuildmat.2010.07.025
  • Shoukry, H., Kotkata, M. F., Abo-EL-Enein, S. A., Morsy, M. S., & Shebl, S. S. (2016). Enhanced physical, mechanical and microstructural properties of lightweight vermiculite cement composites modified with nano metakaolin. Construction and Building Materials, 112, 276–283. doi: 10.1016/j.conbuildmat.2016.02.209
  • Subaşi, S. (2009). The effects of using fly ash on high strength lightweight concrete produced with expanded clay aggregate. Scientific Research and Essays, 4(4), 275–288. Triantafillou, T. C., & Papanicolaou, C. G. (2006). Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Materials and Structures, 39, 93–103. doi: 10.1007/s11527-005-9034-3
  • TSE. (2014). TS EN 1015-18: Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar. Ankara, Türkiye.
  • TSE. (2017). TS EN 998-1: Specification for mortar for masonry — Part 1: Rendering and plastering mortar. Ankara, Türkiye.
  • TSE. (2000). TS EN 1015-6: Methods of test for mortar for masonry - Part 7: Determination of air content of fresh mortar. Ankara, Türkiye.
  • TSE. (2001). TS EN 1015-10: Methods of test for mortar for masonry- Part 10: Determination of dry bulk density of hardened mortar. Ankara, Türkiye.
  • Ucar, M., & Wang, Y. (2011). Utilization of recycled post consumer carpet waste fibres as reinforcement in lightweight cementitious composites. International Journal of Clothing Science and Technology, 23(4), 242–248. doi: 10.1108/09556221111136502
  • Wang, Y., Zureick, A.-H., Cho, B.-S., & Scott, D. E. (1994). Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. Journal of Materials Science, 29, 4191–4199. doi: 10.1007/BF00414198
  • Yaprak, H., Memis, S., Kaplan, G., Yilmazoglu, M. U., & Ozkan, I. G. M. (2018). Effects on compressive strenght of accelerated curing methods in alkali activated mortars. International Journal of Scientific and Technological Research, 4(5), 70-78.
  • Yin, S., Tuladhar, R., Riella, J., Chung, D., Collister, T., Combe, M., & Sivakugan, N. (2016). Comparative evaluation of virgin and recycled polypropylene fibre reinforced concrete. Construction and Building Materials, 114, 134–141. doi: 10.1016/j.conbuildmat.2016.03.162
  • Zaid, I., Merzoud, M., & Benazzouk, A. (2021). Morphological and mineralogical analysis of treated Diss fibres and their effect on physico-mechanical characteristics of Diss concrete based on alternative binder. Construction and Building Materials, 307, 124936. doi: 10.1016/j.conbuildmat.2021.124936
  • Zhang, H., Liu, Y., Sun, H., & Wu, S. (2016). Transient dynamic behavior of polypropylene fibre reinforced mortar under compressive impact loading. Construction and Building Materials, 111, 30–42. doi: 10.1016/j.conbuildmat.2016.02.049
  • Zhang, P., Li, Q., Wang, J., Shi, Y., & Ling, Y. (2019). Effect of PVA fibre on durability of cementitious composite containing nano-SiO2. Nanotechnology Reviews, 8(1), 116–127. doi: 10.1515/ntrev-2019-0011

Effect of Denim Waste Fibres on Technical Properties of Cementitious Lightweight Composite Mortars

Year 2023, Volume: 5 Issue: 2, 71 - 90, 31.12.2023
https://doi.org/10.60093/jiciviltech.1304330

Abstract

The aim of this study was to investigate the utilization of recycled denim waste fibers (DWF) for reinforcing cementitious lightweight composite mortar (CLCM). The research focused on evaluating how the addition of DWF affected various aspects of CLCMs, such as flowability, fresh and hardened unit weight, porosity, water absorption, flexural strength, compressive strength, and load-deformation characteristics. Different proportions of fibers (0, 0.25, 0.50, 0.75, 1.00, 1.25, and 1.50 wt.% of cement) were incorporated into the CLCM. The results showed a slight decrease in both fresh and hardened unit weights compared to the reference. It was noted that the consistency of the mortars declined with the increasing addition of fibers. Additionally, the inclusion of any amount of fiber led to an enhancement in the mechanical properties of the lightweight mortars. Furthermore, the reference mortar exhibited less deformation under load, indicating its higher brittleness. Moreover, the study observed that the incorporation of DWFs had the ability to simultaneously improve both the ultimate load-bearing capacity and deformation of the mortars.

