Research Article
BibTex RIS Cite

Antihypertensive Drug Atenolol Selective Potentiometric Microsensor

Year 2019, Volume: 9 Issue: 3, 1528 - 1538, 01.09.2019
https://doi.org/10.21597/jist.535564

Abstract

In this study, all solid-state type potentiometric PVC membrane selective microsensor was developed for atenolol which is an antihypertensive drug active substance. Atenolol-tetraphenylborate ion-pair was used as an ionophore in the structure of the sensor membrane. It was determined that the sensor membrane at the ratio of 62% dioctyl sebacate, 30% polyvinyl chloride and 4% ion-pair performed the best potentiometric performance. In a wide concentration range (5x10-5-1x10-2 mol L-1), the slope, detection limit, pH range, response time, and life-time of the sensor were determined as 36.6±2.6 mV (R2=0.996), 1.26 x10-5 mol L-1, pH:3-8, 10-12 s, and ~6 weeks, respectively. The prepared microsensor was successfully utilized for the determination of atenolol in pharmaceutical drug sample. It was observed that the obtained results were in agreement with the results obtained by the UV method at 95% confidence level.

References

  • Al-Arfaj NA, Al-Abdulkareem E, Aly FA, 2009. Determination of Enalapril Maleate and Atenolol in Their Pharmaceutical Products and in Biological Fluids by Flow-Injection Chemiluminescence. Luminescence, 24 (6): 422–428.
  • Al-Ghannam SM, 2006. A Simple Spectrophotometric Method for the Determination of β-blockers in Dosage Forms. Journal of Pharmaceutical and Biomedical Analysis, 40 (1): 151–156.
  • Argekar AP, Powar S, 2000. Simultaneous Determination of Atenolol and Amlodipine in Tablets by High-Performance Thin-Layer Chromatography. Journal of Pharmaceutical and Biomedical Analysis, 21 (6): 1137–1142.
  • Arias R, Jimenez R, Alonso R, Telez M, Arrieta I, Flores P, Ortiz-Lastra E, 2001. Determination of the β-blocker Atenolol in Plasma by Capillary Zone Electrophoresis. Journal of Chromatography A, 916 (1-2): 297–304.
  • Buck RP, Lindner E, 1994. IUPAC Analytical Chemistry Division, Commission on Electroanalytical Chemistry, Recomendations for Nomenclature of Ion-selective Electrodes. Pure and Applied Chemistry, 66: 2527-2536.
  • Buhlmann P; Pretsch E, Bakker E, 1988. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chemical Reviews, 98 (4): 1593-1688.
  • Caban M, Stepnowski P, Kwiatkowski M, Migowska N, Kumirska J, 2011. Determination of β-blockers and β-agonists using Gas Chromatography and Gas Chromatography–Mass Spectrometry: A comparative Study of the Derivatization Step. Journal of Chromatography A, 1218 (44): 8110–8122.
  • Castillo M, Gambino L, Polizzi G, Andreetta H, Bruzzone L, 2007. Determination of Atenolol by the Micelle-stabilized Room-Temperature Phosphorescence Methodology. Luminescence, 22 (6): 527–533.
  • Chiap P, Hubert P, Boulanger B, Crommen J, 1999. Validation of an Automatedmethod for the Liquid Chromatographic Determination of Atenolol in Plasma: Application of a new Validation Protocol. Analytica Chimica Acta, 391 (2): 227–238.
  • Çoldur F, Boz H, Önder A, 2015. Bütünüyle Katı Hal PVC Membran İzoniazid-Seçici Potansiyometrik Sensör, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (1): 29-39.
  • Gros M, Pizzolato TM, Petrovic M, Lopezdealda MJ, Barcelo D, 2008. Trace Level Determination of beta-blockers in Waste Waters by Highly Selective Molecularly Imprinted Polymers Extraction Followed by Liquid Chromatography–quadrupole-linear Ion Trap Mass Spectrometry. Journal of Chromatography A, 1189 (1-2): 374–384.
  • Hassan SS, Abou-Sekkina MM, El-Ries MA, Wassel A, 2003. Polymeric Matrix Membrane Sensors for Sensitive Potentiometric Determination of some β-blockers in Pharmaceutical Preparations. Journal of Pharmaceutical and Biomedical Analysis, 32 (1): 175-180.
  • Isildak I, Yolcu M, Isildak O, Demirel N, Topal G, Hosgoren H, 2004. All-Solid-State PVC Membrane Ag+-Selective Electrodes based on diaza-18-Crown-6 Compounds. Microchimica Acta, 144 (1-3): 177-181.
  • Lee HB, Sarafin K, Peart TE, 2007. Determination of β-blockers and β2-agonists in Sewage by Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Journal of Chromatography A, 1148 (2): 158–167.
  • Nassory NS, Maki SA, Ali MA, 2007. Preparation and Characterization of an a PVC Matrix Membrane. Turkish Journal of Chemistry, 31 (1): 75-82.
  • Shamsipur M, Jalali F, Haghgoo S, 2005. Preparation of an Atenolol Ion-selective Electrode and its Application to Pharmaceutical Analysis. Analytical Letters, 38(3): 401-410.
  • Shanks RG, 1984. The Discovery of Beta-Adrenoceptor Blocking-Drugs. Trends In Pharmacological Sciences, 5 (10): 405-409.
  • Skoog, DA, West, DM, Holler, FJ, Crouch, SR, 2004. Fundamentals of Analytical Chemistry. Analitik Kimya Temel İlkeler, 8. Baskı, (Çeviri Editörleri: Esma Kılıç, Hamza Yılmaz). Bilim Yayıncılık, s.620-621, Ankara-Türkiye.
  • Tang, XC, Wang, PY, Buchter, G, 2018. Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review. Environments, 5 (95): 1-14.
  • Wadworth AN, Murdoch D, Brodgen RN, 1991. Atenolol. A reappraisal of its Pharmacological Properties and Therapeutic use in Cardiovascular Disorders. Drugs, 42 (3): 468-510.
  • Wang Y, Wu Q, Cheng M, Cai C, 2011. Determination of β-blockers in Pharmaceutical and Human Urine by Capillary Electrophoresis with Electrochemiluminescence Detection and Studies on the Pharmacokinetics, Journal of Chromatography B, 879 (13-14): 871–877.

