Review
BibTex RIS Cite

Sera Gazı Salınımı ve Çevre Kirliliğinin Azaltılması Yönünden Yemlik Baklagillerin Önemi

Year 2018, Volume: 8 Issue: 3, 313 - 317, 30.09.2018
https://doi.org/10.21597/jist.404543

Abstract

Nüfus, şehirleşme oranı ve gelir artışı gibi nedenlerle yüksek kaliteli gıdalara (özellikle hayvansal gıdalar)

olan talep dünya genelinde artmaktadır. Bu artışın gelecek yıllarda da sürmesi beklenmektedir. Bu durum gıda

üretiminin artırılması ve çevresel yönden sürdürülebilir bir sisteme oturtulması gerekliliğini ortaya çıkarmaktadır.

Son yüzyılda, atmosferdeki CO2 düzeyi yaklaşık 100 ppm, dünyanın ortalama ısısı 0.9 oC ve deniz suyu seviyesi 20

cm kadar yükselmiştir. Hayvancılık faaliyetleri, tarımsal kimyasallar, çeltik tarımı, tarımda kullanılan makinalar ve

anız yakma gibi bazı tarımsal faaliyetler önemli düzeyde sera gazı salınımına neden olmaktadır. Yürütülen birçok

araştırmanın sonuçlarına göre, ekim nöbeti sistemlerinde ve hayvan beslemede yemlik baklagillerin kullanılması,

sera gazı salınımı ve çevresel kirliliği önemli oranda azaltmaktadır. Bitkisel üretimde en sınırlayıcı element

azottur ve tarımda kullanılan azotlu gübrelerin üretiminde çok yüksek oranda sera gazı salınımına neden olan

fosil yakıtlar kullanılmaktadır. Azotlu gübrelerin yerine, simbiyotik yolla N2 bağlayan baklagillerin tarım sistemine

dahil edilmesi, daha çevre dostu ve sürdürülebilir bir uygulamadır. Baklagiller simbiyotik yolla yılda hektara 100-

380 kg N bağlayabilme yeteneğindedirler. Hayvancılık, sindirim sistemi fermentasyonu, atık gübreler ve diğer

üretim faaliyetleri sırasında ortaya çıkan CO2, CH4 ve N2O nedeniyle, tarımsal kökenli sera gazı salınımının en

önemli kaynağıdır. Yemlik baklagillerin hayvan rasyonlarına katılması verimliliği artırırken, aynı zamanda et ve süt

üretiminde CH4 ve N2O salınımını azaltmakta ve karbon tutumunu da artırmaktadır. Dünya genelinde antropojenik

CH4 salınımının yaklaşık % 21-25’i hayvan sindirim sisteminde üretilmektedir. Bazı yemlik baklagiller bünyelerinde

tanen ve polifenoloksidaz gibi ikincil metabolitler bulundururlar. Bu maddeler hayvanın sindirim sisteminde metan

oluşumunu azaltırlar ve ayrıca sindirilemeyen azotu idrar yerine dışkıya yönlendirirler. İdrardaki N hızlıca N2O’ya

dönüşüp, sera gazı olarak atmosfere geçerken, dışkıdaki azot organik madde olarak toprakta depolanır. Çayır-mera

alanlarının ana bileşenlerinden olan yemlik baklagiller toprak-bitki-hayvan-atmosfer sisteminin farklı aşamalarında

çok önemli katkı sağlarlar.

