Research Article
BibTex RIS Cite
Year 2019, Volume: 9 Issue: 2, 1035 - 1045, 01.06.2019
https://doi.org/10.21597/jist.543626

Abstract

References

  • Arijit B, Kunduru KR, Doppalapudi S, Domb AJ, and Khan W, 2016. 'Poly(lactic acid) based hydrogels', Advanced Drug Delivery Reviews, 107: 192-205.
  • Cama G, Mogosanu DE, Houben A, and Dubruel P, 2017. '3 - Synthetic biodegradable medical polyesters: Poly-ε-caprolactone.' in Xiang Zhang (ed.), Science and Principles of Biodegradable and Bioresorbable Medical Polymers (Woodhead Publishing).
  • Camila G, Dozoretz P, Pedro H, Araújo H, Sandra R, Ferreira S, and Oliveira D 2019. 'N-acetylcysteine side-chain functionalization of poly(globalide-co-ε-caprolactone) through thiol-ene reaction', Materials Science and Engineering: C, 94: 477-83.
  • Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, and Auras R, 2016. 'Poly(lactic acid)—Mass production, processing, industrial applications, and end of life', Advanced Drug Delivery Reviews, 107: 333-66.
  • Dalgic AD, Deniz A, Karatas A Tezcaner A, and Keskin D, 2019. 'Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering', Materials Science and Engineering: C, 100: 735-46.
  • Dominik C, Sydow S, Schmidt N, Behrens P, Roger Y, Hoffmann A, Hoheisel AL, Glasmacher B, Hänsch R, and Menzel H, 2018. 'Attachment of nanoparticulate drug-release systems on poly(ε-caprolactone) nanofibers via a graftpolymer as interlayer', Colloids and Surfaces B: Biointerfaces, 163: 309-20.
  • Emily RF, Rosen WD, and Shofner ML, 2019. 'Fast scanning calorimetry for semicrystalline polymers in fused deposition modeling', Polymer, 166: 196-205.
  • Fan-Long J, Rong-Rong H, and Park SJ, 2019. 'Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review', Composites Part B: Engineering, 164: 287-96.
  • Joanna D, Jacewicz D, Sielicka A, and Chmurzyński L, 2019. 'Characterization of polymers based on differential scanning calorimetry based techniques', TrAC Trends in Analytical Chemistry, 110: 51-56.
  • Ivy G, and Chow WS, 2018. 'Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review', Food Packaging and Shelf Life, 17: 150-61.
  • Krzysztof M, 2014. 'Characterization of multi-injected poly(ε-caprolactone)', Polymer Testing, 33: 116-20.
  • Kumar KN, Nagar MK, Mudenur C, Kalamdhad A, and Katiyar V, 2019. 'Biodegradation of modified Poly(lactic acid) based biocomposite films under thermophilic composting conditions', Polymer Testing.
  • Lynd, NA, Meuler AJ, and Hillmyer MA, 2008. 'Polydispersity and block copolymer self-assembly', Progress in Polymer Science, 33: 875-93.
  • Su-Hee J,Dae-Hoon K, Park DH, Kim OY, and Hwang SH, 2018. 'Construction of sustainable polyurethane-based gel-coats containing poly(ε-caprolactone)-grafted lignin and their coating performance', Progress in Organic Coatings, 120: 234-39.
  • Xiang L, Zhou L, Heng P, Xiao J, Lv J, Zhang Q, Hickey ME, Qin T, and Jinyi W. 2019. 'Lecithin doped electrospun poly(lactic acid)-thermoplastic polyurethane fibers for hepatocyte viability improvement', Colloids and Surfaces B: Biointerfaces, 175: 264-71.
  • Shadpour M, and Hatami M, 2017. 'Condensation polymer/layered double hydroxide NCs: Preparation, characterization, and utilizations', European Polymer Journal, 90: 273-300.
  • Murphy SH, Marsh JJ, Kelly CA, Leeke GA, and Jenkins MJ, 2017. 'CO2 assisted blending of poly(lactic acid) and poly(ε-caprolactone)', European Polymer Journal, 88: 34-43. Ningjing W, Guoliang F, Yang Y, Xia M, Yun H, and Wang Q, 2019. 'Fire safety enhancement of a highly efficient flame retardant poly(phenylphosphoryl phenylenediamine) in biodegradable poly(lactic acid)', Journal of Hazardous Materials, 363: 1-9.
  • Nofar M, Sacligil D, Carreau PJ, Kamal MR, and Heuzey MC, 2019. 'Poly (lactic acid) blends: Processing, properties and applications', International Journal of Biological Macromolecules, 125: 307-60.
  • Rad P, Mokhtari Z J, and Abbasi M, 2018. 'Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering', Materials Science and Engineering: C, 93: 356-66.
  • Sajjad S, Huneault MA., Li H, and Park CB, 2012. 'Poly(lactic acid) crystallization', Progress in Polymer Science, 37: 1657-77.
  • Sinha VR, Bansal K, Kaushik R, Kumria R, and Trehan A, 2004. 'Poly-ϵ-caprolactone microspheres and nanospheres: an overview', International Journal of Pharmaceutics, 278: 1-23.
  • Sisson, Adam L., Duygu Ekinci, and Andreas Lendlein. 2013. 'The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures', Polymer, 54: 4333-50.
  • Uruchaya S, Fabiola IF, Auras R, Selke S, Rubino M, and Lim LT, 2018. 'Poly(lactic acid) mass transfer properties', Progress in Polymer Science, 86: 85-121.
  • Xiansong W, Liu S, Wang Q, Li J, and Wang. G, 2018. 'Synthesis and characterization of poly(ethylene 2,5-furandicarboxylate-co-ε-caprolactone) copolyesters', European Polymer Journal, 109: 191-97.