Antihipertansif İlaç Atenolole Seçici Potansiyometrik Mikrosensör

Year 2019, Volume: 9 Issue: 3, 1528 - 1538, 01.09.2019
https://doi.org/10.21597/jist.535564

Abstract

Bu çalışmada antihipertansif bir ilaç etken madde olan atenolol için tümüyle katı-hal tipi potansiyometrik PVC membran seçici mikrosensör geliştirildi. Sensörün membran yapısı içerisinde iyonofor madde olarak atenolol-tetrafenilborat iyon çifti kullanıldı. Ağırlıkça % 62 dioktil sebekat, % 30 polivinil klorür ve % 8 iyon-çiftinden oluşan membran bileşimine sahip atenolol-seçici sensörün en iyi performansı sergilediği belirlendi. Geniş doğrusal çalışma aralığında (5x10-5-1x10-2 mol L-1), sensörün eğim değeri 36.6±2.6 mV (R2=0.996), tayin limiti 1.26 x10-5 mol L-1, pH çalışma aralığı 3-8, cevap zamanı 10-12 s ve kullanım ömrü yaklaşık 6 hafta olarak belirlendi. Hazırlanan mikrosensör kullanılarak farmasötik ilaç numunesinin içerdiği atenolol miktarı başarıyla tayin edildi. Elde edilen sonuçların % 95 güven seviyesinde UV metodu ile elde edilen sonuçlarla uyum içerisinde olduğu görüldü.