References

  • Acar, Z. ve İ. Ayan, 2012. “Yembitkileri Kültürü”, OMÜ Ziraat Fakültesi Yayınları, Ders Kitabı No: 2, III. Baskı, Samsun, 175 s.
  • Archimède H, Eugène M, Marie-Magdeleine C, Boval M, Martin C, Morgavi DP, Lecomte P, Doreau M, 2011. Comparison of methane production between temperate and tropical forages: A quantitative review. Anim Feed Sci Technol, 166-167: 59-64.
  • Barry TN, McNabb WC, 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br J Nutr. 81: 263-272.
  • Beauchemin KA, Janzen HH, Little SM, McAllister TA, McGinn SM, 2010. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agric Syst, 103: 371-379.
  • Chung YH, McGeough EJ, Acharya S, McAllister TA, McGinn SM, Harstad OM, Beauchemin KA, 2013. Enteric methane emission, diet digestibility, and nitrogen excretion from beef heifers fed sainfoin or alfalfa. J Anim Sci, 91 :4861-4874.
  • Delgado CL, 2005. Rising demand for meat and milk in developing countries: implications for grasslands-based livestock production. In: McGilloway DA (ed) Grassland: A Global Resource. Wageningen Academic Publishers, Wageningen, 29-39.
  • Desjardins RL, Worth DE, Xavier PC, Vergé XPC, Maxime D, Dyer J, Cerkowniak D, 2012. Carbon Footprint of Beef Cattle. Sustain, 4: 3279- 3301.
  • Eckard RJ, Grainger C, de Klein CAM, 2010.Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest Sci, 130: 47-56.
  • Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM, 2013. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J AnimSci, 91: 5045-5069.
  • IPCC, 2014. The Fifth Assessment Report (AR5). The Intergovernmental Panel on Climate Change, Geneva, Switzerland. http://www.ipcc.ch_31.04.2017.
  • Iwaasa A, Lemke R, 2014. Reducing greenhouse gases from ruminants on perennial pastures. In: Bittman S, Hunt D (eds) Cool Forages: Advanced Management of Temperate Forages. Pacific Field Corn Association, Agassiz, 201-204.
  • Lal R, 2006. Carbon dynamics in agricultural soils. In: Bhatti JS, Lal R, Apps MJ, Price MA (eds) Climate Change and Managed Ecosystems. CRC Press, Boca Raton, 127-148.
  • Lascano CE, Cárdenas E, 2010.Alternatives for methane emission mitigation in livestock systems. Rev Bras Zootec, 39: 175-182.
  • Lesschen JP, van den Berg M, Westhoek HJ, Witzke HP, Oenema O, 2011. Greenhouse gas emission profiles of European livestock sectors. Anim Feed Sci Technol, 166-167: 16-28.
  • Lüscher A, Suter M, Finn JA, 2016. Legumes and grasses in mixtures complement each other ideally for sustainable forage production. The journal of the International Legume Society, Issue 12, April 2016, 8-10
  • Martin C, Copani G, Niderkorn V, 2016. Impacts of forage legumes on intake, digestion and methane emissions in ruminants. The journal of the International Legume Society, Issue 12, April 2016, 24-25.
  • McCaughey WP, Wittenberg K, Corrigan D, 1997. Methane production by steers on pasture. Can J Anim Sci, 77: 519-524
  • McCaughey WP, Wittenberg K, Corrigan D, 1999. Impact of pasture type on methane production by lactating beef cows. Can J Anim Sci, 79: 221-226
  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Lüscher A, 2011. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ, 140: 155-163
  • Reynolds CK, Kristensen NB, 2008. Nitrogen cycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis. J Anim Sci, 86S: E293-E305.
  • Südekum KH, Gerlach K, Böttger C, 2016. Estimating the nutritive value of forage and grain legumes - Requirements and considerations. The journal of the International Legume Society, Issue 12, April 2016, 11-13
  • Tuik, 2015. http://www.tuik.gov.tr/ Seragazı_Emisyon_İstatistikler_17.04.2017.
  • Undi M, Wittenberg K, McGeough EJ, Ominski KH, 2016. Impact of forage legumes on greenhouse gas output and carbon footprint of meat and milk. The journal of the International Legume Society, Issue 12, April 2016, 26-28.

Mitigating Effects of Forage Legumes on Greenhouse Gases Emission and Some Pollutants

Year 2018, Volume: 8 Issue: 3, 313 - 317, 30.09.2018
https://doi.org/10.21597/jist.404543

Abstract

The demand for high quality foods is increasing due to increase of urbanization, population and

disposable income. Thus increased global food production is required and this increase must be achieved through

environmentally sustainable production systems. It is a fact that CO2 concentration of atmosphere about 100 ppm,

average global temperature about 0.9 oC, and sea level about 20 cm increased in the last century. Some agricultural

activities such as, enteric fermentation, agricultural chemicals, paddy farm, agricultural machines and burning of

stubble causes highly greenhouse gases (GHG) emission. Regard the results of studies, forage legumes used in

crop rotation and livestock feeding decreases GHG emissions and pollute of natural sources. Currant agricultural

production is highly N limited, while the provision of industrial N is largely based on fossil energy with its associated

emission of GHG. Thus, substitution of industrial N fertilizer with N derived from legumes’ symbiotic N2 fixation

is an important contribution to more environmental friendly and resource efficient agricultural systems. Livestock

production is a significant source of GHG emissions, generating CO2, CH4 and N2O from enteric fermentation,

manure management and other production activities. Inclusion of forage legumes in ruminant diets can potentially

improve productivity while at the same time reducing the C footprint of meat and milk production through reduced

