Research Article
BibTex RIS Cite

The Effects of Chlorpyrifos Toxicity on Movement Physiology Investigation in Drosophila melanogaster

Year 2021, Volume: 16 Issue: 4, 192 - 197, 31.12.2021

Abstract

Today, the increase in the use of pesticides, which are highly resistant to environmental conditions, gains importance by directly or indirectly affecting human and environmental health. Chlorpyrifos, a broad spectrum organophosphate insecticide with neurotoxic effect; it causes DNA damage in living organisms by taking it to the organism through water and food, and toxicity by providing the formation of reactive oxygen species. Organophosphorus insecticides, which are effective on the nervous system, cause changes in features such as memory, movement, climbing and courtship. For this purpose, the change in movement according to climbing performance was determined after 2 and 24 h of feeding with Chlorpyrifos (0.015–15 µg/l) added to the adult model organism (Drosophila melanogaster Meigen) diet. It was determined that climbing performance increased in female and male individuals in direct proportion to the amount of Chlorpyrifos added to the diet with short-term exposure. The increase in the exposure time to Chlorpyrifos causes the movements to slow down by half compared to the short-term exposure, while the movements increase compared to the control, and this change in the movement is due to the resistance of the insect.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Akpa AR, Ayo JO, Mika’il HG, et al., (2021) Protective effect of fisetin against subchronic chlorpyrifos-induced toxicity on oxidative stress biomarkers and neurobehavioral parameters in adult male albino mice. Toxicol Res, 37, 163–171 DOI: 10.1007/s43188-020-00049-y
  • Allsop M, Huxdorff C, Johnston P, et al., (2015) Pesticides and our Health, A Growing Concern. University of Exeter Exeter EX4 4RN United Kingdom: Greenpeace Research Laboratories School of Biosciences Innovation Centre Phase, 1–2.
  • Amaliah R, Selomo M, Rusmin M, (2019) The Analysis of Residues Pesticide in Curly Red Chili and Big Red Chili (Capsicum annum) at Traditional Market of Makassar City. HIGIENE: Jurnal Kesehatan Lingkungan, 1 (3), 129–133.
  • Baker BS, Taylor BJ, Hall JC, (2001) Are complex behaviors specified by dedicated regulatory genes? Reasoning from Drosophila. Cell, 105 (1), 13–24. DOI: 10.1016/s0092-8674(01)00293-8
  • Bouchard MF, Bellinger DC, Wright RO, et al., (2010) Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics, 125 (6), e1270–e1277. DOI: 10.1542/peds.2009-3058
  • Bouchard MF, et al., (2011) Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect, 119, 1189–1195. DOI: 10.1289/ehp.1003185
  • Corsini E, Sokooti M, Galli CL, Moretto A, et al., (2013) Pesticide induced immunotoxicity in humans: a comprehensive review of the existing evidence. Toxicology, 307, 123–135. DOI: 10.1016/j.tox.2012.10.009
  • Deveci HA and Karapehlivan M, (2018) Chlorpyrifos-induced parkinsonian model in mice: Behavior, histopathology and biochemistry. Pestic Biochem Physiol, 144, 36–41. DOI: 10.1016/j.pestbp.2017.11.002
  • Do Amaral VS, da Silva RM, Reguly ML, et al., (2005) Drosophila wing-spot test for genotoxic assessment of pollutants in water samples from urban and industrial origin. Mutat Res Genet Toxicol Environ Mutagen, 583 (1), 67–74. DOI: 10.1016/j.mrgentox.2005.02.002
  • Eyhorn F, Roner T, Specking H, (2015) Reducing pesticide use and risks – what action is needed? Briefing paper. HELVETAS Swiss Intercooperation. 1–32.
  • Fernandez-Ayala DJ, Sanz A, Vartiainen S, et al., (2009) Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophilacomplements defects in mitochondrial oxidative phosphorylation. Cell Metab, 9 (5), 449–460. DOI: 10.1016/j.cmet.2009.03.004
