Research Article
BibTex RIS Cite

Examination and Improvement of Direction-Dependent Surface Properties in Composite Structures Produced by the Fused Depostion Modelling Method

Year 2024, Volume: 4 Issue: 1, 232 - 244, 31.01.2024
https://doi.org/10.61112/jiens.1390452

Abstract

Additive manufacturing methods, which have begun to be used in final product production beyond producing prototypes, are popular research topics today. The Fused Filament Fabrication (FFF) method, which has a wider usage area and user base, is the most well-known among these methods. The method in which the polymer is extruded in layers has advantages such as design freedom and topology optimization, as well as disadvantages such as surface roughness and low production speed. The number of materials that can be used in the FFF method is diversifying day by day, and polymeric composites can also be produced beyond pure polymers. The use of engineering polymers such as polyamide in this production method creates many new opportunities. In addition, the start of production of short fiber reinforced polymeric composites has paved the way to produce high-performance final products. In this study, the effects of parameters such as layer thickness and printing orientation on the surface roughness of samples produced using polyamide and short carbon fiber reinforced polymer matrix composite materials were examined. Chemical surface treatment was applied to the surfaces of 3D-printed samples to improve surface roughness. It was concluded that the increase in layer thickness increases the surface roughness, the -/+45 filling orientation creates higher roughness than the 0 and 90 orientations, and the surface quality can be increased by chemical surface modification.

