Research Article
BibTex RIS Cite

2,6- Kinolindiol Bileşiğinin Antioksidan Kapasitesinin Belirlenmesi

Year 2019, Volume: 9 Issue: 3, 1520 - 1527, 01.09.2019
https://doi.org/10.21597/jist.553129

Abstract

Kinolin grubu bileşikleri, canlı metabolizması, boya ve ilaç sektöründe geniş çapta kullanılmaya başlamıştır. Bu nedenle çeşitli kinolin türevleri sentezlenmekte ve sentez yöntemleri geliştirilmektedir. Endüstriel açıdan kinolin bileşiklerinin sentezi ayrı bir alan oluşturmaktadır. 2,6-kinolindiol bir kinolin türevidir. Bu çalışmada; Fe3+-Fe2+ transformasyonu metoduna göre indirgeme kapasitesi, CUPRAK metoduna göre Cu2+-Cu+ indirgeme kapasitesi, FRAP metoduna göre Fe3+-TPTZ indirgeme kapasitesi, bipiridil reaktifi kullanarak ferröz iyonları (Fe2+) şelatlama aktivitesi, DPPH, ABTS, DMPD radikal giderme aktiviteleri ile süperoksit anyon radikalleri (O2.-) giderme aktivitesi gibi farklı biyoanalitikal metotlar kullanıldı. Ayrıca BHA, BHT, α-tokoferol ve troloks referans antioksidan olarak kullanıldı. Bu madde için ABTS radikal giderme IC50 inhibisyon değeri 3.39 μg mL-1 olarak hesaplandı. BHA, α-Tocopherol, trolox, BHT ve gibi standart antioksidanlar, sırasıyla 2.59, 4.44, 7.07 ve 32.36 μg mL-1 olarak ABTS radikal giderme inhibisyonları sergiledi. Çalışmalar 2,6-kinolindiolün, etkili bir antioksidana sahip olduğunu açıkça göstermiştir.

