Research Article
BibTex RIS Cite

Farklı Tip Isı Değiştiriciler için Termodinamik Analiz

Year 2020, Volume: 10 Issue: 2, 1202 - 1212, 01.06.2020
https://doi.org/10.21597/jist.603325

Abstract

Bu çalışmada çift borulu ısı değiştirici, gövde borulu ısı değiştirici ve plakalı ısı değiştirici için termodinamik analiz yapılmıştır. Bu 3 tip ısı değiştiricinin performansları deneysel olarak test edilmiştir. Isı değiştirici test bölgesinin soğuk su debisi 1.5 L/dk değerinde sabit tutulurken sıcak su debisi 0.8 L/dk, 1.6 L/dk ve 2.4 L/dk değerlerinde değiştirilmiştir. Sıcak su beslemesi 50°C, 60°C ve 70°C olarak seçilmiştir. Deneyler hem karşıt akışlı hem de paralel akışlı olarak yapılmıştır. Yapılan deneyler neticesinde sıcaklığın ve debinin artışı ile ısı değiştiriciden alınan gücün arttığı tespit edilmiştir. Birim alandan elde edilen ısı transferi miktarı değerinin en yüksek olduğu ısı değiştirici tipi gövde borulu ısı değiştirici iken en düşük performansı çift borulu ısı değiştirici tipi göstermiştir.

References

  • Abd AA, Naji SZ, 2017. Analysis Study Of Shell And Tube Heat Exchanger For Clough Company With Reselect Different Parameters To İmprove The Design. Case Studies in Thermal Engineering, 10: 455–467.
  • Alimoradi A, Veysi F, 2017. Optimal And Critical Values Of Geometrical Parameters Of Shell And Helically Coiled Tube Heat Exchanger. Case Studies in Thermal Engineering, 73–78.
  • Ammar A, Abda C, Kareema MQ, Naji SZ, 2018. Performance Analysis Of Shell And Tube Heat Exchanger: Parametric ;Study. Case Studies in Thermal Engineering, 12: 563-568.
  • Boran K, Daştan F, Şahin HM, Aktaş M, 2014. Isı Eşanjörlerinde Isı Transferi İyileştirme Yöntemlerinin Sayısal Ve Deneysel Olarak İncelenmesi. Politeknik Dergisi, 17(4): 183-191
  • Dal AR, 2019. Düz Plakalı Borulu Bir Isı Değiştiricisinin Optimum Kanatçık Aralığının Sayısal Analizi. Ömer Halis demir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1): 479-501.
  • Dizaji HS, Jafarmada S, Asaadi S, 2017. Experimental Exergy Analysis For Shell And Tube Heat Exchanger Made Of Corrugated Shell And Corrugated Tube. Exp. Therm. Fluid Sci., 475–481.
  • Eryener D, 2006. Thermoeconomic Optimization Of Baffle Spacing For Shell And Tube Heat Exchangers. Energy Convers. Manag. 47 (11–12): 1478–1489.
  • Fraas AP, 1989. Heat Exchanger Design. John Wiley&Sons.
  • Genceli, OF, 1999. Isı Degistiricileri. Birsen Yayın evi, İstanbul, 424 S.
  • Gao B, Bi Q, Nie Zi, Wu J, 2015. Experimental Study Of Effects Of Baffle Helix Angle On Shell-Side Performance Of Shell-And-Tube Heat Exchangers With Discontinuous Helical Baffles. Exp. Therm. Fluid Sci., 48–57.
  • Ghani S, Gamaledin SMA, Rashwana MM, Atieh MA, 2018. Experimental İnvestigation Of Double-Pipe Heat Exchangers in Air Conditioning Applications. Energy And Buildings, 158: 801-811.
  • Gupta P, Atrey Md. 2000. Performance Evaluation Of Counter Flow Heat Exchangers Considering The Effect Of Heat İn Leak And Longitudinal Conduction For Low temperature Applications. Cryogenics, 40(7): 469–474.
  • Imrana M, Pambudi AN, Farooq M, 2017. Thermal And Hydraulic Optimization Of Plate Heat Exchanger Using Multi Objective Genetic Algorithm. Case Studies in Thermal Engineering, 10: 570-578.
  • Kakac S, Lui H, 2002. Heat exchangers. Selection,Ratingand thermal design,Second edi,Crcpress,Florida,
  • Kırtepe E, Özbalta N, 2018. Kanatlı-Borulu Isı Değiştiricilerde Belirsizlik Analizi. Dümf Mühendislik Dergisi, 9 (1): 161 - 175.
  • Kızılkan Ö, 2007. Gövde Borulu Bir Isı Değiştiricisinde Şaşırtma Levhasının Isı Tasınım Katsayısına Ve Basınç Düşümüne Etkisinin İncelenmesi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 11(3): 246-251.
  • S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75(1)(1953)3-8.
  • Liou TM, Hwang JJ, 1992. Developing Heat Transfer And Friction İn A Ribbed Rectangular Duct With Flow Separation At Inlet. Asme J. Fluids Eng., 114 (3): 565-573.
  • Liu L, Ding N, Shi J, Xu N, Guo W, Wu C, 2016. Failure Analysis Of Tube-To-Tube sheet Welded Joints İn A Shell-Tube Heat Exchanger. Case Stud. Eng. Fail. Anal. 32–40.
  • Mirzaei M, Hajabdollahi H, Fadakar H, 2017. Multi-Objective Optimization Of Shell-And-Tube Heat Exchanger By Constructal Theory. Appl. Therm. Eng., 125: 9–19.
  • Naphon P, Suchana T, 2011. Int. Communications İn Heat And Mass Transfer, 38: 236-241.
  • Omidi M, Farhadi M, Jafari M, 2017. A comprehensive review on double pipe heat exchangers, Appl.Therm.Eng., 110: 1075–1090.
  • Patel VK, Rao RV, 2010. Design Optimization Of Shell-And-Tube Heat Exchanger Using Particle Swarm Optimization Technique. Appl Therm Eng., 30: 1417–1425.
  • Pourahmad S, Pesteei SM, 2016. Effectiveness-Ntu Analyses in A Double Tube Heat Exchanger Equipped With Wavy Strip Considering Various Angles. Energy Conversion And Management, 123: 462-469.
  • Rao RV, Patel VK, 2013. Multi-Objective Optimization Of Heat Exchangers Using A Modified Teaching-Learning Based Optimization. Algorithm, Appl Math Model, 37:1147–1162.
  • Rao RV, Patel VK, 2010. Thermodynamic Optimization Of Cross-Flow Plate-Fin Heat Exchangers Using A Particle Swarm Optimization. Technique, Int J Therm Sci., 49: 1712–1721.
  • Rao RV, Patel VK, 2011. Design Optimization Of Rotary Regenerator Using Artificial Bee Colony Algorithm. P I Mech Eng A-J Pow, 225: 1088–1098.
  • Saunders EAD, 1988. Heat Exchangers-Selection, Design & Construction. Longman&Scientific Technical, 1-160.
  • Shah RK, Sekulic DP, 2003. Fundamentals Of Heat Exchanger Design. John Wiley & Sons, Inc., New Jersey, 976, USA.
  • Shinde S, Chavan U, 2017. Numerical And Experimental Analysis On Shell Side Thermo-Hydraulic Performance Of Shell And Tube Heat Exchanger With Continuous Helical Frp Baffles. Therm. Sci.Eng., 5: 158-171.
  • Walker G, 1990. Industrial Heat Exchangers. A Basic Guide, Second Edition, Hemisphere Publishing Corporation, 410.
  • Wang L, Sunden B, Manglik RM, 2007. Plate Heat Exchangers: Design, Applications And Performance. 288, USA.
  • Yılmaz M, Şara ON, 2000. Isı Değiştirici Seçimi. Mühendis ve Makine, 41(490): 24-37.
  • Yu C, Ren Z, Zeng M, 2018. Numerical İnvestigation Of Shell-Side Performance For Shell And Tube Heat Exchangers With Two Different Clamping Type Anti-Vibration Baffles. Appl. Therm. Eng., 133: 125-136.
  • Zhang J, Zhu X, Mondejar ME, Haglind F, 2019. A Review Of Heat Transfer Enhancement Techniques İn Plate Heat Exchangers. Renewable And Sustainable Energy Reviews, 101: 305-328.