References

  • Ryan J, Dizon C, Espera AH, Chen Q (2018) Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002
  • Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20:192–204. https://doi.org/10.1108/RPJ-01-2013-0012
  • Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. J Compos Mater 51:451–62. https://doi.org/10.1177/0021998316646169
  • Yasa E (2019) Anisotropic Impact Toughnness of Chopped Carbon Fiber Reinforced Nylon Fabricated By Material-Extrusion-Based Additive Manufacturing. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering 20:195–203. https://doi.org/10.18038/aubtda.498606
  • Doğru A, Yilancioglu S, Ulku G, Turan BŞ, Seydibeyoglu MÖ (2022) Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods. Hacettepe Journal of Biology and Chemistry 50:215–26. https://doi.org/10.15671/HJBC.1053764
  • Mazzanti V, Malagutti L, Mollica F (2019) FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers 11:1094. https://doi.org/10.3390/polym11071094
  • Gibson I, Rosen D, Stucker B (2015) Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. New York
  • Boparai KS, Singh R, Singh H (2016) Development of rapid tooling using fused deposition modeling: A review. Rapid Prototyp J 22:281–99. https://doi.org/10.1108/RPJ-04-2014-0048/FULL/PDF
  • Kamer MS, Temiz Ş, Yaykaşli H, Kaya A, Akay OE (2022) 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37:1197–212. https://doi.org/10.17341/GAZIMMFD.961981
  • Nguyen TK, Lee BK (2018) Post-processing of FDM parts to improve surface and thermal properties. Rapid Prototyp J 24:1091–100. https://doi.org/10.1108/RPJ-12-2016-0207/FULL/PDF
  • Jo KH, Jeong YS, Lee JH, Lee SH (2016) A study of post-processing methods for improving the tightness of a part fabricated by fused deposition modeling. International Journal of Precision Engineering and Manufacturing 17:1541–1546. https://doi.org/10.1007/S12541-016-0180-Z
  • Pestano V, Pohlmann M, Silva FP da, Pestano V, Pohlmann M, Silva FP 82022) Effect of Acetone Vapor Smoothing Process on Surface Finish and Geometric Accuracy of Fused Deposition Modeling ABS Parts. Journal of Materials Science and Chemical Engineering 10:1–9. https://doi.org/10.4236/MSCE.2022.1010001
  • John Rajan A, Sugavaneswaran M, Prashanthi B, Deshmukh S, Jose S (2020) Influence of Vapour Smoothing Process Parameters on Fused Deposition Modelling Parts Surface Roughness at Different Build Orientation. Mater Today Proc 22:2772–2788. https://doi.org/10.1016/J.MATPR.2020.03.408
  • Boschetto A, Bottini L, Veniali F (2016) Finishing of Fused Deposition Modeling parts by CNC machining. Robot Comput Integr Manuf 41:92–101. https://doi.org/10.1016/J.RCIM.2016.03.004
  • Moradi M, Moghadam MK, Shamsborhan M, Bodaghi M, Falavandi H (2020) Post-Processing of FDM 3D-Printed Polylactic Acid Parts by Laser Beam Cutting. Polymers 12:550-568. https://doi.org/10.3390/POLYM12030550
  • Caran R, Nur A, Yılmaz Y, Ercan N, Yunus DE, Çelik Bedeloğlu A (2024) The flexural and compressive properties of sandwich composites with different 3D-printed core structures. J Innovative Eng Nat Sci 4:98–112. https://doi.org/10.61112/jiens.1355323
  • Ali MA, Kaneko T (2015) Polyamide Syntheses. Encyclopedia of Polymeric Nanomaterials 15:1750–62. https://doi.org/10.1007/978-3-642-29648-2_418
  • Kricheldorf H. Wallace H (2013) Carothers: Life and Work. Polycondensation 13:27–34. https://doi.org/10.1007/978-3-642-39429-4_3
  • BASF Ultramid® B40LN 01 PA6 (Dry) (accessed December 13, 2023). https://www.matweb.com/search/datasheet.aspx?matguid=7fcf749eb91a4720acbb375dd59a3422&ckck=1
  • AC 4102 CHOPPED FIBER Technical Data Sheet - DowAksa – Knowde (accessed December 12, 2023). https://www.knowde.com/stores/dowaksa/documents/242700
  • Benkaddour A, Demir EC, Jankovic N, Kim C, McDermott M, Ayranci C (2022) A hydrophobic coating on cellulose nanocrystals improves the mechanical properties of polyamide-6 nanocomposites, Journal of Composite Materials, 56:11. https://doi.org/10.1177/00219983221075
  • UltiMaker S5: Expand your 3D printing ambitions (accessed December 13, 2023). https://ultimaker.com/3d-printers/s-series/ultimaker-s5/
  • Introducing the new Ultimaker print core CC - UltiMaker (accessed December 13, 2023). https://ultimaker.com/learn/introducing-the-new-ultimaker-print-core-cc/
  • Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHC, et al (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–22. https://doi.org/10.1007/S10570-013-0132-Z/TABLES/3
  • Benkaddour A, Rusin C, Demir EC, Ayranci C, McDermott M (2023) Cationic surface functionalization of cellulose nanocrystals and its effect on the mechanical properties of polyamide 6 thin films, Cellulose 30:7653–7665. https://doi.org/10.1007/S10570-023-05313-6/TABLES/2
  • Wang Y, Hou DF, Ke K, Huang YH, Yan Y, Yang W, et al (2021) Chemical-resistant polyamide 6/polyketone composites with gradient encapsulation structure: An insight into the formation mechanism. Polymer 212:123173. https://doi.org/10.1016/J.POLYMER.2020.123173
  • Lehmann G, Neunhoefer O, Roselius W, Vitzthum O (1971) Treatment of polyamide granules with formic acid, US Patent
  • Selvam A, Mayilswamy S, Whenish R, Naresh K, Shanmugam V, Das O (2022) Multi-objective optimization and prediction of surface roughness and printing time in FFF printed ABS polymer. Scientific Reports 2022 12:1–12. https://doi.org/10.1038/s41598-022-20782-8
  • Mittal K (2015) Advances in Contact Angle, Wettability and Adhesion, Wiley Blackwell. https://doi.org/10.1002/9781119117018
  • Gao Z (2011) Modification of surface properties of polyamide 6 films with atmospheric pressure plasma. Appl Surf Sci 257:6068–72. https://doi.org/10.1016/J.APSUSC.2011.01.132

Erimiş Filament Üretim Yöntemi ile Üretilen Kompozit Yapılarda Yöne Bağlı Yüzey Özelliklerinin İncelenmesi ve İyileştirilmesi

Year 2024, Volume: 4 Issue: 1, 232 - 244, 31.01.2024
https://doi.org/10.61112/jiens.1390452