  • Goel A, Dani V, Dhawan DK, (2007) Zinc mediates normalization of hepatic drug metabolizing enzymes in chlorpyrifos induced toxicity. Toxicol Lett, 169, 26–33. DOI: 10.1016/j.toxlet.2006.07.342
  • Gomes KK, Macedo GE, Rodrigues NR, et al. (2020) Croton campestris A. St.-Hill Methanolic Fraction in a Chlorpyrifos-Induced Toxicity Model in Drosophila melanogaster: Protective Role of Gallic Acid. Oxid Medand Cell Longev, 1-10. DOI: 10.1155/2020/3960170
  • Grover D, Ford D, Brown C, et al., (2009) Hydrogen peroxide stimulates activity and alters behavior in Drosophila melanogaster. PloS One, 4(10), e7580. DOI: 10.1371/journal.pone.0007580
  • Gupta SC, Mishra M, Sharma A, et al., (2010) Chlorpyrifos induces apoptosis and DNA damage in Drosophila through generation of reactive oxygen species. Ecotoxicol. Environ. Saf, 73 (6), 1415–1423. DOI: 10.1016/j.ecoenv.2010.05.013
  • Güneş E and Büyükgüzel E, (2017) Oxidative effects of boric acid on different developmental stages of Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Türkiye Entomol Derg, 41 (1), 3–15. DOI: 10.16970/ted.59163
  • Güneş E and Olcay GS, (2021) Does food preference affect movement: Taraxacum Officinalec in Drosophila models? International Symposium for Environmental Science and Engineering Research (ISESER2021), Tirana, Albania, June 11-13; 38.
  • Güneş E, (2021) Ankaferd Blood Stopper, Drosophila melanogaster'de Stres ve Yaşlanma Üzerindeki Davranışı Değiştiriyor mu? [Ankaferd Alters Behavior on Stress and Aging in Drosophila melanogaster?] Ulusal Çevre Bilimleri Araştırma Dergisi, 4 (2), 77–81. (in Turkish)
  • Ismail AA, Bodner TE, Rohlman DS, (2012) Neurobehavioral performance among agricultural workers and pesticide applicators: a meta-analytic study. Occup. Environ. Med, 69, 457–464. DOI: 10.1136/oemed-2011-100204
  • Jerschow E, et al., (2012) Dichlorophenol-Containing Pesticides and Allergies: Results from the U.S. National Health and Nutrition Examination Survey 2005–2006. Ann Allergy Asthma Immunol, 109 (6), 420–25. DOI: 10.1016/j.anai.2012.09.005
  • Jortner BS, (2008) Effect of stress at dosing on organophosphate and heavy metal toxicity. Toxicol Appl Pharmacol, 233, 162–167. DOI: 10.1016/j.taap.2008.01.045
  • Kurt BO, Konukoğlu D, Kalayci R, Özdemir S, (2021) Investigation of the protective role of selenium in the changes caused by chlorpyrifos in trace elements, biochemical and hematological parameters in rats. Biol Trace Elem Res, 1–10. DOI: 10.1007/s12011-021-02616-2
  • Leu A, (2014) The Myths of Safe Pesticides. Austin, Texas: Acres USA, 142. ISBN 13, 9781601730848. Madabattula ST, Strautman JC, Bysice AM, et al., (2015) Quantitative analysis of climbing defects in a Drosophila model of neurodegenerative disorders. JoVE, (100), 52741. DOI: 10.3791/52741
  • Mandrich L, (2014) Endocrine disrupters: The hazards for human health. Cloning Transgenesis, 3, 1. DOI: 10.4172/2168-9849.1000e110
  • Manoli DS and Baker BS, (2004) Median bundle neurons coordinate behaviours during Drosophila male courtship. Nature, 430(6999), 564–569. DOI: 10.1038/nature02713
  • Manoli DS, Foss M, Villella A, et al., (2005) Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature, 436 (7049), 395–400. DOI: 10.1038/nature03859
  • Mnif W, Hassine AIH, Bouaziz A et al., (2011) Effect of endocrine disruptor pesticides: A review. Int J Environ Res Public Health, 8, 2265–2303. DOI: 10.3390/ijerph8062265
  • Myers GJ and Davidson PW, (2000) Does methylmercury have a role in causing developmental disabilities in children? Environ Health Perspect, 108 (3), 413–420. DOI: 10.1289/ehp.00108s3413