CH4 and N2O emissions as well as enhanced C sequestration. Several forage legumes possess plant secondary

metabolites that include tannins and polyphenoloxidase. In the rumen, these secondary metabolites protect proteins

from degradation and ruminants excrete less urinary N but more fecal N. This is important because the urinary N

is quickly converted to ammonia and N2O which induces environmental problems. There is evidence that forage

legumes, as components of mixed grass-legume swards, can provide multiple benefits to agriculture by acting at

different stages in the soil-plant-animal-atmosphere system.

References

  • Acar, Z. ve İ. Ayan, 2012. “Yembitkileri Kültürü”, OMÜ Ziraat Fakültesi Yayınları, Ders Kitabı No: 2, III. Baskı, Samsun, 175 s.
  • Archimède H, Eugène M, Marie-Magdeleine C, Boval M, Martin C, Morgavi DP, Lecomte P, Doreau M, 2011. Comparison of methane production between temperate and tropical forages: A quantitative review. Anim Feed Sci Technol, 166-167: 59-64.
  • Barry TN, McNabb WC, 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br J Nutr. 81: 263-272.
  • Beauchemin KA, Janzen HH, Little SM, McAllister TA, McGinn SM, 2010. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agric Syst, 103: 371-379.
  • Chung YH, McGeough EJ, Acharya S, McAllister TA, McGinn SM, Harstad OM, Beauchemin KA, 2013. Enteric methane emission, diet digestibility, and nitrogen excretion from beef heifers fed sainfoin or alfalfa. J Anim Sci, 91 :4861-4874.
  • Delgado CL, 2005. Rising demand for meat and milk in developing countries: implications for grasslands-based livestock production. In: McGilloway DA (ed) Grassland: A Global Resource. Wageningen Academic Publishers, Wageningen, 29-39.
  • Desjardins RL, Worth DE, Xavier PC, Vergé XPC, Maxime D, Dyer J, Cerkowniak D, 2012. Carbon Footprint of Beef Cattle. Sustain, 4: 3279- 3301.
  • Eckard RJ, Grainger C, de Klein CAM, 2010.Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest Sci, 130: 47-56.
  • Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM, 2013. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J AnimSci, 91: 5045-5069.
  • IPCC, 2014. The Fifth Assessment Report (AR5). The Intergovernmental Panel on Climate Change, Geneva, Switzerland. http://www.ipcc.ch_31.04.2017.
  • Iwaasa A, Lemke R, 2014. Reducing greenhouse gases from ruminants on perennial pastures. In: Bittman S, Hunt D (eds) Cool Forages: Advanced Management of Temperate Forages. Pacific Field Corn Association, Agassiz, 201-204.
  • Lal R, 2006. Carbon dynamics in agricultural soils. In: Bhatti JS, Lal R, Apps MJ, Price MA (eds) Climate Change and Managed Ecosystems. CRC Press, Boca Raton, 127-148.
  • Lascano CE, Cárdenas E, 2010.Alternatives for methane emission mitigation in livestock systems. Rev Bras Zootec, 39: 175-182.
  • Lesschen JP, van den Berg M, Westhoek HJ, Witzke HP, Oenema O, 2011. Greenhouse gas emission profiles of European livestock sectors. Anim Feed Sci Technol, 166-167: 16-28.
  • Lüscher A, Suter M, Finn JA, 2016. Legumes and grasses in mixtures complement each other ideally for sustainable forage production. The journal of the International Legume Society, Issue 12, April 2016, 8-10
  • Martin C, Copani G, Niderkorn V, 2016. Impacts of forage legumes on intake, digestion and methane emissions in ruminants. The journal of the International Legume Society, Issue 12, April 2016, 24-25.
  • McCaughey WP, Wittenberg K, Corrigan D, 1997. Methane production by steers on pasture. Can J Anim Sci, 77: 519-524
  • McCaughey WP, Wittenberg K, Corrigan D, 1999. Impact of pasture type on methane production by lactating beef cows. Can J Anim Sci, 79: 221-226
  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Lüscher A, 2011. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ, 140: 155-163
  • Reynolds CK, Kristensen NB, 2008. Nitrogen cycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis. J Anim Sci, 86S: E293-E305.
  • Südekum KH, Gerlach K, Böttger C, 2016. Estimating the nutritive value of forage and grain legumes - Requirements and considerations. The journal of the International Legume Society, Issue 12, April 2016, 11-13
  • Tuik, 2015. http://www.tuik.gov.tr/ Seragazı_Emisyon_İstatistikler_17.04.2017.
  • Undi M, Wittenberg K, McGeough EJ, Ominski KH, 2016. Impact of forage legumes on greenhouse gas output and carbon footprint of meat and milk. The journal of the International Legume Society, Issue 12, April 2016, 26-28.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Tarla Bitkileri / Field Crops
Authors