Abstract

Prototip üretmenin ötesinde nihai ürün üretiminde de kullanılmaya başlanan eklemeli imalat yöntemleri günümüzde popüler araştırma konularıdır. Kullanım alanı ve kullanıcı kitlesi daha geniş olan Erimiş Filament İmalatı (FFF) yöntemi bu yöntemler arasında en bilinenidir. Polimerin katmanlar halinde ekstrüde edildiği yöntemin tasarım özgürlüğü ve topoloji optimizasyonu gibi avantajlarının yanı sıra yüzey pürüzlülüğü ve düşük üretim hızı gibi dezavantajları da vardır. FFF yönteminde kullanılabilecek malzeme sayısı gün geçtikçe çeşitlenmekte ve saf polimerlerin ötesinde polimerik kompozitler de üretilebilmektedir. Bu üretim yönteminde poliamid gibi mühendislik polimerlerinin kullanılması birçok yeni fırsat yaratmaktadır. Ayrıca kısa elyaf takviyeli polimerik kompozitlerin üretimine başlanması, yüksek performanslı nihai ürünlerin üretilmesinin önünü açmıştır. Bu çalışmada poliamid ve kısa karbon fiber takviyeli polimer matrisli kompozit malzemeler kullanılarak üretilen numunelerin yüzey pürüzlülüğüne katman kalınlığı ve baskı yönü gibi parametrelerin etkisi incelenmiştir. Yüzey pürüzlülüğünü iyileştirmek için 3D baskılı numunelerin yüzeylerine kimyasal yüzey işlemi uygulandı. Tabaka kalınlığının artmasının yüzey pürüzlülüğünü arttırdığı, -/+45 dolgu oryantasyonunun 0 ve 90 oryantasyonlarına göre daha yüksek pürüzlülük oluşturduğu, kimyasal yüzey modifikasyonu ile yüzey kalitesinin arttırılabileceği sonucuna varılmıştır.

