Research Article
BibTex RIS Cite

Investigation of the Effects of Level Density Models on Production Cross-Section Calculations of Some Medical Radioisotopes via (α,xn) Reactions

Year 2019, Volume: 9 Issue: 4, 2035 - 2047, 01.12.2019

Abstract

Radioisotopes used in medical field for diagnostic and therapeutic purposes have many beneficial effects. Especially in early diagnosis of cancer types and in the stages of treatment, the methods that employ the use of radioisotopes are quite common and effective. Therefore; the studies to obtain detailed information about the production routes of these radioisotopes have been supportive of the further effective planning. The calculations made with theoretical nuclear reaction models that are available in cases where experimental studies can’t be performed; aim to eliminate the lack of this area. With this motivation, it is aimed to investigate the effects of different level density models on the production cross-section calculations of 51Cr, 97Ru and 123I radioisotopes available in medical field via some (α,xn) reactions. Obtained results from the calculations are compared visually and statistically with the experimental data available in the literature and it is aimed to determine the most compatible level density models with respect to the examined reaction routes.

References

  • Artun O, 2018. Calculation of Productions of PET Radioisotopes via Phenomenological Level Density Models, Radiation Physics and Chemistry, 149, 73-83.
  • Aydın EG, Tel E, Kaplan A, Aydın A, 2008. Equilibrium and Pre-equilibrium Calculations of Neutron Production in Medium-Heavy Targets Irradiated by Protons up to 100 MeV, Annals of Nuclear Energy, 35(12), 2306-2312.
  • Aydin A, Pekdogan H, Kaplan A, Sarpün İH, Tel E, Demir B, 2015. Comparison of Level Density Models for the 60,61,62,64Ni(p,n) Reactions of Structural Fusion Material Nickel from Threshold to 30 MeV, Journal of Fusion Energy, 34(5), 1105-1108.
  • Aydin A, Sarpun IH, Kaplan A, Tel E, 2013. Calculations of Double–Differential Deuteron Emission Cross Sections at 62 MeV Proton Induced Reactions, Journal of Fusion Energy, 32(3), 378-381.
  • Aydin A, Sarpun İH, Kaplan A, 2014. Calculations of Double–Differential Triton Emission Cross Sections at 62 MeV Proton Induced Reactions, Physics of Atomic Nuclei, 77(3), 321-324.
  • Aydin A, Tel E, Kaplan A, 2008. Calculation of 14-15 MeV (n,d) Reaction Cross Sections Using Newly Evaluated Empirical and Semi-Empirical Systematics, Journal of Fusion Energy, 27(4), 308-313.
  • Aydin A, Tel E, Pekdoğan H, Kaplan A, 2012. Nuclear Model Calculations on the Production of 125,123Xe and 133,131,129,128Ba Radioisotopes, Physics of Atomic Nuclei. 75(3), 310-314.
  • Aydin EG, Tel E, Kaplan A, Aydin A, 2008. New Calculations of Excitation Functions of Some Positron Emitting and Single Photon Emitting Radioisotopes, Kerntechnik. 73(4), 184-189.
  • Baba H, 1970. A Shell-Model Nuclear Level Density, Nuclear Physics A, 159(2), 625-641.
  • Baglin CM, Norman EB, Larimer R-M, Rech GA, 2005. Measurement of 107Ag(α,γ)111In Cross Sections. AIP Conference Proceedings 769, 1370.
  • Bucurescu D, Egidy T, 2015. Nuclear Level Density Predictions, EPJ Web of Conferences 93, 06003.
  • Büyükuslu H, Kaplan A, Tel E, Yıldırım G, Aydın A, 2010. Production Cross Sections of Medical 110,111In Radioisotopes, Kerntechnik 75 (3) 103-108.
  • Calboreanu A, Pencea C, Salagean O, 1982. The Effect of Gamma De-Excitation Competition on the (α,n) and (α,2n) Reactions on Gold and Antimony. Nuclear Physics A, 383(2), 251–263.
  • Capote R, Herman M, Obložinský P, Young PG, Goriely S, Belgya T, Ignatyuk AV, Koning AJ, Hilaire S, Plujko VA, Avrigeanu M, Bersillon O, Chadwick MB, Fukahori T, Ge Z, Yinlu H, Kailas S, Kopecky J, Maslov VM, Reffo G, Sin M, Soukhovitskii ESh, Talou P, 2009. RIPL–Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nuclear Data Sheets, 110 (12), 3107–3214.
  • Chang CN, Kent JJ, Morgan JF, Blatt SL, 1973. Total Cross Section Measurements by X-ray Detection of Electron-Capture Residual Activity. Nuclear Instruments and Methods, 109(2), 327–331.