References

  • Al-Arfaj NA, Al-Abdulkareem E, Aly FA, 2009. Determination of Enalapril Maleate and Atenolol in Their Pharmaceutical Products and in Biological Fluids by Flow-Injection Chemiluminescence. Luminescence, 24 (6): 422–428.
  • Al-Ghannam SM, 2006. A Simple Spectrophotometric Method for the Determination of β-blockers in Dosage Forms. Journal of Pharmaceutical and Biomedical Analysis, 40 (1): 151–156.
  • Argekar AP, Powar S, 2000. Simultaneous Determination of Atenolol and Amlodipine in Tablets by High-Performance Thin-Layer Chromatography. Journal of Pharmaceutical and Biomedical Analysis, 21 (6): 1137–1142.
  • Arias R, Jimenez R, Alonso R, Telez M, Arrieta I, Flores P, Ortiz-Lastra E, 2001. Determination of the β-blocker Atenolol in Plasma by Capillary Zone Electrophoresis. Journal of Chromatography A, 916 (1-2): 297–304.
  • Buck RP, Lindner E, 1994. IUPAC Analytical Chemistry Division, Commission on Electroanalytical Chemistry, Recomendations for Nomenclature of Ion-selective Electrodes. Pure and Applied Chemistry, 66: 2527-2536.
  • Buhlmann P; Pretsch E, Bakker E, 1988. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chemical Reviews, 98 (4): 1593-1688.
  • Caban M, Stepnowski P, Kwiatkowski M, Migowska N, Kumirska J, 2011. Determination of β-blockers and β-agonists using Gas Chromatography and Gas Chromatography–Mass Spectrometry: A comparative Study of the Derivatization Step. Journal of Chromatography A, 1218 (44): 8110–8122.
  • Castillo M, Gambino L, Polizzi G, Andreetta H, Bruzzone L, 2007. Determination of Atenolol by the Micelle-stabilized Room-Temperature Phosphorescence Methodology. Luminescence, 22 (6): 527–533.
  • Chiap P, Hubert P, Boulanger B, Crommen J, 1999. Validation of an Automatedmethod for the Liquid Chromatographic Determination of Atenolol in Plasma: Application of a new Validation Protocol. Analytica Chimica Acta, 391 (2): 227–238.
  • Çoldur F, Boz H, Önder A, 2015. Bütünüyle Katı Hal PVC Membran İzoniazid-Seçici Potansiyometrik Sensör, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (1): 29-39.
  • Gros M, Pizzolato TM, Petrovic M, Lopezdealda MJ, Barcelo D, 2008. Trace Level Determination of beta-blockers in Waste Waters by Highly Selective Molecularly Imprinted Polymers Extraction Followed by Liquid Chromatography–quadrupole-linear Ion Trap Mass Spectrometry. Journal of Chromatography A, 1189 (1-2): 374–384.
  • Hassan SS, Abou-Sekkina MM, El-Ries MA, Wassel A, 2003. Polymeric Matrix Membrane Sensors for Sensitive Potentiometric Determination of some β-blockers in Pharmaceutical Preparations. Journal of Pharmaceutical and Biomedical Analysis, 32 (1): 175-180.
  • Isildak I, Yolcu M, Isildak O, Demirel N, Topal G, Hosgoren H, 2004. All-Solid-State PVC Membrane Ag+-Selective Electrodes based on diaza-18-Crown-6 Compounds. Microchimica Acta, 144 (1-3): 177-181.
  • Lee HB, Sarafin K, Peart TE, 2007. Determination of β-blockers and β2-agonists in Sewage by Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Journal of Chromatography A, 1148 (2): 158–167.
  • Nassory NS, Maki SA, Ali MA, 2007. Preparation and Characterization of an a PVC Matrix Membrane. Turkish Journal of Chemistry, 31 (1): 75-82.
  • Shamsipur M, Jalali F, Haghgoo S, 2005. Preparation of an Atenolol Ion-selective Electrode and its Application to Pharmaceutical Analysis. Analytical Letters, 38(3): 401-410.
  • Shanks RG, 1984. The Discovery of Beta-Adrenoceptor Blocking-Drugs. Trends In Pharmacological Sciences, 5 (10): 405-409.
  • Skoog, DA, West, DM, Holler, FJ, Crouch, SR, 2004. Fundamentals of Analytical Chemistry. Analitik Kimya Temel İlkeler, 8. Baskı, (Çeviri Editörleri: Esma Kılıç, Hamza Yılmaz). Bilim Yayıncılık, s.620-621, Ankara-Türkiye.
  • Tang, XC, Wang, PY, Buchter, G, 2018. Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review. Environments, 5 (95): 1-14.
  • Wadworth AN, Murdoch D, Brodgen RN, 1991. Atenolol. A reappraisal of its Pharmacological Properties and Therapeutic use in Cardiovascular Disorders. Drugs, 42 (3): 468-510.
  • Wang Y, Wu Q, Cheng M, Cai C, 2011. Determination of β-blockers in Pharmaceutical and Human Urine by Capillary Electrophoresis with Electrochemiluminescence Detection and Studies on the Pharmacokinetics, Journal of Chromatography B, 879 (13-14): 871–877.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Murat Yolcu 0000-0003-3477-3792

