Review
BibTex RIS Cite

Methods of Biohydrogen Production and Usage of Bioreactors for Biohydrogen Production

Year 2019, Volume: 9 Issue: 1, 66 - 75, 01.03.2019
https://doi.org/10.21597/jist.418445

Abstract

The importance of renewable energy sources are increasing everyday because of the reasons such as the rapid depletion of fossil fuels such as coal and petrol derivatatives and the pollution originated with the utilization of such alternatives. Sustainability, less harm to the environment compared with fossil fuels and its availability in many countries are among the important advantages of renewable energy utilization. One of these fuels is hydrogen and it can be produced from several raw materials such as sugar cane stalks, rice straw, kitchen waste because hydrogen presents in compounds in nature. When compared with other fuel types, hydrogen has the highest energy content per unit mass. 1 kg hydrogen has the energy which is equal to 2.8 kg oil or 2.1 kg natural gas. When hydrogen is used as fuel, the product is only water or water vapor. Hydrogen gas can be produced by solar energy, wind, wave and biomass. Hydrogen production processes are electrochemical methods, thermal methods and biological hydrogen utilization. Electrochemical and thermal hydrogen production processes are not always environmentally friendly. On the other side, biological hydrogen production systems require less energy which occurs under suitable pressure and temperature. Therefore, biological hydrogen production should be considered as an alternative. In this study, methods of biohydrogen production and applicable bioreactor types are examined.