  • Das T, Pillai MRA, 2013. Options to Meet the Future Global Demand of Radionuclides for Radionuclide Therapy. Nuclear Medicine and Biology, 40, 23-32.
  • Dilg W, Schantl W, Vonach H, Uhl M, 1973. Level Density Parameters for the Back-Shifted Fermi Gas Model in the Mass Range 40<A<250. Nuclear Physics A, 217, 269-298.
  • Fermi E, 1926. Zur Quantelung des Idealen Einatomigen Gases, Zeitschrift für Physik, 36(11-12), 902-912.
  • Gilbert A, Cameron AGW, 1965. A Composite Nuclear-Level Density Formula with Shell Corrections. Canadian Journal of Physics, 43, 1446-1496.
  • Graf HP, Münzel H, 1974. Excitation Functions for α-particle Reactions With Molybdenum Isotopes. Journal of Inorganic and Nuclear Chemistry, 36(12), 3647–3657.
  • Hassan KF, Qaim SM, Saleh ZA, Coenen HH, 2006. Alpha-Particle Induced Reactions on natSb and 121Sb with Particular Reference to the Production of the Medically Interesting Radionuclide 124I. Applied Radiation and Isotopes, 64(1), 101–109.
  • Hilaire S, Girod M, Goriely S, Koning AJ, 2012. Temperature-Dependent Combinatorial Level Densities with the D1M Gogny Force, Physical Review C 86(6), (2012) 064317(1)- 064317(10).
  • IAEA (International Atomic Energy Agency), 2001. Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions, IAEA-TECDOC-1211, Austria.
  • Ignatyuk AV, Istekov KK, Smirenkin GN, 1979. The Role of Collective Effects in the Systematics of Nuclear Level Densities, Yadernaja Fizika 29(4), 875-883.
  • Ignatyuk, AV, Smirenkin GN, Tishin AS, 1975. Phenomenological Description of the Energy Dependence of the Level Density Parameter, Yadernaja Fizika 21(3), 485-490.
  • Ismail M, 1990. Measurement and Analysis of the Excitation Function for Alpha-Induced Reactions on Ga and Sb Isotopes. Physical Review C, 41(1), 87–108.
  • Kaplan A, 2013. Investigation of Neutron-Production Cross Sections of the Structural Fusion Material 181Ta for (a,xn) Reactions up to 150 MeV Energy, Journal of Fusion Energy, 32(3), 382-388.
  • Kaplan A, Özdoğan H, Aydın A, Tel E, 2013a. Photo-neutron Cross Section Calculations of Several Structural Fusion Materials, Journal of Fusion Energy 32 (3), 344-349.
  • Kaplan A, Özdoğan H, Aydın A, Tel E, 2013b. Deuteron-Induced Cross Section Calculations of Some Structural Fusion Materials, Journal of Fusion Energy 32 (1), 97-102.
  • Kaplan A, Özdoğan H, Aydın A, Tel E, 2013c. Photo-neutron Cross Section Calculations of Several Structural Fusion Materials, Journal of Fusion Energy, 32(4), 431-436.
  • Kaplan A, Özdoğan H, Aydin A, Tel E, 2014. Photo-Neutron Cross-Section Calculations of 142,143,144,145,146,150Nd Rare-Earth Isotopes for (g,n) Reaction, Phys. Atom Nucl. 77 (11), 1371-1377.
  • Koning A, Hilaire S, Goriely S, 2017. TALYS–1.8 A Nuclear Reaction Program, User Manual, 1st ed. 21 December 2017, NRG, The Netherlands.
  • Koning AJ, Hilaire S, Goriely S, 2008. Global and Local Level Density Models, Nuclear Physics A 810(1-4), 13-76.
  • Kurenkovb VN, Luneva VP, Shubina YN, 1999. Evaluation of Calculation Methods for Excitation Functions for Production of Radioisotopes of Iodine, Thallium and Other Elements, Applied Radiation and Isotopes, 50(3), 541-549.
  • Levkovski VN, 1991. Act.Cs. By Protons and Alphas, Cross Sections of Medium Mass Nuclide Activation (A=40-100) by Medium Energy Protons and Alpha-Particles (E=10-50 MeV), Moskova.
  • Morton AJ, Tims SG, Scott AF, Hansper VY, Tingwell CIW, Sargood DG, 1992. The 48Ti(α,n)51Cr and 48Ti(α,p)51V Cross Sections. Nuclear Physics A, 537(1–2), 167–182.
  • Nichols AL, Qaim, SM, Noy RC, 2011. Intermediate-term Nuclear Data Needs for Medical Applications: Cross Sections and Decay Data, INDC(NDS)-0596, Austria.
  • Oprea A, Glodariu T, Filipescu D, Gheorghe I, Mitu A, Boromiza M, Bucurescu D, Costache C, Cata-Danil I, Florea N, Ghita DG, Ionescu A, Marginean N, Marginean R, Mihai C, Mihai R, Negret A, Nita C, Olacel A, Pascu S, Sotty C, Suvaila R, Stan L, Stroe L, Serban A, Stiru I, Toma S, Turturica A, Ujeniuc S, 2017. Absolute Cross Sections of the 86Sr(α,n)89Zr Reaction at Energies of Astrophysical İnterest. EPJ Web of Conferences, 146, 1016.