References

  • Abbas, W. A., Gorgis, I. N., & Hussein, M. J. (2019). Performance of Cement Mortar Composites Reinforced with Polyvinyl Alcohol Fibres. IOP Conference Series: Materials Science and Engineering, 518(2), 22045. doi: 10.1088/1757-899X/518/2/022045
  • Aghaee, K., & Foroughi, M. (2013). Construction of lightweight concrete partitions using textile waste. In ICSDEC 2012: Developing the Frontier of Sustainable Design, Engineering, and Construction (pp. 793–800).
  • Aspiras, F. F., & Manalo, J. R. I. (1995). Utilization of textile waste cuttings as building material. Journal of Materials Processing Technology, 48(1–4), 379–384. doi: 10.1016/0924-0136(94)01672-N
  • ASTM. (2013). ASTM C642-13: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA, USA.
  • ASTM. (2014). ASTM C349-14: Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure). West Conshohocken, PA, USA.
  • ASTM. (2014). ASTM C348-14: Test Method for Flexural Strength of Hydraulic-Cement Mortars. West Conshohocken, PA, USA.
  • ASTM. (2013). C1437-13: Standard Test Method for Flow of Hydraulic Cement Mortar. West Conshohocken, PA, USA.
  • Banthia, N., & Sheng, J. (1996). Fracture toughness of micro-fibre reinforced cement composites. Cement and Concrete Composites, 18(4), 251–269. doi: 10.1016/0958-9465(95)00030-5 Benaniba, S., Driss, Z., Djendel, M., Raouache, E., & Boubaaya, R. (2020). Thermo-mechanical characterization of a bio-composite mortar reinforced with date palm fibre. Journal of Engineered Fibres and Fabrics, 15, 1558925020948234. doi: 10.1177/1558925020948234
  • Binici, H., & Aksogan, O. (2015). Engineering properties of insulation material made with cotton waste and fly ash. Journal of Material Cycles and Waste Management, 17, 157–162. doi: 10.1007/s10163-013-0218-6
  • Briga-Sa, A., Nascimento, D., Teixeira, N., Pinto, J., Caldeira, F., Varum, H., & Paiva, A. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155–160. doi: 10.1016/j.conbuildmat.2012.08.037
  • Calis, G., Akpinar, M. E., Yildizel, S. A., & Çöğürcü, M. T. (2021). Evaluation and optimization Of PVA reinforced cementitious composite containing metakaolin and fly ash. Revista Romana de Materiale, 51(1), 53–66.
  • Coppola, B., Courard, L., Michel, F., Incarnato, L., Scarfato, P., & Di Maio, L. (2018). Hygro-thermal and durability properties of a lightweight mortar made with foamed plastic waste aggregates. Construction and Building Materials, 170, 200–206. doi: 10.1016/j.conbuildmat.2018.03.083
  • Çankal, D., Kalkan, Ş. O., Öztürk, A. U., & Gündüz, L. (2023). An Investigation of the Usage of Glass Wastes in Cement Mortars Using Full Factorial Design. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 25(74), 405–416. doi: 10.21205/deufmd.2023257412
  • Çomak, B., Bideci, A., & Bideci, Ö. S. (2018). Effects of hemp fibres on characteristics of cement based mortar. Construction and Building Materials, 169, 794–799. doi: 10.1016/j.conbuildmat.2018.03.029 De Azevedo, A. R. G., Klyuev, S., Marvila, M. T., Vatin, N., Alfimova, N., de Lima, T. E. S., Fediuk, R., & Olisov, A. (2020). Investigation of the potential use of curauá fibre for reinforcing mortars. Fibres, 8(11), 69. doi: 10.3390/fib8110069
  • de Azevedo, A. R. G., Marvila, M. T., Antunes, M. L. P., Rangel, E. C., & Fediuk, R. (2021). Technological perspective for use the natural pineapple fibre in mortar to repair structures. Waste and Biomass Valorization, 12, 5131–5145. doi: 10.1007/s12649-021-01374-5
  • de França, M. S., Cardoso, F. A., & Pileggi, R. G. (2016). Influence of the addition sequence of PVA-fibres and water on mixing and rheological behavior of mortars. Revista IBRACON de Estruturas e Materiais, 9, 226–243. doi: 10.1590/S1983-41952016000200005