  • Ntzani EE, Chondrogiorgi M, Ntritsos G, et al., (2013) Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Supporting Publications, 10 (10), 497E. DOI: 10.2903/sp.efsa.2013.en-497
  • Özdemir S and Kurt BÖ, (2021) Organofosfatlı bir insektisit: Klorpirifos. Osmangazi Tıp Dergisi, 1, 1–9. DOI: 10.20515/otd.946456
  • Özmert EN, (2005) Erken çocukluk gelişiminin desteklenmesi-II: Çevre. Çocuk Sağlığı ve Hastalıkları Derg, 48 (4), 337–354. (in Turkish)
  • Pukkala E, Martinsen JI, Lynge E, et al., (2009) Occupation and cancer. Follow-up of 15 million people in five Nordic countries. Acta Oncologica, 48 (5), 646–790. DOI: 10.1080/02841860902913546
  • Robey WC, Meggs WJ. 2004. Insecticides, Herbicides and Rodenticides. Tintinalli JE, Kelen GD, Stapczynski JS, eds. Emergency Medicine (6th ed): a Comprehensive Study Guide. McGraw Hill Company, New York,; 1134–1143.
  • Ross SM, McManus IC, Harrison V, et al., (2013) Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review. Crit Rev Toxicol, 43 (1), 21-44. DOI: 10.3109/10408444.2012.738645
  • Shaltiel-Karyo R, Davidi D, Menuchin Y, et al., (2012) Novel, sensitive assay for behavioral defects in Parkinson's disease model Drosophila. Parkinson’s Disease, 697564, 1–7. DOI: 10.1155/2012/697564
  • Slotkin TA, Oliver CA, Seidler FJ., (2005) Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination. Dev Brain Res, 157, 172–180. DOI: 10.1016/j.devbrainres.2005.04.001
  • Slotkin TA, (2006) Developmental neurotoxicity of organophosphates: a case study of chlorpyrifos. In Toxicology of Organophosphate & Carbamate Compounds. Academic Press, 293–314. DOI: 10.1016/b978-012088523-7/50022-3
  • Smith JN, Campbell JA, Busby-Hjerpe AL, et al., (2009) Comparative chlorpyrifos pharmacokinetics via multiple routes of exposure and vehicles of administration in the adult rat. Toxicology, 261(1-2), 47-58. DOI: 10.1016/j.tox.2009.04.041
  • Timchalk C, Busby A, Campbel JA, et al., (2007) Comparative pharmacokinetics of the organophosphorus insecticide chlorpyrifos and its major metabolites diethylphosphate, diethylthiophosphate and 3,5,6-trichloro-2-pyridinol in the rat. Toxicology, 237, 145–157. DOI: 10.1016/j.tox.2007.05.007
  • Triphan T, Poeck B, Neuser K, et al., (2010) Visual targeting of motor actions in climbing Drosophila. Curr Biol, ; 20 (7), 663–668. DOI: 10.1016/j.cub.2010.02.055
  • ur Rahman HU, Asghar W, Nazir W, et al. (2021) A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Sci Total Environ., 755, 142649. DOI: 10.1016/j.scitotenv.2020.142649
  • Van Maele-Fabry G, Hoet P, Vilain F, et al., (2012) Occupational exposure to pesticides and Parkinson’s disease: A systematic review and meta-analysis of cohort studies. Environment International, 46, 30–43. DOI: 10.1016/j.envint.2012.05.004
  • Versteven M, Broeck LV, Geurten B, et al., (2017) Hearing regulates Drosophila aggression. Proc. Natl. Acad. Sci. U.S.A. (PNAS), 114, 1958–1963. DOI: 10.1073/pnas.1605946114
  • Weichenthal S, Moase C, Chan PA, (2010) review of pesticide exposure and cancer incidence in the agricultural health study cohort. Environ Health Perspect, 118, 1117–1125. DOI: 10.1289/ehp.0901731
  • Yang KJ, Lee J, Park HL., (2020) Organophosphate pesticide exposure and breast cancer risk: a rapid review of human, animal, and cell-based studies. Int J Environ Res Public Health, 17, 5030. DOI: 10.3390/ijerph17145030
  • Zaganas I, Kapetanaki S, Mastorodemos V. et al., (2013) Linking pesticide exposure and dementia: What is the evidence? Toxicology, 307, 3–11. DOI: 10.1016/j.tox.2013.02.002
  • Zamberlan DC, Halmenschelager PT, Silva LF, Da Rocha JBT., (2020). Copper decreases associative learning and memory in Drosophila melanogaster. Sci Total Environ, 710, 135306. DOI: 10.1016/j.scitotenv.2019.135306
Year 2021, Volume: 16 Issue: 4, 192 - 197, 31.12.2021