  • Özdoğan H, 2019. Theoretical Calculations of Production Cross–Sections for the 201Pb, 111In, 18F and 11C Radioisotopes at Proton İnduced Reactions, Applied Radiation and Isotopes, 143, 1-5.
  • Özdoğan H, Şekerci M, Kaplan A, 2019a. A new developed semi-empirical formula for the (a,p) reaction cross-section at 19±1 MeV, Modern Physics Letters A 34(6), 1950044-1 - 1950044-9.
  • Özdoğan H, Şekerci M, Kaplan A, 2019b. Investigation of Gamma Strength Functions and Level Density Models Effects on Photon İnduced Reaction Cross–Section Calculations for the Fusion Structural Materials 46,50Ti, 51V, 58Ni and 63Cu, Applied Radiation and Isotopes, 143, 6-10.
  • Özdoğan H, Şekerci M, Sarpün İH, Kaplan A, 2018. Investigation of Level Density Parameter Effects on (p,n) and (p,2n) Reaction Cross–Sections for the Fusion Structural Materials 48Ti, 63Cu and 90Zr, Applied Radiation and Isotopes, 140, 29-34.
  • Sahan M, Tel E, Sahan H, Kara A, Aydin A, Kaplan A, Sarpun IH, Demir B, Akca S, Yildiz E, 2015. Calculations of Double-Differential Neutron Emission Cross Sections for 9Be Target Nucleus at 14.2 MeV Neutron Energy, J. Fusion Energ. 34 (3), 493-499.
  • Sarpün İH, Aydın A, Kaplan A, Koca H, Tel E, 2014. Comparison of Fission Barrier and Level Density Models in (a,f) Reactions of Some Heavy Nuclei, Annals of Nuclear Energy, 70, 175-179.
  • Sarpün İH, Yalım HA, Ünal R, Oruncak B, Aydın A, Kaplan A, Tel E, 2010. Determination of (n,2n) Reaction Cross Sections for Some Nuclei with Asymmetry Parameter, Journal of Fusion Energy, 29(4) 387-394.
  • Singh BP, Bhardwaj HD, Prasad R, 1991. A Study of Pre-Equilibrium Emission in α-Induced Reactions on 121,123Sb. Canadian Journal of Physics, 69(11), 1376–1382.
  • Tárkányi FT, Ignatyuk AV, Hermanne A, Capote R, Carlson BV, Engle JW, Kellett MA, Kibedi T, Kim GN, Kondev FG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Verpelli M, 2018. Recommended Nuclear Data For Medical Radioisotope Production: Diagnostic Gamma Emitters. Journal of Radioanalytical and Nuclear Chemistry, 319(2), 487–531.
  • Tel E, Aydin EG, Kaplan A, Aydin A, 2009. New Calculations of Cyclotron Production Cross Sections of Some Positron Emitting Radioisotopes in Proton Induced Reactions, Indian Journal of Physics, 83(2), 193-212.
  • Tel E, Sahan M, Aydin A, Sahan H, Ugur FA, Kaplan A, 2011. The Newly Calculations of Production Cross Sections for Some Positron Emitting and Single Photon Emitting Radioisotopes in Proton Cyclotrons, InTech - Radioisotopes - Applications in Physical Sciences, pp. 141-154.
  • Vonach H, Haight R, Winkler G, 1983. (α,n) and Total α-Reaction Cross Sections for 48Ti and 51V. Physical Review C, 28(6), 2278–2285.
  • Yalım HA, Aydin A, Sarpün İH, Ünal R, Oruncak B, Kaplan A, Tel E, 2010. Investigation of Nucleon Mean Free Path Dependence in Tritium Emission Spectra Produced by Proton Induced Reactions at 62 MeV, Journal of Fusion Energy 29 (1) 55-61.
  • Yeong CH, Cheng M, Ng KH, 2014. Therapeutic Radionuclides in Nuclear Medicine:Current and Future Prospects. Journal of Zhejiang University Science B, 15, 845- 863.
  • Yalçın C, 2017. İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 432-439.
  • Yiğit M, 2017. Investigating the (p,n) Excitation Functions on 104–106,108,110Pd İsotopes, Applied Radiation and Isotopes, 139, 151-158.
  • Yiğit M, 2018a. Analysis of Cross Sections of (n,t) Nuclear Reaction using Different Empirical Formulae and Level Density Models, Applied Radiation and Isotopes, 139, 151-158.
  • Yiğit M, 2018b. A Review of (n,p) and (n,a) Nuclear Cross Sections on Palladium Nuclei Using Different Level Density Models and Empirical Formulas, Applied Radiation and Isotopes, 140, 355-362.
  • Zerkin VV, Pritychenko B, 2018. The Experimental Nuclear Reaction Data (EXFOR): Extended Computer Database and Web Retrieval System, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 888, 31-43.