  • dos Santos Alberton, K., do Nascimento, C. B., Cavalheiro, R. B., de Oliveira, V. C., Gonzaga, L. B. T., & Pierozan, R. C. (2023). Properties of coconut fibre-reinforced mortars for sustainable solutions. Journal of Building Pathology and Rehabilitation, 8(1), 44. doi: 10.1007/s41024-023-00288-0
  • Elsanadedy, H. M., Almusallam, T. H., Alsayed, S. H., & Al-Salloum, Y. A. (2013). Flexural strengthening of RC beams using textile reinforced mortar–Experimental and numerical study. Composite Structures, 97, 40–55. doi: 10.1016/j.compstruct.2012.09.053
  • Faghihmaleki, H., Nejati, F., & Masoumi, H. (2017). In vitro evaluation of additives allowed for high strength concrete (HSC) and foam concrete. Pamukkale University Journal of Engineering Sciences, 23(3), 177-183. doi: 10.5505/pajes.2016.82584
  • Fediuk, R. S., Smoliakov, A. K., Timokhin, R. A., Batarshin, V. O., & Yevdokimova, Y. G. (2017). Using thermal power plants waste for building materials. IOP Conference Series. Earth and Environmental Science, 87(9), 092010. doi: 10.1088/1755-1315/87/9/092010
  • Garmendia, L., Larrinaga, P., García, D., & Marcos, I. (2014). Textile-reinforced mortar as strengthening material for masonry arches. International Journal of Architectural Heritage, 8(5), 627–648. doi: 10.1080/15583058.2012.704480
  • Glenn, G. M., Klamczynski, A. K., Chiou, B.-S., Wood, D., Orts, W. J., & Imam, S. H. (2004). Lightweight concrete containing an alkaline resistant starch-based aquagel. Journal of Polymers and the Environment, 12(3), 189–196. doi: 10.1023/B:JOOE.0000038551.78645.3b
  • Grabois, T. M., Cordeiro, G. C., & Toledo Filho, R. D. (2016). Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibres. Construction and Building Materials, 104, 284–292. doi: 10.1016/j.conbuildmat.2015.12.060
  • Gündüz, L., Kalkan, Ş. O., & Özgüven, A. (2020). Genleşmiş kil agregaların teknik özelliklerinin karşılaştırılması üzerine bir çalışma: ankara kalecik bölgesi örneği. Hazır Beton,Ocak-Şubat-2020, 65-72.
  • Huang, J., Wang, Z., Li, D., & Li, G. (2022). Effect of nano-sio2/pva fibre on sulfate resistance of cement mortar containing high-volume fly ash. Nanomaterials, 12(3), 323. doi: 10.3390/nano12030323
  • Ji, Y., Zou, Y., Wan, X., & Li, W. (2022). Mechanical ınvestigation on fibre-doped cementitious materials. Polymers, 14(9), 1663. doi: 10.3390/polym14091663
  • Kalkan, S. O., & Gündüz, L. (2016). A study on the usage of denim waste as reinforcement element in composite mortars on exterior building application. 12 International Congress on Advances in Civil Engineering. İstanbul, Türkiye.
  • Kalkan, Ş. O., & Gündüz, L. (2022). Structural strength properties of waste textile fibre reinforced cementitious lightweight composite mortars. Sakarya University Journal of Science, 26(6), 1180–1195. doi: 10.16984/saufenbilder.1107127
  • Kalkan, Ş. O., Yavaş, A., Güler, S., Kayalar, M. T., Sütçü, M., & Gündüz, L. (2022). An experimental approach to a cementitious lightweight composite mortar using synthetic wollastonite. Construction and Building Materials, 341, 127911. doi: 10.1016/j.conbuildmat.2022.127911
  • Kazım, T., & Ceren, K. (2017). Çimento esaslı kompozitlerde karma lif kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 671–678. doi: 10.5505/pajes.2016.17047
  • Larrinaga, P., Chastre, C., Biscaia, H. C., & San-José, J. T. (2014). Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress. Materials & Design, 55, 66–74. doi: Experimental and numerical modeling of basalt textile reinforced mortar behavior under
  • Lertwattanaruk, P., & Suntijitto, A. (2015). Properties of natural fibre cement materials containing coconut coir and oil palm fibres for residential building applications. Construction and Building Materials, 94, 664–669. doi: 10.1016/j.conbuildmat.2015.07.154