References

  • Adessi A, Philippis RD, 2014. Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: A review. International Journal of Hydrogen Energy, 39: 3127-3141.
  • Amorim NCS, Alves I, Martins JS, Amorim ELC, 2014. Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor. Brazilian Journal of Chemical Engineering, 31(03): 603-612.
  • Aslan M, 2016. Membran Teknolojileri. T.C. Çevre ve Şehircilik Bakanlığı Türkiye Çevre Koruma Vakfı, s.200, Ankara.
  • Azbar N, Cetinkaya Dokgoz FT, Keskin T, Korkmaz KS, Syed HM, 2009. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. International Journal of Hydrogen Energy, 34: 7441–7447.
  • Bakonyi P, Nemestothy N, Lanko J, Rivera I, Buitron G, Belafi-Bako K, 2015. Simultaneous biohydrogen production and purification in a double-membrane bioreactor system. International Journal of Hydrogen Energy, 40: 1690-1697.
  • Bica´kova´ O, Straka P, 2012. Production of hydrogen from renewable resources and its effectiveness. International Journal of Hydrogen Energy, 37: 11563-11578.
  • Castello´ E, Garcı´a y Santos C, Iglesias T, Paolino G, Wenzel J, Borzacconi L, Etchebehere C, 2009. Feasibility of biohydrogen production from cheese whey using a UASB reactor: Links between microbial community and reactor performance. International Journal of Hydrogen Energy, 34: 5674-5682.
  • Cavalcante De Amorim EL, Barros AR, Zamariolli Damianovic MHR, Silva EL, 2009. Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. International Journal of Hydrogen Energy, 34: 783-790.
  • Cavalcante De Amorim EL, Sader LT, Silva EL, 2012. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. Applied Biochemistry and Biotechnology, 166: 1248-1263.
  • Chang J-S, Lee K-S, Lin P-J, 2002. Biohydrogen production with fixed-bed bioreactors. International Journal of Hydrogen Energy, 27: 1167-1174.
  • Christine Santos S, Ferreira Rosa PR, Sakamoto IK, Amancio Varesche MB, Silva EL, 2014. Continuous thermophilic hydrogen production and microbial community analysis from anaerobic digestion of diluted sugar cane stillage. International Journal of Hydrogen Energy, 39: 9000-9011.
  • Das D, Veziroglu TN, 2001. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26: 13-28.
  • Fontes Lima DM, Moreira WK, Zaiat M, 2013. Comparison of the use of sucrose and glucose as a substrate for hydrogen production in an upflow anaerobic fixed-bed reactor. International Journal of Hydrogen Energy, 38: 15074-15083.
  • Gadow SI, Jiang H, Hojo T, Li YY, 2013. Cellulosic hydrogen production and microbial community characterization in hyper-thermophilic continuous bioreactor. International Journal of Hydrogen Energy, 38: 7259-7267.
  • Hosseini SE, Wahid MA, 2016. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews, 57: 850-866.
  • İleri R, 2000. Çevre Biyoteknolojisi. Değişim Yayınları, s.225-226, Adapazarı.
  • Keskin T, Hallenbeck PC, 2012. Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresource Technology, 112: 131-136.
  • Khanna N and Das D, 2013. Biohydrogen production by dark fermentation. Advanced Review, 2: 401-421.
  • Kothari R, Singh DP, Tyagi VV, Tyagi SK, 2012. Fermentative hydrogen production – An alternative clean energy source. Renewable and Sustainable Energy Reviews, 16: 2337-2346.
  • Kumar G and Buitron G, 2017. Fermentative biohydrogen production in fixed bed reactors using ceramic and polyethylene carriers as supporting material. Energy Procedia, 142: 743-748.
  • Lay CH, Wu JH, Hsiao CL, Chang JJ, Chen CC, Lin CY, 2010. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation. International Journal of Hydrogen Energy, 35: 13445–13451.
  • Lay CH, Sen B, Chen CC, Wu JH, Lee SC, Lin CY, 2013. Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Bioresource Technology, 135: 610-615.
  • Lee KS, Tseng TS, Liu YW, Hsiao YD, 2012. Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. International Journal of Hydrogen Energy, 37: 15556-15562.
  • Lin CN, Wu SY, Chang JS, 2006. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. International Journal of Hydrogen Energy, 31: 2200-2210.
  • Munoz-Paez KM, Ruiz-Ordaz N, Garcia-Mena J, Ponce-Noyola MT, Ramos-Valdivia AC, Robles-Gonzalez IV, Villa-Tanaca L, Barrera-Cortes J, Rinderknecht-Seijas N, Poggi-Varaldo HM, 2013. Comparison of biohydrogen production in fluidized bed bioreactors at room temperature and 35 °C. International Journal of Hydrogen Energy, 38: 12570-12579.
  • Noblecourt A, Christophe G, Larroche C, Santa-Catalina G, Trably E, Fontanille P, 2017. High hydrogen production rate in a submerged membrane anaerobic bioreactor. International Journal of Hydrogen Energy, 42: 24656-24666.
  • Park J-H, Anburajan P, Kumar G, Park H-D, Kim S-H, 2017. Biohydrogen production integrated with an external dynamic membrane: A novel approach. International Journal of Hydrogen Energy, 42: 27543-27549.
  • Radjaram B, Saravanane R, 2011. Start up study of UASB reactor treating press mud for biohydrogen production. Biomass and Bioenergy, 35: 2721-2728.
  • Rahman SNA, Masdar MS, Rosli MI, Majlan EH, Husaini T, Kamarudin SK, Daud WRW, 2016. Overview biohydrogen technologies and application in fuel cell technology. Renewable and Sustainable Energy Reviews, 66: 137-162.
  • Rashid N, Rehman MSU, Memon S, Rahman ZU, Lee K, Han J-I, 2013. Current status, barriers and developments in biohydrogen production by microalgae. Renewable and Sustainable Energy Reviews, 22: 571-579.
  • Sahinkaya E, 2010. Anaerobik Arıtım Bakanlık Sunum. Harran Üniversitesi Mühendislik Fakültesi Çevre Mühendisliği Bölümü.
  • Sivagurunathan P, Anburajan P, Kumar G, Park J-H, Kim S-H, 2017. Recovering hydrogen production performance of upflow anaerobic sludge blanket reactor (UASBR) fed with galactose via repeated heat treatment strategy. Bioresource Technology, 240: 207-213.
  • Song ZX, Li XH, Li WW, Bai YX, Fan YT, Hou HW, 2014. Direct bioconversion of raw corn stalk to hydrogen by a new strain Clostridium sp. FS3. Bioresource Technology, 157: 91-97.
  • Sridevi K, Sivaraman E, Mullai P, 2014. Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor. Bioresource Technology, 165: 233-240.
  • Van Ginkel SV, Oh S, Logan B, 2005. Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy, 30: 1535–1542.
  • Zhu H, Parker W, Basnar R, Proracki A, Falletta P, Beland M, Seto P, 2008. Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges. International Journal of Hydrogen Energy, 33: 3651–3659.

Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı

Year 2019, Volume: 9 Issue: 1, 66 - 75, 01.03.2019
https://doi.org/10.21597/jist.418445

Abstract

Dünyada, kömür ve petrol türevi fosil yakıtların hızla tükenmesi ve çevre kirliliğine sebep olması gibi nedenlerden dolayı yenilenebilir enerji kaynaklarının önemi gün geçtikçe artmaktadır. Yenilenebilir enerji kaynaklarının önemli avantajları arasında; sürdürülebilirliği, çevresel olumsuz etkilerinin fosil yakıtlara göre az olması ve pek çok ülkede kolaylıkla bulunabilmesi sayılabilir. Bu kaynaklardan biri olan hidrojen, doğada bileşik olarak bulunduğundan şeker kamışı sapı, pirinç samanı, mutfak atıkları gibi farklı ham maddelerden üretilmektedir. Hidrojen yakıt türleri ile kıyaslandığında birim kütle başına en yüksek değerde enerji içeriğine sahiptir. Hidrojenin 1 kilogramı; petrolün 2,8 kilogramı veya doğalgazın 2,1 kilogramının sahip olduğu enerji ile eşdeğerdir. Yakıt olarak kullanıldığında atmosfere salınan ürün sadece su veya su buharı olmaktadır. Hidrojen gazı; güneş enerjisi, rüzgar, dalga ve biyokütle ile üretilebilmektedir. Hidrojen üretim prosesleri; elektrokimyasal yöntemler, termal yöntemler ve biyolojik hidrojen üretimi olarak sıralanabilir. Elektrokimyasal ve termal hidrojen üretim prosesleri her zaman çevre dostu değildir. Buna karşılık uygun basınç ve sıcaklıklarda gerçekleştirilebilen biyolojik hidrojen üretim prosesleri daha az enerjiye gereksinim duyar. Bu nedenle, biyolojik hidrojen üretimi alternatif olarak düşünülmelidir. Bu çalışmada, biyohidrojen üretim yöntemleri ve kullanılabilecek biyoreaktör tipleri incelenecektir.