Zeki Acar 0000-0002-0484-1961

Mehmet Can 0000-0003-0230-6209

Özlem Önal Aşçı 0000-0002-9487-9444

Erdem Gülümser 0000-0001-6291-3831

Gülcan Kaymak 0000-0002-0915-0529

İlknur Ayan 0000-0002-5097-9013

Publication Date September 30, 2018
Submission Date March 12, 2018
Acceptance Date April 2, 2018
Published in Issue Year 2018 Volume: 8 Issue: 3

Cite

APA Acar, Z., Can, M., Aşçı, Ö. Ö., Gülümser, E., et al. (2018). Sera Gazı Salınımı ve Çevre Kirliliğinin Azaltılması Yönünden Yemlik Baklagillerin Önemi. Journal of the Institute of Science and Technology, 8(3), 313-317. https://doi.org/10.21597/jist.404543
AMA Acar Z, Can M, Aşçı ÖÖ, Gülümser E, Kaymak G, Ayan İ. Sera Gazı Salınımı ve Çevre Kirliliğinin Azaltılması Yönünden Yemlik Baklagillerin Önemi. J. Inst. Sci. and Tech. September 2018;8(3):313-317. doi:10.21597/jist.404543
Chicago Acar, Zeki, Mehmet Can, Özlem Önal Aşçı, Erdem Gülümser, Gülcan Kaymak, and İlknur Ayan. “Sera Gazı Salınımı Ve Çevre Kirliliğinin Azaltılması Yönünden Yemlik Baklagillerin Önemi”. Journal of the Institute of Science and Technology 8, no. 3 (September 2018): 313-17. https://doi.org/10.21597/jist.404543.
EndNote Acar Z, Can M, Aşçı ÖÖ, Gülümser E, Kaymak G, Ayan İ (September 1, 2018) Sera Gazı Salınımı ve Çevre Kirliliğinin Azaltılması Yönünden Yemlik Baklagillerin Önemi. Journal of the Institute of Science and Technology 8 3 313–317.
IEEE Z. Acar, M. Can, Ö. Ö. Aşçı, E. Gülümser, G. Kaymak, and İ. Ayan, “Sera Gazı Salınımı ve Çevre Kirliliğinin Azaltılması Yönünden Yemlik Baklagillerin Önemi”, J. Inst. Sci. and Tech., vol. 8, no. 3, pp. 313–317, 2018, doi: 10.21597/jist.404543.
ISNAD Acar, Zeki et al. “Sera Gazı Salınımı Ve Çevre Kirliliğinin Azaltılması Yönünden Yemlik Baklagillerin Önemi”. Journal of the Institute of Science and Technology 8/3 (September 2018), 313-317. https://doi.org/10.21597/jist.404543.
JAMA Acar Z, Can M, Aşçı ÖÖ, Gülümser E, Kaymak G, Ayan İ. Sera Gazı Salınımı ve Çevre Kirliliğinin Azaltılması Yönünden Yemlik Baklagillerin Önemi. J. Inst. Sci. and Tech. 2018;8:313–317.
MLA Acar, Zeki et al. “Sera Gazı Salınımı Ve Çevre Kirliliğinin Azaltılması Yönünden Yemlik Baklagillerin Önemi”. Journal of the Institute of Science and Technology, vol. 8, no. 3, 2018, pp. 313-7, doi:10.21597/jist.404543.
Vancouver Acar Z, Can M, Aşçı ÖÖ, Gülümser E, Kaymak G, Ayan İ. Sera Gazı Salınımı ve Çevre Kirliliğinin Azaltılması Yönünden Yemlik Baklagillerin Önemi. J. Inst. Sci. and Tech. 2018;8(3):313-7.