Abstract

Project Number

-

References

  • Akpa AR, Ayo JO, Mika’il HG, et al., (2021) Protective effect of fisetin against subchronic chlorpyrifos-induced toxicity on oxidative stress biomarkers and neurobehavioral parameters in adult male albino mice. Toxicol Res, 37, 163–171 DOI: 10.1007/s43188-020-00049-y
  • Allsop M, Huxdorff C, Johnston P, et al., (2015) Pesticides and our Health, A Growing Concern. University of Exeter Exeter EX4 4RN United Kingdom: Greenpeace Research Laboratories School of Biosciences Innovation Centre Phase, 1–2.
  • Amaliah R, Selomo M, Rusmin M, (2019) The Analysis of Residues Pesticide in Curly Red Chili and Big Red Chili (Capsicum annum) at Traditional Market of Makassar City. HIGIENE: Jurnal Kesehatan Lingkungan, 1 (3), 129–133.
  • Baker BS, Taylor BJ, Hall JC, (2001) Are complex behaviors specified by dedicated regulatory genes? Reasoning from Drosophila. Cell, 105 (1), 13–24. DOI: 10.1016/s0092-8674(01)00293-8
  • Bouchard MF, Bellinger DC, Wright RO, et al., (2010) Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics, 125 (6), e1270–e1277. DOI: 10.1542/peds.2009-3058
  • Bouchard MF, et al., (2011) Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect, 119, 1189–1195. DOI: 10.1289/ehp.1003185
  • Corsini E, Sokooti M, Galli CL, Moretto A, et al., (2013) Pesticide induced immunotoxicity in humans: a comprehensive review of the existing evidence. Toxicology, 307, 123–135. DOI: 10.1016/j.tox.2012.10.009
  • Deveci HA and Karapehlivan M, (2018) Chlorpyrifos-induced parkinsonian model in mice: Behavior, histopathology and biochemistry. Pestic Biochem Physiol, 144, 36–41. DOI: 10.1016/j.pestbp.2017.11.002
  • Do Amaral VS, da Silva RM, Reguly ML, et al., (2005) Drosophila wing-spot test for genotoxic assessment of pollutants in water samples from urban and industrial origin. Mutat Res Genet Toxicol Environ Mutagen, 583 (1), 67–74. DOI: 10.1016/j.mrgentox.2005.02.002
  • Eyhorn F, Roner T, Specking H, (2015) Reducing pesticide use and risks – what action is needed? Briefing paper. HELVETAS Swiss Intercooperation. 1–32.
  • Fernandez-Ayala DJ, Sanz A, Vartiainen S, et al., (2009) Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophilacomplements defects in mitochondrial oxidative phosphorylation. Cell Metab, 9 (5), 449–460. DOI: 10.1016/j.cmet.2009.03.004
  • Goel A, Dani V, Dhawan DK, (2007) Zinc mediates normalization of hepatic drug metabolizing enzymes in chlorpyrifos induced toxicity. Toxicol Lett, 169, 26–33. DOI: 10.1016/j.toxlet.2006.07.342
  • Gomes KK, Macedo GE, Rodrigues NR, et al. (2020) Croton campestris A. St.-Hill Methanolic Fraction in a Chlorpyrifos-Induced Toxicity Model in Drosophila melanogaster: Protective Role of Gallic Acid. Oxid Medand Cell Longev, 1-10. DOI: 10.1155/2020/3960170
  • Grover D, Ford D, Brown C, et al., (2009) Hydrogen peroxide stimulates activity and alters behavior in Drosophila melanogaster. PloS One, 4(10), e7580. DOI: 10.1371/journal.pone.0007580
  • Gupta SC, Mishra M, Sharma A, et al., (2010) Chlorpyrifos induces apoptosis and DNA damage in Drosophila through generation of reactive oxygen species. Ecotoxicol. Environ. Saf, 73 (6), 1415–1423. DOI: 10.1016/j.ecoenv.2010.05.013