References

  • Adessi A, Philippis RD, 2014. Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: A review. International Journal of Hydrogen Energy, 39: 3127-3141.
  • Amorim NCS, Alves I, Martins JS, Amorim ELC, 2014. Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor. Brazilian Journal of Chemical Engineering, 31(03): 603-612.
  • Aslan M, 2016. Membran Teknolojileri. T.C. Çevre ve Şehircilik Bakanlığı Türkiye Çevre Koruma Vakfı, s.200, Ankara.
  • Azbar N, Cetinkaya Dokgoz FT, Keskin T, Korkmaz KS, Syed HM, 2009. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. International Journal of Hydrogen Energy, 34: 7441–7447.
  • Bakonyi P, Nemestothy N, Lanko J, Rivera I, Buitron G, Belafi-Bako K, 2015. Simultaneous biohydrogen production and purification in a double-membrane bioreactor system. International Journal of Hydrogen Energy, 40: 1690-1697.
  • Bica´kova´ O, Straka P, 2012. Production of hydrogen from renewable resources and its effectiveness. International Journal of Hydrogen Energy, 37: 11563-11578.
  • Castello´ E, Garcı´a y Santos C, Iglesias T, Paolino G, Wenzel J, Borzacconi L, Etchebehere C, 2009. Feasibility of biohydrogen production from cheese whey using a UASB reactor: Links between microbial community and reactor performance. International Journal of Hydrogen Energy, 34: 5674-5682.
  • Cavalcante De Amorim EL, Barros AR, Zamariolli Damianovic MHR, Silva EL, 2009. Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. International Journal of Hydrogen Energy, 34: 783-790.
  • Cavalcante De Amorim EL, Sader LT, Silva EL, 2012. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. Applied Biochemistry and Biotechnology, 166: 1248-1263.
  • Chang J-S, Lee K-S, Lin P-J, 2002. Biohydrogen production with fixed-bed bioreactors. International Journal of Hydrogen Energy, 27: 1167-1174.
  • Christine Santos S, Ferreira Rosa PR, Sakamoto IK, Amancio Varesche MB, Silva EL, 2014. Continuous thermophilic hydrogen production and microbial community analysis from anaerobic digestion of diluted sugar cane stillage. International Journal of Hydrogen Energy, 39: 9000-9011.
  • Das D, Veziroglu TN, 2001. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26: 13-28.
  • Fontes Lima DM, Moreira WK, Zaiat M, 2013. Comparison of the use of sucrose and glucose as a substrate for hydrogen production in an upflow anaerobic fixed-bed reactor. International Journal of Hydrogen Energy, 38: 15074-15083.
  • Gadow SI, Jiang H, Hojo T, Li YY, 2013. Cellulosic hydrogen production and microbial community characterization in hyper-thermophilic continuous bioreactor. International Journal of Hydrogen Energy, 38: 7259-7267.
  • Hosseini SE, Wahid MA, 2016. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews, 57: 850-866.
  • İleri R, 2000. Çevre Biyoteknolojisi. Değişim Yayınları, s.225-226, Adapazarı.
  • Keskin T, Hallenbeck PC, 2012. Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresource Technology, 112: 131-136.
  • Khanna N and Das D, 2013. Biohydrogen production by dark fermentation. Advanced Review, 2: 401-421.
  • Kothari R, Singh DP, Tyagi VV, Tyagi SK, 2012. Fermentative hydrogen production – An alternative clean energy source. Renewable and Sustainable Energy Reviews, 16: 2337-2346.
  • Kumar G and Buitron G, 2017. Fermentative biohydrogen production in fixed bed reactors using ceramic and polyethylene carriers as supporting material. Energy Procedia, 142: 743-748.
  • Lay CH, Wu JH, Hsiao CL, Chang JJ, Chen CC, Lin CY, 2010. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation. International Journal of Hydrogen Energy, 35: 13445–13451.
  • Lay CH, Sen B, Chen CC, Wu JH, Lee SC, Lin CY, 2013. Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Bioresource Technology, 135: 610-615.
  • Lee KS, Tseng TS, Liu YW, Hsiao YD, 2012. Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. International Journal of Hydrogen Energy, 37: 15556-15562.
  • Lin CN, Wu SY, Chang JS, 2006. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. International Journal of Hydrogen Energy, 31: 2200-2210.
  • Munoz-Paez KM, Ruiz-Ordaz N, Garcia-Mena J, Ponce-Noyola MT, Ramos-Valdivia AC, Robles-Gonzalez IV, Villa-Tanaca L, Barrera-Cortes J, Rinderknecht-Seijas N, Poggi-Varaldo HM, 2013. Comparison of biohydrogen production in fluidized bed bioreactors at room temperature and 35 °C. International Journal of Hydrogen Energy, 38: 12570-12579.
  • Noblecourt A, Christophe G, Larroche C, Santa-Catalina G, Trably E, Fontanille P, 2017. High hydrogen production rate in a submerged membrane anaerobic bioreactor. International Journal of Hydrogen Energy, 42: 24656-24666.
  • Park J-H, Anburajan P, Kumar G, Park H-D, Kim S-H, 2017. Biohydrogen production integrated with an external dynamic membrane: A novel approach. International Journal of Hydrogen Energy, 42: 27543-27549.
  • Radjaram B, Saravanane R, 2011. Start up study of UASB reactor treating press mud for biohydrogen production. Biomass and Bioenergy, 35: 2721-2728.
  • Rahman SNA, Masdar MS, Rosli MI, Majlan EH, Husaini T, Kamarudin SK, Daud WRW, 2016. Overview biohydrogen technologies and application in fuel cell technology. Renewable and Sustainable Energy Reviews, 66: 137-162.
  • Rashid N, Rehman MSU, Memon S, Rahman ZU, Lee K, Han J-I, 2013. Current status, barriers and developments in biohydrogen production by microalgae. Renewable and Sustainable Energy Reviews, 22: 571-579.
  • Sahinkaya E, 2010. Anaerobik Arıtım Bakanlık Sunum. Harran Üniversitesi Mühendislik Fakültesi Çevre Mühendisliği Bölümü.
  • Sivagurunathan P, Anburajan P, Kumar G, Park J-H, Kim S-H, 2017. Recovering hydrogen production performance of upflow anaerobic sludge blanket reactor (UASBR) fed with galactose via repeated heat treatment strategy. Bioresource Technology, 240: 207-213.
  • Song ZX, Li XH, Li WW, Bai YX, Fan YT, Hou HW, 2014. Direct bioconversion of raw corn stalk to hydrogen by a new strain Clostridium sp. FS3. Bioresource Technology, 157: 91-97.
  • Sridevi K, Sivaraman E, Mullai P, 2014. Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor. Bioresource Technology, 165: 233-240.
  • Van Ginkel SV, Oh S, Logan B, 2005. Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy, 30: 1535–1542.
  • Zhu H, Parker W, Basnar R, Proracki A, Falletta P, Beland M, Seto P, 2008. Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges. International Journal of Hydrogen Energy, 33: 3651–3659.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Çevre Mühendisliği / Environment Engineering
Authors