Bazı Medikal Radyoizotopların (α,xn) Reaksiyonlarıyla Üretim Tesir Kesiti Hesaplamalarında Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi

Year 2019, Volume: 9 Issue: 4, 2035 - 2047, 01.12.2019

Abstract

Medikal alanda teşhis ve tedavi amaçlarıyla kullanılan radyoizotopların pek çok yararlı etkileri bulunmaktadır. Özellikle, kanser türlerinin erken teşhisinde ve ilerleyen evrelerdeki tedavi aşamalarında radyoizotopların kullanıldığı metotlar son derece yaygın ve etkindir. Bu nedenle; bu radyoizotopların üretim rotaları hakkında detaylı bilgi sahibi olunması yönündeki çalışmalar, daha efektif planlamaların yapılabilmesini destekleyici niteliktedir. Deneysel çalışmaların gerçekleştirilemediği durumlarda kullanılabilir olan teorik nükleer reaksiyon modelleri ile yapılan hesaplamalar ise, bu alandaki eksikliği gidermeyi amaçlamaktadır. Bu motivasyon ile bu çalışmada; farklı seviye yoğunluğu modellerinin medikal alanda kullanılabilen 51Cr, 97Ru ve 123I radyoizotoplarının bazı (α,xn) reaksiyonları ile üretim tesir kesiti hesaplamaları üzerine etkilerinin incelenmesi amaçlanmıştır. Elde edilen hesaplama sonuçları, literatürde mevcut olan deneysel veriler ile görsel ve istatistiki olarak karşılaştırılmış ve incelenen reaksiyon rotalarına göre en uyumlu seviye yoğunluğu modellerinin belirlenmesi hedeflenmiştir.