  • Güneş E and Büyükgüzel E, (2017) Oxidative effects of boric acid on different developmental stages of Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Türkiye Entomol Derg, 41 (1), 3–15. DOI: 10.16970/ted.59163
  • Güneş E and Olcay GS, (2021) Does food preference affect movement: Taraxacum Officinalec in Drosophila models? International Symposium for Environmental Science and Engineering Research (ISESER2021), Tirana, Albania, June 11-13; 38.
  • Güneş E, (2021) Ankaferd Blood Stopper, Drosophila melanogaster'de Stres ve Yaşlanma Üzerindeki Davranışı Değiştiriyor mu? [Ankaferd Alters Behavior on Stress and Aging in Drosophila melanogaster?] Ulusal Çevre Bilimleri Araştırma Dergisi, 4 (2), 77–81. (in Turkish)
  • Ismail AA, Bodner TE, Rohlman DS, (2012) Neurobehavioral performance among agricultural workers and pesticide applicators: a meta-analytic study. Occup. Environ. Med, 69, 457–464. DOI: 10.1136/oemed-2011-100204
  • Jerschow E, et al., (2012) Dichlorophenol-Containing Pesticides and Allergies: Results from the U.S. National Health and Nutrition Examination Survey 2005–2006. Ann Allergy Asthma Immunol, 109 (6), 420–25. DOI: 10.1016/j.anai.2012.09.005
  • Jortner BS, (2008) Effect of stress at dosing on organophosphate and heavy metal toxicity. Toxicol Appl Pharmacol, 233, 162–167. DOI: 10.1016/j.taap.2008.01.045
  • Kurt BO, Konukoğlu D, Kalayci R, Özdemir S, (2021) Investigation of the protective role of selenium in the changes caused by chlorpyrifos in trace elements, biochemical and hematological parameters in rats. Biol Trace Elem Res, 1–10. DOI: 10.1007/s12011-021-02616-2
  • Leu A, (2014) The Myths of Safe Pesticides. Austin, Texas: Acres USA, 142. ISBN 13, 9781601730848. Madabattula ST, Strautman JC, Bysice AM, et al., (2015) Quantitative analysis of climbing defects in a Drosophila model of neurodegenerative disorders. JoVE, (100), 52741. DOI: 10.3791/52741
  • Mandrich L, (2014) Endocrine disrupters: The hazards for human health. Cloning Transgenesis, 3, 1. DOI: 10.4172/2168-9849.1000e110
  • Manoli DS and Baker BS, (2004) Median bundle neurons coordinate behaviours during Drosophila male courtship. Nature, 430(6999), 564–569. DOI: 10.1038/nature02713
  • Manoli DS, Foss M, Villella A, et al., (2005) Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature, 436 (7049), 395–400. DOI: 10.1038/nature03859
  • Mnif W, Hassine AIH, Bouaziz A et al., (2011) Effect of endocrine disruptor pesticides: A review. Int J Environ Res Public Health, 8, 2265–2303. DOI: 10.3390/ijerph8062265
  • Myers GJ and Davidson PW, (2000) Does methylmercury have a role in causing developmental disabilities in children? Environ Health Perspect, 108 (3), 413–420. DOI: 10.1289/ehp.00108s3413
  • Ntzani EE, Chondrogiorgi M, Ntritsos G, et al., (2013) Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Supporting Publications, 10 (10), 497E. DOI: 10.2903/sp.efsa.2013.en-497
  • Özdemir S and Kurt BÖ, (2021) Organofosfatlı bir insektisit: Klorpirifos. Osmangazi Tıp Dergisi, 1, 1–9. DOI: 10.20515/otd.946456
  • Özmert EN, (2005) Erken çocukluk gelişiminin desteklenmesi-II: Çevre. Çocuk Sağlığı ve Hastalıkları Derg, 48 (4), 337–354. (in Turkish)
  • Pukkala E, Martinsen JI, Lynge E, et al., (2009) Occupation and cancer. Follow-up of 15 million people in five Nordic countries. Acta Oncologica, 48 (5), 646–790. DOI: 10.1080/02841860902913546