Synthesis and Characterization of Poly (lactic acid-b- ε-caprolactone) Block Copolymers

Year 2019, Volume: 9 Issue: 2, 1035 - 1045, 01.06.2019
https://doi.org/10.21597/jist.543626

Abstract

In this study, poly (lactic acid-b- ε -caprolactone) was synthesized with the ring opening polymerization of ε-caprolactone using of the poly lactic acid with the presence of DBTDL catalyst. In order to achieve that, poly lactic acid was synthesized by the condensation from the polymerization of the lactic acid with the SnCI2 catalyst. Poly (lactic acid-b-ε-caprolactone) block co-polymer was synthesized from the poly lactic acid (PLA) by changing some polymerization parameters such as polymer and monomer amounts and polymerization time. Block copolymers were characterized by using 1H-NMR, 13C-NMR, FT-IR, DSC and GPC chromatography methods.

References

  • Arijit B, Kunduru KR, Doppalapudi S, Domb AJ, and Khan W, 2016. 'Poly(lactic acid) based hydrogels', Advanced Drug Delivery Reviews, 107: 192-205.
  • Cama G, Mogosanu DE, Houben A, and Dubruel P, 2017. '3 - Synthetic biodegradable medical polyesters: Poly-ε-caprolactone.' in Xiang Zhang (ed.), Science and Principles of Biodegradable and Bioresorbable Medical Polymers (Woodhead Publishing).
  • Camila G, Dozoretz P, Pedro H, Araújo H, Sandra R, Ferreira S, and Oliveira D 2019. 'N-acetylcysteine side-chain functionalization of poly(globalide-co-ε-caprolactone) through thiol-ene reaction', Materials Science and Engineering: C, 94: 477-83.
  • Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, and Auras R, 2016. 'Poly(lactic acid)—Mass production, processing, industrial applications, and end of life', Advanced Drug Delivery Reviews, 107: 333-66.
  • Dalgic AD, Deniz A, Karatas A Tezcaner A, and Keskin D, 2019. 'Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering', Materials Science and Engineering: C, 100: 735-46.
  • Dominik C, Sydow S, Schmidt N, Behrens P, Roger Y, Hoffmann A, Hoheisel AL, Glasmacher B, Hänsch R, and Menzel H, 2018. 'Attachment of nanoparticulate drug-release systems on poly(ε-caprolactone) nanofibers via a graftpolymer as interlayer', Colloids and Surfaces B: Biointerfaces, 163: 309-20.
  • Emily RF, Rosen WD, and Shofner ML, 2019. 'Fast scanning calorimetry for semicrystalline polymers in fused deposition modeling', Polymer, 166: 196-205.
  • Fan-Long J, Rong-Rong H, and Park SJ, 2019. 'Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review', Composites Part B: Engineering, 164: 287-96.
  • Joanna D, Jacewicz D, Sielicka A, and Chmurzyński L, 2019. 'Characterization of polymers based on differential scanning calorimetry based techniques', TrAC Trends in Analytical Chemistry, 110: 51-56.
  • Ivy G, and Chow WS, 2018. 'Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review', Food Packaging and Shelf Life, 17: 150-61.
  • Krzysztof M, 2014. 'Characterization of multi-injected poly(ε-caprolactone)', Polymer Testing, 33: 116-20.
  • Kumar KN, Nagar MK, Mudenur C, Kalamdhad A, and Katiyar V, 2019. 'Biodegradation of modified Poly(lactic acid) based biocomposite films under thermophilic composting conditions', Polymer Testing.
  • Lynd, NA, Meuler AJ, and Hillmyer MA, 2008. 'Polydispersity and block copolymer self-assembly', Progress in Polymer Science, 33: 875-93.
  • Su-Hee J,Dae-Hoon K, Park DH, Kim OY, and Hwang SH, 2018. 'Construction of sustainable polyurethane-based gel-coats containing poly(ε-caprolactone)-grafted lignin and their coating performance', Progress in Organic Coatings, 120: 234-39.
  • Xiang L, Zhou L, Heng P, Xiao J, Lv J, Zhang Q, Hickey ME, Qin T, and Jinyi W. 2019. 'Lecithin doped electrospun poly(lactic acid)-thermoplastic polyurethane fibers for hepatocyte viability improvement', Colloids and Surfaces B: Biointerfaces, 175: 264-71.
  • Shadpour M, and Hatami M, 2017. 'Condensation polymer/layered double hydroxide NCs: Preparation, characterization, and utilizations', European Polymer Journal, 90: 273-300.
  • Murphy SH, Marsh JJ, Kelly CA, Leeke GA, and Jenkins MJ, 2017. 'CO2 assisted blending of poly(lactic acid) and poly(ε-caprolactone)', European Polymer Journal, 88: 34-43. Ningjing W, Guoliang F, Yang Y, Xia M, Yun H, and Wang Q, 2019. 'Fire safety enhancement of a highly efficient flame retardant poly(phenylphosphoryl phenylenediamine) in biodegradable poly(lactic acid)', Journal of Hazardous Materials, 363: 1-9.
  • Nofar M, Sacligil D, Carreau PJ, Kamal MR, and Heuzey MC, 2019. 'Poly (lactic acid) blends: Processing, properties and applications', International Journal of Biological Macromolecules, 125: 307-60.
  • Rad P, Mokhtari Z J, and Abbasi M, 2018. 'Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering', Materials Science and Engineering: C, 93: 356-66.
  • Sajjad S, Huneault MA., Li H, and Park CB, 2012. 'Poly(lactic acid) crystallization', Progress in Polymer Science, 37: 1657-77.
  • Sinha VR, Bansal K, Kaushik R, Kumria R, and Trehan A, 2004. 'Poly-ϵ-caprolactone microspheres and nanospheres: an overview', International Journal of Pharmaceutics, 278: 1-23.
  • Sisson, Adam L., Duygu Ekinci, and Andreas Lendlein. 2013. 'The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures', Polymer, 54: 4333-50.
  • Uruchaya S, Fabiola IF, Auras R, Selke S, Rubino M, and Lim LT, 2018. 'Poly(lactic acid) mass transfer properties', Progress in Polymer Science, 86: 85-121.
  • Xiansong W, Liu S, Wang Q, Li J, and Wang. G, 2018. 'Synthesis and characterization of poly(ethylene 2,5-furandicarboxylate-co-ε-caprolactone) copolyesters', European Polymer Journal, 109: 191-97.
There are 24 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Serhat Öztürk This is me 0000-0003-3865-5806