References

  • Aksu K, Topal F, Gulcin I, Tümer F, Göksu S, 2015. Acetylcholinesterase inhibitory and antioxidant activities of novel symmetric sulfamides derived from phenethylamines. Archiv der Pharmazie, 348 (6): 446-455.
  • Alho H, Leinonen J, 1999. Total antioxidant activity measured by chemiluminescence methods. Methods in Enzymology, 299, 3-15.
  • Apak R, Güçlü K, Özyürek M, Karademir SE, 2004. A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: The CUPRAC method. Journal of Agricultural and Food Chemistry, 52:7970-7981.
  • Bursal E, Köksal E, Gulcin I, Bilsel G, Gören AC, 2013. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Research International, 51(1): 66-74.
  • Çakmakçı S, Topdaş EF, Kalın P, Han H, Şekerci P, Polat Kose L, Gulcin I, 2015. Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. International Journal of Food Science Technology, 50 (2):472-481.
  • Davies KJ, 1995. Oxidative stress: the paradox of aerobic life. Biochemical Society Symposium, 61, 1-31.
  • Dinis TCP, Madeira VMC, Almeida LM, 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 315:161-169.
  • Eberhardt MV, Lee CY, Liu RH, 2000. Antioxidant activity of fresh apples. Nature, 405(6689): 903-904.
  • Fessenden RJ, Fessenden JS, Logue MW, 2001. Organic Chemistry, 6th edition, pp. 808. Güneş Kitabevi, Ankara-Turkey.
  • Fogliano V, Verde V, Randazzo G, Ritieni A. 1999. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. Journal of Agricultural and Food Chemistry, 47(3):1035-1040.
  • Garibov E., Taslimi P, Sujayev A, Bingöl Z, Çetinkaya S, Gulcin I, Beydemir S, Farzaliyev V, Alwasel SH, Supuran CT, 2016. Synthesis of 4,5-disubstituted-2-thioxo-1,2,3,4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(S3): 1-9.
  • Göçer H, Gulcin I, 2011. Caffeic acid phenethyl ester (CAPE): Correlation of structure and antioxidant properties. International Journal of Food Science Nutrion, 62(8):821-825.
  • Gulcin I, 2005. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. International Journal of Food Science Nutrion, 56(7):491-499.
  • Gulcin I, 2007. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids, 32(3): 431-438.
  • Gulcin I, 2010. Antioxidant properties of resveratrol: A structure-activity insight. Innovative Food Science and Emerging Technologies, 11(1): 210-218.
  • Gulcin I, 2012. Antioxidant activity of food constituents-An overview. Archives of Toxicology, 86(3):345-391.
  • Gulcin I, Beydemir S, Sat İG, Kuvrevioglu Öİ, 2005. Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Aliment Hung. 34(2):193-202.
  • Gulcin I, Beydemir S, Topal F, Gagua N, Bakuridze A, Bayram R, Gepdiremen A, 2012. Apoptotic, antioxidant and antiradical effects of majdine and isomajdine from Vinca herbacea Waldst. and kit. Journal of Enzyme Inhibition Medicinal Chemistry, 27(4):587-594.
  • Gulcin I, Elias R, Gepdiremen A, Boyer L, Köksal E, 2007b. A comparative study on the antioxidant activity of fringe tree (Chionanthus virginicus L.) extracts. African Journal of Biotechnology, 6(4): 410-418.
  • Gulcin I, Elias R, Gepdiremen A, Chea A, Topal F, 2010. Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: Cepharanthine and fangchinoline. Journal of Enzyme Inhibition Medicinal Chemistry, 25(1):44-53.
  • Gulcin I, Mshvildadze V, Gepdiremen A, Elias R, 2004c. Antioxidant activity of saponins isolated from ivy: α-Hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside F. Planta Medica, 70(6): 561-563.
  • Gulcin I, Şat İG, Beydemir Ş, Elmastaş M, Küfrevioğlu Öİ, 2004. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry, 87:393-400.
  • Gulcin I, Topal F, Çakmakçi R, Gören AC, Bilsel M, Erdoğan U, 2011. Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76:C585-C593.
  • Halliwell B, 1997. Antioxidants in human health and disease. Annual Review of Nutrition, 16: 33-50.
  • Hart H, Craine LE, Hart, DJ, Hadad CM, 2011. Organic Chemistry, 12th edition, pp.393-394, Palme Publishing, Ankara-Turkey.
  • Hudson JF, 1990. Food antioxidants. Elsevier Applied Food Science, London.
  • Köksal E, Gulcin I, Öztürk Sarıkaya SB, Bursal E. 2009. On the in vitro antioxidant activity of silymarine. Journal of Enzyme Inhibition Medicinal Chemistry, 24(2):395-405.
  • Miller DD, 1996. Minerals. In “Food Chemistry”, O.R. Fennema (Ed), pp: 617-649. Marcel Dekker, New York.
  • Öztaşkın N, Çetinkaya Y, Taslimi P, Göksu S, Gulcin I, 2015. Antioxidant and acetylcholinesterase inhibition properties of novel bromophenol derivatives. Bioorganic Chemistry, 60: 49-57.
  • Ökten S, Eyigün D, Çakmak O, 2015. Synthesıs of Brominated Quinolines. Journal of Engineering and Natural Sciences, Sigma 33, 8-15.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10):1231-1237.
  • Sherwin ER, 1990. In: Branen, A.L., Davidson, P.M., Salminen, S., (eds) Food additives, Marvel Dekker Incorporated, 139-193, New York.
  • Taslimi P, Gulcin I, 2018. Antioxidant and anticholinergic properties of olivetol. Journal of Food Biochemistry, 42(3), e12516.
  • Topal F, Topal M, Gocer H, Kalin P, Kocyigit UM, Gulcin I, Alwasel SH, 2016. Antioxidant activity of taxifolin: an activity-structure relationship, Journal of Enzyme Inhibition and Medicinal Chemistry, 31(4): 674-683.
  • Topal M, 2018. Determination of antioxidant and antiradical properties of Picea orientalis cone. Anadolu Journal of Agricultural Sciences, 33: 232-236.
  • Wichi HP, 1988. Enhanced tumour development by butylated hydroxyanisole (BHA) from the perspective of effect on forestomach and oesophageal squamous epithelium. Food and Chemical Toxicology, 26: 717-723.
  • Zhishen J, Mengcheng T, Jianming W, 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64:555-559.

Determination of Antioxidant Capacity of 2,6-Quinolinediol

Year 2019, Volume: 9 Issue: 3, 1520 - 1527, 01.09.2019
https://doi.org/10.21597/jist.553129

Abstract

The compounds of the quinolone group have been widely used in the alive metabolism, paint and pharmaceutical industry. Therefore, various quinoline derivatives are synthesized and synthesis methods are developed. The synthesis of the quinoline compounds in the industrial field is formed in a separate area. 2,6-quinolinediol is derivative a quinoline. In this study, different bioanalytical methods such as reducing capacity by Fe3+-Fe2+ transformation method, Fe3+-TPTZ reducing capacity by FRAP method, Cu2+-Cu+ reducing capacity by CUPRAC method, the ferric ions (Fe2+) chelating activity by using bipyridyl reagent, DPPH, ABTS, DMPD radical scavenging activities, superoxide anion radicals (O2.-) scavenging activity have been used. Also, Trolox, α-Tocopherol, BHA and BHT have been used as reference antioxidants. The IC50 inhibition value of the ABTS radical removal activity for this substance was calculated as 3.39 μg mL-1. Reference antioxidants such as trolox, BHA, α-Tocopherol and BHT exhibited ABTS radical removal inhibitions at 2.59, 4.44, 7.07 and 32.36 μg mL-1, respectively. Studies have shown that 2,6-quinolinediol is an effective antioxidant.