References

  • Artun O, 2018. Calculation of Productions of PET Radioisotopes via Phenomenological Level Density Models, Radiation Physics and Chemistry, 149, 73-83.
  • Aydın EG, Tel E, Kaplan A, Aydın A, 2008. Equilibrium and Pre-equilibrium Calculations of Neutron Production in Medium-Heavy Targets Irradiated by Protons up to 100 MeV, Annals of Nuclear Energy, 35(12), 2306-2312.
  • Aydin A, Pekdogan H, Kaplan A, Sarpün İH, Tel E, Demir B, 2015. Comparison of Level Density Models for the 60,61,62,64Ni(p,n) Reactions of Structural Fusion Material Nickel from Threshold to 30 MeV, Journal of Fusion Energy, 34(5), 1105-1108.
  • Aydin A, Sarpun IH, Kaplan A, Tel E, 2013. Calculations of Double–Differential Deuteron Emission Cross Sections at 62 MeV Proton Induced Reactions, Journal of Fusion Energy, 32(3), 378-381.
  • Aydin A, Sarpun İH, Kaplan A, 2014. Calculations of Double–Differential Triton Emission Cross Sections at 62 MeV Proton Induced Reactions, Physics of Atomic Nuclei, 77(3), 321-324.
  • Aydin A, Tel E, Kaplan A, 2008. Calculation of 14-15 MeV (n,d) Reaction Cross Sections Using Newly Evaluated Empirical and Semi-Empirical Systematics, Journal of Fusion Energy, 27(4), 308-313.
  • Aydin A, Tel E, Pekdoğan H, Kaplan A, 2012. Nuclear Model Calculations on the Production of 125,123Xe and 133,131,129,128Ba Radioisotopes, Physics of Atomic Nuclei. 75(3), 310-314.
  • Aydin EG, Tel E, Kaplan A, Aydin A, 2008. New Calculations of Excitation Functions of Some Positron Emitting and Single Photon Emitting Radioisotopes, Kerntechnik. 73(4), 184-189.
  • Baba H, 1970. A Shell-Model Nuclear Level Density, Nuclear Physics A, 159(2), 625-641.
  • Baglin CM, Norman EB, Larimer R-M, Rech GA, 2005. Measurement of 107Ag(α,γ)111In Cross Sections. AIP Conference Proceedings 769, 1370.
  • Bucurescu D, Egidy T, 2015. Nuclear Level Density Predictions, EPJ Web of Conferences 93, 06003.
  • Büyükuslu H, Kaplan A, Tel E, Yıldırım G, Aydın A, 2010. Production Cross Sections of Medical 110,111In Radioisotopes, Kerntechnik 75 (3) 103-108.
  • Calboreanu A, Pencea C, Salagean O, 1982. The Effect of Gamma De-Excitation Competition on the (α,n) and (α,2n) Reactions on Gold and Antimony. Nuclear Physics A, 383(2), 251–263.
  • Capote R, Herman M, Obložinský P, Young PG, Goriely S, Belgya T, Ignatyuk AV, Koning AJ, Hilaire S, Plujko VA, Avrigeanu M, Bersillon O, Chadwick MB, Fukahori T, Ge Z, Yinlu H, Kailas S, Kopecky J, Maslov VM, Reffo G, Sin M, Soukhovitskii ESh, Talou P, 2009. RIPL–Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nuclear Data Sheets, 110 (12), 3107–3214.
  • Chang CN, Kent JJ, Morgan JF, Blatt SL, 1973. Total Cross Section Measurements by X-ray Detection of Electron-Capture Residual Activity. Nuclear Instruments and Methods, 109(2), 327–331.
  • Das T, Pillai MRA, 2013. Options to Meet the Future Global Demand of Radionuclides for Radionuclide Therapy. Nuclear Medicine and Biology, 40, 23-32.
  • Dilg W, Schantl W, Vonach H, Uhl M, 1973. Level Density Parameters for the Back-Shifted Fermi Gas Model in the Mass Range 40<A<250. Nuclear Physics A, 217, 269-298.
  • Fermi E, 1926. Zur Quantelung des Idealen Einatomigen Gases, Zeitschrift für Physik, 36(11-12), 902-912.
  • Gilbert A, Cameron AGW, 1965. A Composite Nuclear-Level Density Formula with Shell Corrections. Canadian Journal of Physics, 43, 1446-1496.
  • Graf HP, Münzel H, 1974. Excitation Functions for α-particle Reactions With Molybdenum Isotopes. Journal of Inorganic and Nuclear Chemistry, 36(12), 3647–3657.