İsamail Cakmak This is me 0000-0002-3191-7570

Ahmet Turan Tekeş 0000-0002-9942-7367

Ümit Yıldıko 0000-0001-8627-9038

Publication Date June 1, 2019
Submission Date March 23, 2019
Acceptance Date April 4, 2019
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Öztürk, S., Cakmak, İ., Tekeş, A. T., Yıldıko, Ü. (2019). Synthesis and Characterization of Poly (lactic acid-b- ε-caprolactone) Block Copolymers. Journal of the Institute of Science and Technology, 9(2), 1035-1045. https://doi.org/10.21597/jist.543626
AMA Öztürk S, Cakmak İ, Tekeş AT, Yıldıko Ü. Synthesis and Characterization of Poly (lactic acid-b- ε-caprolactone) Block Copolymers. J. Inst. Sci. and Tech. June 2019;9(2):1035-1045. doi:10.21597/jist.543626
Chicago Öztürk, Serhat, İsamail Cakmak, Ahmet Turan Tekeş, and Ümit Yıldıko. “Synthesis and Characterization of Poly (lactic Acid-B- -Caprolactone) Block Copolymers”. Journal of the Institute of Science and Technology 9, no. 2 (June 2019): 1035-45. https://doi.org/10.21597/jist.543626.
EndNote Öztürk S, Cakmak İ, Tekeş AT, Yıldıko Ü (June 1, 2019) Synthesis and Characterization of Poly (lactic acid-b- ε-caprolactone) Block Copolymers. Journal of the Institute of Science and Technology 9 2 1035–1045.
IEEE S. Öztürk, İ. Cakmak, A. T. Tekeş, and Ü. Yıldıko, “Synthesis and Characterization of Poly (lactic acid-b- ε-caprolactone) Block Copolymers”, J. Inst. Sci. and Tech., vol. 9, no. 2, pp. 1035–1045, 2019, doi: 10.21597/jist.543626.
ISNAD Öztürk, Serhat et al. “Synthesis and Characterization of Poly (lactic Acid-B- -Caprolactone) Block Copolymers”. Journal of the Institute of Science and Technology 9/2 (June 2019), 1035-1045. https://doi.org/10.21597/jist.543626.
JAMA Öztürk S, Cakmak İ, Tekeş AT, Yıldıko Ü. Synthesis and Characterization of Poly (lactic acid-b- ε-caprolactone) Block Copolymers. J. Inst. Sci. and Tech. 2019;9:1035–1045.
MLA Öztürk, Serhat et al. “Synthesis and Characterization of Poly (lactic Acid-B- -Caprolactone) Block Copolymers”. Journal of the Institute of Science and Technology, vol. 9, no. 2, 2019, pp. 1035-4, doi:10.21597/jist.543626.
Vancouver Öztürk S, Cakmak İ, Tekeş AT, Yıldıko Ü. Synthesis and Characterization of Poly (lactic acid-b- ε-caprolactone) Block Copolymers. J. Inst. Sci. and Tech. 2019;9(2):1035-4.