References

  • Aksu K, Topal F, Gulcin I, Tümer F, Göksu S, 2015. Acetylcholinesterase inhibitory and antioxidant activities of novel symmetric sulfamides derived from phenethylamines. Archiv der Pharmazie, 348 (6): 446-455.
  • Alho H, Leinonen J, 1999. Total antioxidant activity measured by chemiluminescence methods. Methods in Enzymology, 299, 3-15.
  • Apak R, Güçlü K, Özyürek M, Karademir SE, 2004. A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: The CUPRAC method. Journal of Agricultural and Food Chemistry, 52:7970-7981.
  • Bursal E, Köksal E, Gulcin I, Bilsel G, Gören AC, 2013. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Research International, 51(1): 66-74.
  • Çakmakçı S, Topdaş EF, Kalın P, Han H, Şekerci P, Polat Kose L, Gulcin I, 2015. Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. International Journal of Food Science Technology, 50 (2):472-481.
  • Davies KJ, 1995. Oxidative stress: the paradox of aerobic life. Biochemical Society Symposium, 61, 1-31.
  • Dinis TCP, Madeira VMC, Almeida LM, 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 315:161-169.
  • Eberhardt MV, Lee CY, Liu RH, 2000. Antioxidant activity of fresh apples. Nature, 405(6689): 903-904.
  • Fessenden RJ, Fessenden JS, Logue MW, 2001. Organic Chemistry, 6th edition, pp. 808. Güneş Kitabevi, Ankara-Turkey.
  • Fogliano V, Verde V, Randazzo G, Ritieni A. 1999. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. Journal of Agricultural and Food Chemistry, 47(3):1035-1040.
  • Garibov E., Taslimi P, Sujayev A, Bingöl Z, Çetinkaya S, Gulcin I, Beydemir S, Farzaliyev V, Alwasel SH, Supuran CT, 2016. Synthesis of 4,5-disubstituted-2-thioxo-1,2,3,4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(S3): 1-9.
  • Göçer H, Gulcin I, 2011. Caffeic acid phenethyl ester (CAPE): Correlation of structure and antioxidant properties. International Journal of Food Science Nutrion, 62(8):821-825.
  • Gulcin I, 2005. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. International Journal of Food Science Nutrion, 56(7):491-499.
  • Gulcin I, 2007. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids, 32(3): 431-438.
  • Gulcin I, 2010. Antioxidant properties of resveratrol: A structure-activity insight. Innovative Food Science and Emerging Technologies, 11(1): 210-218.
  • Gulcin I, 2012. Antioxidant activity of food constituents-An overview. Archives of Toxicology, 86(3):345-391.
  • Gulcin I, Beydemir S, Sat İG, Kuvrevioglu Öİ, 2005. Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Aliment Hung. 34(2):193-202.
  • Gulcin I, Beydemir S, Topal F, Gagua N, Bakuridze A, Bayram R, Gepdiremen A, 2012. Apoptotic, antioxidant and antiradical effects of majdine and isomajdine from Vinca herbacea Waldst. and kit. Journal of Enzyme Inhibition Medicinal Chemistry, 27(4):587-594.
  • Gulcin I, Elias R, Gepdiremen A, Boyer L, Köksal E, 2007b. A comparative study on the antioxidant activity of fringe tree (Chionanthus virginicus L.) extracts. African Journal of Biotechnology, 6(4): 410-418.
  • Gulcin I, Elias R, Gepdiremen A, Chea A, Topal F, 2010. Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: Cepharanthine and fangchinoline. Journal of Enzyme Inhibition Medicinal Chemistry, 25(1):44-53.
  • Gulcin I, Mshvildadze V, Gepdiremen A, Elias R, 2004c. Antioxidant activity of saponins isolated from ivy: α-Hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside F. Planta Medica, 70(6): 561-563.
  • Gulcin I, Şat İG, Beydemir Ş, Elmastaş M, Küfrevioğlu Öİ, 2004. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry, 87:393-400.
  • Gulcin I, Topal F, Çakmakçi R, Gören AC, Bilsel M, Erdoğan U, 2011. Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76:C585-C593.
  • Halliwell B, 1997. Antioxidants in human health and disease. Annual Review of Nutrition, 16: 33-50.
  • Hart H, Craine LE, Hart, DJ, Hadad CM, 2011. Organic Chemistry, 12th edition, pp.393-394, Palme Publishing, Ankara-Turkey.
  • Hudson JF, 1990. Food antioxidants. Elsevier Applied Food Science, London.
  • Köksal E, Gulcin I, Öztürk Sarıkaya SB, Bursal E. 2009. On the in vitro antioxidant activity of silymarine. Journal of Enzyme Inhibition Medicinal Chemistry, 24(2):395-405.
  • Miller DD, 1996. Minerals. In “Food Chemistry”, O.R. Fennema (Ed), pp: 617-649. Marcel Dekker, New York.
  • Öztaşkın N, Çetinkaya Y, Taslimi P, Göksu S, Gulcin I, 2015. Antioxidant and acetylcholinesterase inhibition properties of novel bromophenol derivatives. Bioorganic Chemistry, 60: 49-57.
  • Ökten S, Eyigün D, Çakmak O, 2015. Synthesıs of Brominated Quinolines. Journal of Engineering and Natural Sciences, Sigma 33, 8-15.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10):1231-1237.
  • Sherwin ER, 1990. In: Branen, A.L., Davidson, P.M., Salminen, S., (eds) Food additives, Marvel Dekker Incorporated, 139-193, New York.
  • Taslimi P, Gulcin I, 2018. Antioxidant and anticholinergic properties of olivetol. Journal of Food Biochemistry, 42(3), e12516.
  • Topal F, Topal M, Gocer H, Kalin P, Kocyigit UM, Gulcin I, Alwasel SH, 2016. Antioxidant activity of taxifolin: an activity-structure relationship, Journal of Enzyme Inhibition and Medicinal Chemistry, 31(4): 674-683.
  • Topal M, 2018. Determination of antioxidant and antiradical properties of Picea orientalis cone. Anadolu Journal of Agricultural Sciences, 33: 232-236.
  • Wichi HP, 1988. Enhanced tumour development by butylated hydroxyanisole (BHA) from the perspective of effect on forestomach and oesophageal squamous epithelium. Food and Chemical Toxicology, 26: 717-723.
  • Zhishen J, Mengcheng T, Jianming W, 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64:555-559.
There are 37 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Fevzi Topal 0000-0002-2443-2372