  • Hassan KF, Qaim SM, Saleh ZA, Coenen HH, 2006. Alpha-Particle Induced Reactions on natSb and 121Sb with Particular Reference to the Production of the Medically Interesting Radionuclide 124I. Applied Radiation and Isotopes, 64(1), 101–109.
  • Hilaire S, Girod M, Goriely S, Koning AJ, 2012. Temperature-Dependent Combinatorial Level Densities with the D1M Gogny Force, Physical Review C 86(6), (2012) 064317(1)- 064317(10).
  • IAEA (International Atomic Energy Agency), 2001. Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions, IAEA-TECDOC-1211, Austria.
  • Ignatyuk AV, Istekov KK, Smirenkin GN, 1979. The Role of Collective Effects in the Systematics of Nuclear Level Densities, Yadernaja Fizika 29(4), 875-883.
  • Ignatyuk, AV, Smirenkin GN, Tishin AS, 1975. Phenomenological Description of the Energy Dependence of the Level Density Parameter, Yadernaja Fizika 21(3), 485-490.
  • Ismail M, 1990. Measurement and Analysis of the Excitation Function for Alpha-Induced Reactions on Ga and Sb Isotopes. Physical Review C, 41(1), 87–108.
  • Kaplan A, 2013. Investigation of Neutron-Production Cross Sections of the Structural Fusion Material 181Ta for (a,xn) Reactions up to 150 MeV Energy, Journal of Fusion Energy, 32(3), 382-388.
  • Kaplan A, Özdoğan H, Aydın A, Tel E, 2013a. Photo-neutron Cross Section Calculations of Several Structural Fusion Materials, Journal of Fusion Energy 32 (3), 344-349.
  • Kaplan A, Özdoğan H, Aydın A, Tel E, 2013b. Deuteron-Induced Cross Section Calculations of Some Structural Fusion Materials, Journal of Fusion Energy 32 (1), 97-102.
  • Kaplan A, Özdoğan H, Aydın A, Tel E, 2013c. Photo-neutron Cross Section Calculations of Several Structural Fusion Materials, Journal of Fusion Energy, 32(4), 431-436.
  • Kaplan A, Özdoğan H, Aydin A, Tel E, 2014. Photo-Neutron Cross-Section Calculations of 142,143,144,145,146,150Nd Rare-Earth Isotopes for (g,n) Reaction, Phys. Atom Nucl. 77 (11), 1371-1377.
  • Koning A, Hilaire S, Goriely S, 2017. TALYS–1.8 A Nuclear Reaction Program, User Manual, 1st ed. 21 December 2017, NRG, The Netherlands.
  • Koning AJ, Hilaire S, Goriely S, 2008. Global and Local Level Density Models, Nuclear Physics A 810(1-4), 13-76.
  • Kurenkovb VN, Luneva VP, Shubina YN, 1999. Evaluation of Calculation Methods for Excitation Functions for Production of Radioisotopes of Iodine, Thallium and Other Elements, Applied Radiation and Isotopes, 50(3), 541-549.
  • Levkovski VN, 1991. Act.Cs. By Protons and Alphas, Cross Sections of Medium Mass Nuclide Activation (A=40-100) by Medium Energy Protons and Alpha-Particles (E=10-50 MeV), Moskova.
  • Morton AJ, Tims SG, Scott AF, Hansper VY, Tingwell CIW, Sargood DG, 1992. The 48Ti(α,n)51Cr and 48Ti(α,p)51V Cross Sections. Nuclear Physics A, 537(1–2), 167–182.
  • Nichols AL, Qaim, SM, Noy RC, 2011. Intermediate-term Nuclear Data Needs for Medical Applications: Cross Sections and Decay Data, INDC(NDS)-0596, Austria.
  • Oprea A, Glodariu T, Filipescu D, Gheorghe I, Mitu A, Boromiza M, Bucurescu D, Costache C, Cata-Danil I, Florea N, Ghita DG, Ionescu A, Marginean N, Marginean R, Mihai C, Mihai R, Negret A, Nita C, Olacel A, Pascu S, Sotty C, Suvaila R, Stan L, Stroe L, Serban A, Stiru I, Toma S, Turturica A, Ujeniuc S, 2017. Absolute Cross Sections of the 86Sr(α,n)89Zr Reaction at Energies of Astrophysical İnterest. EPJ Web of Conferences, 146, 1016.
  • Özdoğan H, 2019. Theoretical Calculations of Production Cross–Sections for the 201Pb, 111In, 18F and 11C Radioisotopes at Proton İnduced Reactions, Applied Radiation and Isotopes, 143, 1-5.
  • Özdoğan H, Şekerci M, Kaplan A, 2019a. A new developed semi-empirical formula for the (a,p) reaction cross-section at 19±1 MeV, Modern Physics Letters A 34(6), 1950044-1 - 1950044-9.