Nesrin Dursun 0000-0002-7463-1038

Hakki Gülşen 0000-0002-0726-555X

Publication Date March 1, 2019
Submission Date April 25, 2018
Acceptance Date September 24, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Dursun, N., & Gülşen, H. (2019). Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. Journal of the Institute of Science and Technology, 9(1), 66-75. https://doi.org/10.21597/jist.418445
AMA Dursun N, Gülşen H. Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. J. Inst. Sci. and Tech. March 2019;9(1):66-75. doi:10.21597/jist.418445
Chicago Dursun, Nesrin, and Hakki Gülşen. “Biyohidrojen Üretim Yöntemleri Ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı”. Journal of the Institute of Science and Technology 9, no. 1 (March 2019): 66-75. https://doi.org/10.21597/jist.418445.
EndNote Dursun N, Gülşen H (March 1, 2019) Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. Journal of the Institute of Science and Technology 9 1 66–75.
IEEE N. Dursun and H. Gülşen, “Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı”, J. Inst. Sci. and Tech., vol. 9, no. 1, pp. 66–75, 2019, doi: 10.21597/jist.418445.
ISNAD Dursun, Nesrin - Gülşen, Hakki. “Biyohidrojen Üretim Yöntemleri Ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı”. Journal of the Institute of Science and Technology 9/1 (March 2019), 66-75. https://doi.org/10.21597/jist.418445.
JAMA Dursun N, Gülşen H. Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. J. Inst. Sci. and Tech. 2019;9:66–75.
MLA Dursun, Nesrin and Hakki Gülşen. “Biyohidrojen Üretim Yöntemleri Ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı”. Journal of the Institute of Science and Technology, vol. 9, no. 1, 2019, pp. 66-75, doi:10.21597/jist.418445.
Vancouver Dursun N, Gülşen H. Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. J. Inst. Sci. and Tech. 2019;9(1):66-75.