Nihal Yardım Çelik This is me 0000-0002-0779-4902

Publication Date September 1, 2019
Submission Date March 5, 2019
Acceptance Date June 15, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite

APA Yolcu, M., & Yardım Çelik, N. (2019). Antihipertansif İlaç Atenolole Seçici Potansiyometrik Mikrosensör. Journal of the Institute of Science and Technology, 9(3), 1528-1538. https://doi.org/10.21597/jist.535564
AMA Yolcu M, Yardım Çelik N. Antihipertansif İlaç Atenolole Seçici Potansiyometrik Mikrosensör. J. Inst. Sci. and Tech. September 2019;9(3):1528-1538. doi:10.21597/jist.535564
Chicago Yolcu, Murat, and Nihal Yardım Çelik. “Antihipertansif İlaç Atenolole Seçici Potansiyometrik Mikrosensör”. Journal of the Institute of Science and Technology 9, no. 3 (September 2019): 1528-38. https://doi.org/10.21597/jist.535564.
EndNote Yolcu M, Yardım Çelik N (September 1, 2019) Antihipertansif İlaç Atenolole Seçici Potansiyometrik Mikrosensör. Journal of the Institute of Science and Technology 9 3 1528–1538.
IEEE M. Yolcu and N. Yardım Çelik, “Antihipertansif İlaç Atenolole Seçici Potansiyometrik Mikrosensör”, J. Inst. Sci. and Tech., vol. 9, no. 3, pp. 1528–1538, 2019, doi: 10.21597/jist.535564.
ISNAD Yolcu, Murat - Yardım Çelik, Nihal. “Antihipertansif İlaç Atenolole Seçici Potansiyometrik Mikrosensör”. Journal of the Institute of Science and Technology 9/3 (September 2019), 1528-1538. https://doi.org/10.21597/jist.535564.
JAMA Yolcu M, Yardım Çelik N. Antihipertansif İlaç Atenolole Seçici Potansiyometrik Mikrosensör. J. Inst. Sci. and Tech. 2019;9:1528–1538.
MLA Yolcu, Murat and Nihal Yardım Çelik. “Antihipertansif İlaç Atenolole Seçici Potansiyometrik Mikrosensör”. Journal of the Institute of Science and Technology, vol. 9, no. 3, 2019, pp. 1528-3, doi:10.21597/jist.535564.
Vancouver Yolcu M, Yardım Çelik N. Antihipertansif İlaç Atenolole Seçici Potansiyometrik Mikrosensör. J. Inst. Sci. and Tech. 2019;9(3):1528-3.