  • Özdoğan H, Şekerci M, Kaplan A, 2019b. Investigation of Gamma Strength Functions and Level Density Models Effects on Photon İnduced Reaction Cross–Section Calculations for the Fusion Structural Materials 46,50Ti, 51V, 58Ni and 63Cu, Applied Radiation and Isotopes, 143, 6-10.
  • Özdoğan H, Şekerci M, Sarpün İH, Kaplan A, 2018. Investigation of Level Density Parameter Effects on (p,n) and (p,2n) Reaction Cross–Sections for the Fusion Structural Materials 48Ti, 63Cu and 90Zr, Applied Radiation and Isotopes, 140, 29-34.
  • Sahan M, Tel E, Sahan H, Kara A, Aydin A, Kaplan A, Sarpun IH, Demir B, Akca S, Yildiz E, 2015. Calculations of Double-Differential Neutron Emission Cross Sections for 9Be Target Nucleus at 14.2 MeV Neutron Energy, J. Fusion Energ. 34 (3), 493-499.
  • Sarpün İH, Aydın A, Kaplan A, Koca H, Tel E, 2014. Comparison of Fission Barrier and Level Density Models in (a,f) Reactions of Some Heavy Nuclei, Annals of Nuclear Energy, 70, 175-179.
  • Sarpün İH, Yalım HA, Ünal R, Oruncak B, Aydın A, Kaplan A, Tel E, 2010. Determination of (n,2n) Reaction Cross Sections for Some Nuclei with Asymmetry Parameter, Journal of Fusion Energy, 29(4) 387-394.
  • Singh BP, Bhardwaj HD, Prasad R, 1991. A Study of Pre-Equilibrium Emission in α-Induced Reactions on 121,123Sb. Canadian Journal of Physics, 69(11), 1376–1382.
  • Tárkányi FT, Ignatyuk AV, Hermanne A, Capote R, Carlson BV, Engle JW, Kellett MA, Kibedi T, Kim GN, Kondev FG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Verpelli M, 2018. Recommended Nuclear Data For Medical Radioisotope Production: Diagnostic Gamma Emitters. Journal of Radioanalytical and Nuclear Chemistry, 319(2), 487–531.
  • Tel E, Aydin EG, Kaplan A, Aydin A, 2009. New Calculations of Cyclotron Production Cross Sections of Some Positron Emitting Radioisotopes in Proton Induced Reactions, Indian Journal of Physics, 83(2), 193-212.
  • Tel E, Sahan M, Aydin A, Sahan H, Ugur FA, Kaplan A, 2011. The Newly Calculations of Production Cross Sections for Some Positron Emitting and Single Photon Emitting Radioisotopes in Proton Cyclotrons, InTech - Radioisotopes - Applications in Physical Sciences, pp. 141-154.
  • Vonach H, Haight R, Winkler G, 1983. (α,n) and Total α-Reaction Cross Sections for 48Ti and 51V. Physical Review C, 28(6), 2278–2285.
  • Yalım HA, Aydin A, Sarpün İH, Ünal R, Oruncak B, Kaplan A, Tel E, 2010. Investigation of Nucleon Mean Free Path Dependence in Tritium Emission Spectra Produced by Proton Induced Reactions at 62 MeV, Journal of Fusion Energy 29 (1) 55-61.
  • Yeong CH, Cheng M, Ng KH, 2014. Therapeutic Radionuclides in Nuclear Medicine:Current and Future Prospects. Journal of Zhejiang University Science B, 15, 845- 863.
  • Yalçın C, 2017. İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 432-439.
  • Yiğit M, 2017. Investigating the (p,n) Excitation Functions on 104–106,108,110Pd İsotopes, Applied Radiation and Isotopes, 139, 151-158.
  • Yiğit M, 2018a. Analysis of Cross Sections of (n,t) Nuclear Reaction using Different Empirical Formulae and Level Density Models, Applied Radiation and Isotopes, 139, 151-158.
  • Yiğit M, 2018b. A Review of (n,p) and (n,a) Nuclear Cross Sections on Palladium Nuclei Using Different Level Density Models and Empirical Formulas, Applied Radiation and Isotopes, 140, 355-362.
  • Zerkin VV, Pritychenko B, 2018. The Experimental Nuclear Reaction Data (EXFOR): Extended Computer Database and Web Retrieval System, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 888, 31-43.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Mert Şekerci 0000-0003-0870-0506