References

  • Ryan J, Dizon C, Espera AH, Chen Q (2018) Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002
  • Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20:192–204. https://doi.org/10.1108/RPJ-01-2013-0012
  • Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. J Compos Mater 51:451–62. https://doi.org/10.1177/0021998316646169
  • Yasa E (2019) Anisotropic Impact Toughnness of Chopped Carbon Fiber Reinforced Nylon Fabricated By Material-Extrusion-Based Additive Manufacturing. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering 20:195–203. https://doi.org/10.18038/aubtda.498606
  • Doğru A, Yilancioglu S, Ulku G, Turan BŞ, Seydibeyoglu MÖ (2022) Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods. Hacettepe Journal of Biology and Chemistry 50:215–26. https://doi.org/10.15671/HJBC.1053764
  • Mazzanti V, Malagutti L, Mollica F (2019) FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers 11:1094. https://doi.org/10.3390/polym11071094
  • Gibson I, Rosen D, Stucker B (2015) Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. New York
  • Boparai KS, Singh R, Singh H (2016) Development of rapid tooling using fused deposition modeling: A review. Rapid Prototyp J 22:281–99. https://doi.org/10.1108/RPJ-04-2014-0048/FULL/PDF
  • Kamer MS, Temiz Ş, Yaykaşli H, Kaya A, Akay OE (2022) 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37:1197–212. https://doi.org/10.17341/GAZIMMFD.961981
  • Nguyen TK, Lee BK (2018) Post-processing of FDM parts to improve surface and thermal properties. Rapid Prototyp J 24:1091–100. https://doi.org/10.1108/RPJ-12-2016-0207/FULL/PDF
  • Jo KH, Jeong YS, Lee JH, Lee SH (2016) A study of post-processing methods for improving the tightness of a part fabricated by fused deposition modeling. International Journal of Precision Engineering and Manufacturing 17:1541–1546. https://doi.org/10.1007/S12541-016-0180-Z
  • Pestano V, Pohlmann M, Silva FP da, Pestano V, Pohlmann M, Silva FP 82022) Effect of Acetone Vapor Smoothing Process on Surface Finish and Geometric Accuracy of Fused Deposition Modeling ABS Parts. Journal of Materials Science and Chemical Engineering 10:1–9. https://doi.org/10.4236/MSCE.2022.1010001
  • John Rajan A, Sugavaneswaran M, Prashanthi B, Deshmukh S, Jose S (2020) Influence of Vapour Smoothing Process Parameters on Fused Deposition Modelling Parts Surface Roughness at Different Build Orientation. Mater Today Proc 22:2772–2788. https://doi.org/10.1016/J.MATPR.2020.03.408
  • Boschetto A, Bottini L, Veniali F (2016) Finishing of Fused Deposition Modeling parts by CNC machining. Robot Comput Integr Manuf 41:92–101. https://doi.org/10.1016/J.RCIM.2016.03.004
  • Moradi M, Moghadam MK, Shamsborhan M, Bodaghi M, Falavandi H (2020) Post-Processing of FDM 3D-Printed Polylactic Acid Parts by Laser Beam Cutting. Polymers 12:550-568. https://doi.org/10.3390/POLYM12030550
  • Caran R, Nur A, Yılmaz Y, Ercan N, Yunus DE, Çelik Bedeloğlu A (2024) The flexural and compressive properties of sandwich composites with different 3D-printed core structures. J Innovative Eng Nat Sci 4:98–112. https://doi.org/10.61112/jiens.1355323
  • Ali MA, Kaneko T (2015) Polyamide Syntheses. Encyclopedia of Polymeric Nanomaterials 15:1750–62. https://doi.org/10.1007/978-3-642-29648-2_418
  • Kricheldorf H. Wallace H (2013) Carothers: Life and Work. Polycondensation 13:27–34. https://doi.org/10.1007/978-3-642-39429-4_3
  • BASF Ultramid® B40LN 01 PA6 (Dry) (accessed December 13, 2023). https://www.matweb.com/search/datasheet.aspx?matguid=7fcf749eb91a4720acbb375dd59a3422&ckck=1
  • AC 4102 CHOPPED FIBER Technical Data Sheet - DowAksa – Knowde (accessed December 12, 2023). https://www.knowde.com/stores/dowaksa/documents/242700
  • Benkaddour A, Demir EC, Jankovic N, Kim C, McDermott M, Ayranci C (2022) A hydrophobic coating on cellulose nanocrystals improves the mechanical properties of polyamide-6 nanocomposites, Journal of Composite Materials, 56:11. https://doi.org/10.1177/00219983221075
  • UltiMaker S5: Expand your 3D printing ambitions (accessed December 13, 2023). https://ultimaker.com/3d-printers/s-series/ultimaker-s5/
  • Introducing the new Ultimaker print core CC - UltiMaker (accessed December 13, 2023). https://ultimaker.com/learn/introducing-the-new-ultimaker-print-core-cc/
  • Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHC, et al (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–22. https://doi.org/10.1007/S10570-013-0132-Z/TABLES/3
  • Benkaddour A, Rusin C, Demir EC, Ayranci C, McDermott M (2023) Cationic surface functionalization of cellulose nanocrystals and its effect on the mechanical properties of polyamide 6 thin films, Cellulose 30:7653–7665. https://doi.org/10.1007/S10570-023-05313-6/TABLES/2
  • Wang Y, Hou DF, Ke K, Huang YH, Yan Y, Yang W, et al (2021) Chemical-resistant polyamide 6/polyketone composites with gradient encapsulation structure: An insight into the formation mechanism. Polymer 212:123173. https://doi.org/10.1016/J.POLYMER.2020.123173
  • Lehmann G, Neunhoefer O, Roselius W, Vitzthum O (1971) Treatment of polyamide granules with formic acid, US Patent
  • Selvam A, Mayilswamy S, Whenish R, Naresh K, Shanmugam V, Das O (2022) Multi-objective optimization and prediction of surface roughness and printing time in FFF printed ABS polymer. Scientific Reports 2022 12:1–12. https://doi.org/10.1038/s41598-022-20782-8
  • Mittal K (2015) Advances in Contact Angle, Wettability and Adhesion, Wiley Blackwell. https://doi.org/10.1002/9781119117018
  • Gao Z (2011) Modification of surface properties of polyamide 6 films with atmospheric pressure plasma. Appl Surf Sci 257:6068–72. https://doi.org/10.1016/J.APSUSC.2011.01.132
There are 30 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials, Material Production Technologies, Polymers and Plastics
Journal Section Research Articles
Authors

Özlem Doğru 0000-0002-7173-8374

Alperen Doğru 0000-0003-3730-3761

Mehmet Özgür Seydibeyoğlu 0000-0002-2584-7043

Publication Date January 31, 2024
Submission Date November 14, 2023
Acceptance Date January 18, 2024
Published in Issue Year 2024 Volume: 4 Issue: 1

Cite

APA Doğru, Ö., Doğru, A., & Seydibeyoğlu, M. Ö. (2024). Examination and Improvement of Direction-Dependent Surface Properties in Composite Structures Produced by the Fused Depostion Modelling Method. Journal of Innovative Engineering and Natural Science, 4(1), 232-244. https://doi.org/10.61112/jiens.1390452


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0