  • Robey WC, Meggs WJ. 2004. Insecticides, Herbicides and Rodenticides. Tintinalli JE, Kelen GD, Stapczynski JS, eds. Emergency Medicine (6th ed): a Comprehensive Study Guide. McGraw Hill Company, New York,; 1134–1143.
  • Ross SM, McManus IC, Harrison V, et al., (2013) Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review. Crit Rev Toxicol, 43 (1), 21-44. DOI: 10.3109/10408444.2012.738645
  • Shaltiel-Karyo R, Davidi D, Menuchin Y, et al., (2012) Novel, sensitive assay for behavioral defects in Parkinson's disease model Drosophila. Parkinson’s Disease, 697564, 1–7. DOI: 10.1155/2012/697564
  • Slotkin TA, Oliver CA, Seidler FJ., (2005) Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination. Dev Brain Res, 157, 172–180. DOI: 10.1016/j.devbrainres.2005.04.001
  • Slotkin TA, (2006) Developmental neurotoxicity of organophosphates: a case study of chlorpyrifos. In Toxicology of Organophosphate & Carbamate Compounds. Academic Press, 293–314. DOI: 10.1016/b978-012088523-7/50022-3
  • Smith JN, Campbell JA, Busby-Hjerpe AL, et al., (2009) Comparative chlorpyrifos pharmacokinetics via multiple routes of exposure and vehicles of administration in the adult rat. Toxicology, 261(1-2), 47-58. DOI: 10.1016/j.tox.2009.04.041
  • Timchalk C, Busby A, Campbel JA, et al., (2007) Comparative pharmacokinetics of the organophosphorus insecticide chlorpyrifos and its major metabolites diethylphosphate, diethylthiophosphate and 3,5,6-trichloro-2-pyridinol in the rat. Toxicology, 237, 145–157. DOI: 10.1016/j.tox.2007.05.007
  • Triphan T, Poeck B, Neuser K, et al., (2010) Visual targeting of motor actions in climbing Drosophila. Curr Biol, ; 20 (7), 663–668. DOI: 10.1016/j.cub.2010.02.055
  • ur Rahman HU, Asghar W, Nazir W, et al. (2021) A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Sci Total Environ., 755, 142649. DOI: 10.1016/j.scitotenv.2020.142649
  • Van Maele-Fabry G, Hoet P, Vilain F, et al., (2012) Occupational exposure to pesticides and Parkinson’s disease: A systematic review and meta-analysis of cohort studies. Environment International, 46, 30–43. DOI: 10.1016/j.envint.2012.05.004
  • Versteven M, Broeck LV, Geurten B, et al., (2017) Hearing regulates Drosophila aggression. Proc. Natl. Acad. Sci. U.S.A. (PNAS), 114, 1958–1963. DOI: 10.1073/pnas.1605946114
  • Weichenthal S, Moase C, Chan PA, (2010) review of pesticide exposure and cancer incidence in the agricultural health study cohort. Environ Health Perspect, 118, 1117–1125. DOI: 10.1289/ehp.0901731
  • Yang KJ, Lee J, Park HL., (2020) Organophosphate pesticide exposure and breast cancer risk: a rapid review of human, animal, and cell-based studies. Int J Environ Res Public Health, 17, 5030. DOI: 10.3390/ijerph17145030
  • Zaganas I, Kapetanaki S, Mastorodemos V. et al., (2013) Linking pesticide exposure and dementia: What is the evidence? Toxicology, 307, 3–11. DOI: 10.1016/j.tox.2013.02.002
  • Zamberlan DC, Halmenschelager PT, Silva LF, Da Rocha JBT., (2020). Copper decreases associative learning and memory in Drosophila melanogaster. Sci Total Environ, 710, 135306. DOI: 10.1016/j.scitotenv.2019.135306
There are 47 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Eda Güneş 0000-0001-7422-9375