Publication Date December 1, 2019
Submission Date March 18, 2019
Acceptance Date June 15, 2019
Published in Issue Year 2019 Volume: 9 Issue: 4

Cite

APA Şekerci, M. (2019). Bazı Medikal Radyoizotopların (α,xn) Reaksiyonlarıyla Üretim Tesir Kesiti Hesaplamalarında Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi. Journal of the Institute of Science and Technology, 9(4), 2035-2047.
AMA Şekerci M. Bazı Medikal Radyoizotopların (α,xn) Reaksiyonlarıyla Üretim Tesir Kesiti Hesaplamalarında Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi. J. Inst. Sci. and Tech. December 2019;9(4):2035-2047.
Chicago Şekerci, Mert. “Bazı Medikal Radyoizotopların (α,xn) Reaksiyonlarıyla Üretim Tesir Kesiti Hesaplamalarında Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi”. Journal of the Institute of Science and Technology 9, no. 4 (December 2019): 2035-47.
EndNote Şekerci M (December 1, 2019) Bazı Medikal Radyoizotopların (α,xn) Reaksiyonlarıyla Üretim Tesir Kesiti Hesaplamalarında Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi. Journal of the Institute of Science and Technology 9 4 2035–2047.
IEEE M. Şekerci, “Bazı Medikal Radyoizotopların (α,xn) Reaksiyonlarıyla Üretim Tesir Kesiti Hesaplamalarında Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 9, no. 4, pp. 2035–2047, 2019.
ISNAD Şekerci, Mert. “Bazı Medikal Radyoizotopların (α,xn) Reaksiyonlarıyla Üretim Tesir Kesiti Hesaplamalarında Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi”. Journal of the Institute of Science and Technology 9/4 (December 2019), 2035-2047.
JAMA Şekerci M. Bazı Medikal Radyoizotopların (α,xn) Reaksiyonlarıyla Üretim Tesir Kesiti Hesaplamalarında Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi. J. Inst. Sci. and Tech. 2019;9:2035–2047.
MLA Şekerci, Mert. “Bazı Medikal Radyoizotopların (α,xn) Reaksiyonlarıyla Üretim Tesir Kesiti Hesaplamalarında Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 9, no. 4, 2019, pp. 2035-47.
Vancouver Şekerci M. Bazı Medikal Radyoizotopların (α,xn) Reaksiyonlarıyla Üretim Tesir Kesiti Hesaplamalarında Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi. J. Inst. Sci. and Tech. 2019;9(4):2035-47.