  • Marikunte, S., Aldea, C., & Shah, S. P. (1997). Durability of glass fibre reinforced cement composites:: Effect of silica fume and metakaolin. Advanced Cement Based Materials, 5(3–4), 100–108. doi: 10.1016/S1065-7355(97)00003-5
  • Martins, A. P. S., Silva, F. A., & Toledo Filho, R. D. (2015). Mechanical behavior of self-compacting soil-cement-sisal fibre composites. Key Engineering Materials, 634, 421–432. doi: 10.4028/www.scientific.net/KEM.634.421
  • Mostafa, M., & Uddin, N. (2016). Experimental analysis of Compressed Earth Block (CEB) with banana fibres resisting flexural and compression forces. Case Studies in Construction Materials, 5, 53–63. doi: 10.1016/j.cscm.2016.07.001
  • Murathan, A., Murathan, A., & Karadavut, S. (2014). Yüksek yoğunluklu polipropilen tekstil atıklarının kompozit malzeme üretiminde kullanılabilirliği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(1), 9-14. doi: 10.17341/gummfd.95195
  • Okasha, M. A. T. A., Abdel Razek, M., & El-Esnawi, H. (2020). Strengthening of existing RC buildings by using autoclaved aerated concrete infill wall. HBRC Journal, 16(1), 143–155. doi: 10.1080/16874048.2020.1789392
  • Özcan, Ş. P., & Gündüz, L. (2021). Pamuk-sentetik bileşenli lif katkısı ve genleştirme ajanı miktarlarının otoklavsız gazbetonun teknik özelliklerine etkileri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(6), 1404–1423. doi: 10.35414/akufemubid.933359
  • Papanicolaou, C. G., Triantafillou, T. C., Papathanasiou, M., & Karlos, K. (2008). Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading. Materials and Structures, 41, 143–157. doi: 10.1617/s11527-007-9226-0
  • Pinto, J., Peixoto, A., Vieira, J., Fernandes, L., Morais, J., Cunha, V. M. C. F., & Varum, H. (2013). Render reinforced with textile threads. Construction and Building Materials, 40, 26–32. doi: 10.1016/j.conbuildmat.2012.09.099
  • Pogorelov, S. N., & Semenyak, G. S. (2016). Frost resistance of the steel fibre reinforced concrete containing active mineral additives. Procedia Engineering, 150, 1491–1495. doi: 10.1016/j.proeng.2016.07.088
  • Reis, J. M. L. dos. (2009). Effect of textile waste on the mechanical properties of polymer concrete. Materials Research, 12, 63–67. doi: 10.1590/S1516-14392009000100007
  • Rodier, L., da Costa Correia, V., & Junior, H. S. (2020). Elaboration of eco-efficient vegetable fibres reinforced cement-based composites using glass powder residue. Cement and Concrete Composites, 110, 103599. doi: 10.1016/j.cemconcomp.2020.103599
  • Ryu, C., Phan, A. N., Sharifi, V. N., & Swithenbank, J. (2007). Co-combustion of textile residues with cardboard and waste wood in a packed bed. Experimental Thermal and Fluid Science, 32(2), 450–458. doi: 10.1016/j.expthermflusci.2007.05.008
  • Safiuddin, M., Abdel-Sayed, G., & Hearn, N. (2021). Absorption and strength properties of short carbon fibre reinforced mortar composite. Buildings, 11(7), 300. doi: 10.3390/buildings11070300
  • Savastano Jr, H., Turner, A., Mercer, C., & Soboyejo, W. O. (2006). Mechanical behavior of cement-based materials reinforced with sisal fibres. Journal of Materials Science, 41(21), 6938–6948. doi: 10.1007/s10853-006-0218-1
  • Savastano Jr, H., Warden, P. G., & Coutts, R. S. P. (2003). Mechanically pulped sisal as reinforcement in cementitious matrices. Cement and Concrete Composites, 25(3), 311–319. doi: 10.1016/S0958-9465(02)00055-0
  • Sellami, A., Bouayad, D., Benazzouk, A., Amziane, S., & Merzoud, M. (2022). Study of toughness and thermal properties of bio-composite reinforced with diss fibres for use as an insulating material. Energy and Buildings, 276, 112527. doi: Study of toughness and thermal properties of bio-composite reinforced with diss fibres for use as an insulating material