Erhan Şensoy 0000-0003-2989-459X

Project Number -
Publication Date December 31, 2021
Acceptance Date December 27, 2021
Published in Issue Year 2021 Volume: 16 Issue: 4

Cite

APA Güneş, E., & Şensoy, E. (2021). The Effects of Chlorpyrifos Toxicity on Movement Physiology Investigation in Drosophila melanogaster. Journal of International Environmental Application and Science, 16(4), 192-197.
AMA Güneş E, Şensoy E. The Effects of Chlorpyrifos Toxicity on Movement Physiology Investigation in Drosophila melanogaster. J. Int. Environmental Application & Science. December 2021;16(4):192-197.
Chicago Güneş, Eda, and Erhan Şensoy. “The Effects of Chlorpyrifos Toxicity on Movement Physiology Investigation in Drosophila Melanogaster”. Journal of International Environmental Application and Science 16, no. 4 (December 2021): 192-97.
EndNote Güneş E, Şensoy E (December 1, 2021) The Effects of Chlorpyrifos Toxicity on Movement Physiology Investigation in Drosophila melanogaster. Journal of International Environmental Application and Science 16 4 192–197.
IEEE E. Güneş and E. Şensoy, “The Effects of Chlorpyrifos Toxicity on Movement Physiology Investigation in Drosophila melanogaster”, J. Int. Environmental Application & Science, vol. 16, no. 4, pp. 192–197, 2021.
ISNAD Güneş, Eda - Şensoy, Erhan. “The Effects of Chlorpyrifos Toxicity on Movement Physiology Investigation in Drosophila Melanogaster”. Journal of International Environmental Application and Science 16/4 (December 2021), 192-197.
JAMA Güneş E, Şensoy E. The Effects of Chlorpyrifos Toxicity on Movement Physiology Investigation in Drosophila melanogaster. J. Int. Environmental Application & Science. 2021;16:192–197.
MLA Güneş, Eda and Erhan Şensoy. “The Effects of Chlorpyrifos Toxicity on Movement Physiology Investigation in Drosophila Melanogaster”. Journal of International Environmental Application and Science, vol. 16, no. 4, 2021, pp. 192-7.
Vancouver Güneş E, Şensoy E. The Effects of Chlorpyrifos Toxicity on Movement Physiology Investigation in Drosophila melanogaster. J. Int. Environmental Application & Science. 2021;16(4):192-7.

“Journal of International Environmental Application and Science”