Publication Date September 1, 2019
Submission Date April 12, 2019
Acceptance Date May 17, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite

APA Topal, F. (2019). Determination of Antioxidant Capacity of 2,6-Quinolinediol. Journal of the Institute of Science and Technology, 9(3), 1520-1527. https://doi.org/10.21597/jist.553129
AMA Topal F. Determination of Antioxidant Capacity of 2,6-Quinolinediol. J. Inst. Sci. and Tech. September 2019;9(3):1520-1527. doi:10.21597/jist.553129
Chicago Topal, Fevzi. “Determination of Antioxidant Capacity of 2,6-Quinolinediol”. Journal of the Institute of Science and Technology 9, no. 3 (September 2019): 1520-27. https://doi.org/10.21597/jist.553129.
EndNote Topal F (September 1, 2019) Determination of Antioxidant Capacity of 2,6-Quinolinediol. Journal of the Institute of Science and Technology 9 3 1520–1527.
IEEE F. Topal, “Determination of Antioxidant Capacity of 2,6-Quinolinediol”, J. Inst. Sci. and Tech., vol. 9, no. 3, pp. 1520–1527, 2019, doi: 10.21597/jist.553129.
ISNAD Topal, Fevzi. “Determination of Antioxidant Capacity of 2,6-Quinolinediol”. Journal of the Institute of Science and Technology 9/3 (September 2019), 1520-1527. https://doi.org/10.21597/jist.553129.
JAMA Topal F. Determination of Antioxidant Capacity of 2,6-Quinolinediol. J. Inst. Sci. and Tech. 2019;9:1520–1527.
MLA Topal, Fevzi. “Determination of Antioxidant Capacity of 2,6-Quinolinediol”. Journal of the Institute of Science and Technology, vol. 9, no. 3, 2019, pp. 1520-7, doi:10.21597/jist.553129.
Vancouver Topal F. Determination of Antioxidant Capacity of 2,6-Quinolinediol. J. Inst. Sci. and Tech. 2019;9(3):1520-7.