  • Shah, S. P., Ludirdja, D., Daniel, J. I., & Mobasher, B. (1988). Toughness-durability of glass fibre reinforced concrete systems. ACI Materials Journal, 85(5), 352–360.
  • Shannag, M. J. (2011). Characteristics of lightweight concrete containing mineral admixtures. Construction and Building Materials, 25(2), 658–662. 10.1016/j.conbuildmat.2010.07.025
  • Shoukry, H., Kotkata, M. F., Abo-EL-Enein, S. A., Morsy, M. S., & Shebl, S. S. (2016). Enhanced physical, mechanical and microstructural properties of lightweight vermiculite cement composites modified with nano metakaolin. Construction and Building Materials, 112, 276–283. doi: 10.1016/j.conbuildmat.2016.02.209
  • Subaşi, S. (2009). The effects of using fly ash on high strength lightweight concrete produced with expanded clay aggregate. Scientific Research and Essays, 4(4), 275–288. Triantafillou, T. C., & Papanicolaou, C. G. (2006). Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Materials and Structures, 39, 93–103. doi: 10.1007/s11527-005-9034-3
  • TSE. (2014). TS EN 1015-18: Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar. Ankara, Türkiye.
  • TSE. (2017). TS EN 998-1: Specification for mortar for masonry — Part 1: Rendering and plastering mortar. Ankara, Türkiye.
  • TSE. (2000). TS EN 1015-6: Methods of test for mortar for masonry - Part 7: Determination of air content of fresh mortar. Ankara, Türkiye.
  • TSE. (2001). TS EN 1015-10: Methods of test for mortar for masonry- Part 10: Determination of dry bulk density of hardened mortar. Ankara, Türkiye.
  • Ucar, M., & Wang, Y. (2011). Utilization of recycled post consumer carpet waste fibres as reinforcement in lightweight cementitious composites. International Journal of Clothing Science and Technology, 23(4), 242–248. doi: 10.1108/09556221111136502
  • Wang, Y., Zureick, A.-H., Cho, B.-S., & Scott, D. E. (1994). Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. Journal of Materials Science, 29, 4191–4199. doi: 10.1007/BF00414198
  • Yaprak, H., Memis, S., Kaplan, G., Yilmazoglu, M. U., & Ozkan, I. G. M. (2018). Effects on compressive strenght of accelerated curing methods in alkali activated mortars. International Journal of Scientific and Technological Research, 4(5), 70-78.
  • Yin, S., Tuladhar, R., Riella, J., Chung, D., Collister, T., Combe, M., & Sivakugan, N. (2016). Comparative evaluation of virgin and recycled polypropylene fibre reinforced concrete. Construction and Building Materials, 114, 134–141. doi: 10.1016/j.conbuildmat.2016.03.162
  • Zaid, I., Merzoud, M., & Benazzouk, A. (2021). Morphological and mineralogical analysis of treated Diss fibres and their effect on physico-mechanical characteristics of Diss concrete based on alternative binder. Construction and Building Materials, 307, 124936. doi: 10.1016/j.conbuildmat.2021.124936
  • Zhang, H., Liu, Y., Sun, H., & Wu, S. (2016). Transient dynamic behavior of polypropylene fibre reinforced mortar under compressive impact loading. Construction and Building Materials, 111, 30–42. doi: 10.1016/j.conbuildmat.2016.02.049
  • Zhang, P., Li, Q., Wang, J., Shi, Y., & Ling, Y. (2019). Effect of PVA fibre on durability of cementitious composite containing nano-SiO2. Nanotechnology Reviews, 8(1), 116–127. doi: 10.1515/ntrev-2019-0011
There are 63 citations in total.

Details

Primary Language English
Subjects Civil Engineering, Construction Materials
Journal Section Research Articles
Authors

Şevket Onur Kalkan 0000-0003-0250-8134

Halil İbrahim Öcal 0009-0009-4495-2277

Lütfullah Gündüz 0000-0003-2487-467X

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Kalkan, Ş. O., Öcal, H. İ., & Gündüz, L. (2023). Effect of Denim Waste Fibres on Technical Properties of Cementitious Lightweight Composite Mortars. Journal of Innovations in Civil Engineering and Technology, 5(2), 71-90. https://doi.org/10.60093/jiciviltech.1304330