Thermodynamic Analysis for Different Type of Heat Exchangers

Year 2020, Volume: 10 Issue: 2, 1202 - 1212, 01.06.2020
https://doi.org/10.21597/jist.603325

Abstract

In this study, thermodynamic analysis was performed for tubular heat exchanger, shell and tube heat exchanger, and plate heat exchanger. The performances of these 3 types of heat exchangers were experimentally tested. The cold water flow rate of the heat exchanger test zone was kept constant at 1.5 L / min, while the hot water flow rate was set at 0.8 L / min, 1.6 L / min and 2.4 L / min. The hot water tank temperature was selected as 50 ° C, 60 ° C and 70 ° C. The experiments were conducted in both counter flow and parallel flow. As a result of the experiments, it was observed that increasing temperature and flow rate increased the power taken from the heat exchanger. The heat exchanger type with the highest amount of heat transfer from the test zone is the shell and tube heat exchanger, and the tubular heat exchanger type has the lowest performance.

References

  • Abd AA, Naji SZ, 2017. Analysis Study Of Shell And Tube Heat Exchanger For Clough Company With Reselect Different Parameters To İmprove The Design. Case Studies in Thermal Engineering, 10: 455–467.
  • Alimoradi A, Veysi F, 2017. Optimal And Critical Values Of Geometrical Parameters Of Shell And Helically Coiled Tube Heat Exchanger. Case Studies in Thermal Engineering, 73–78.
  • Ammar A, Abda C, Kareema MQ, Naji SZ, 2018. Performance Analysis Of Shell And Tube Heat Exchanger: Parametric ;Study. Case Studies in Thermal Engineering, 12: 563-568.
  • Boran K, Daştan F, Şahin HM, Aktaş M, 2014. Isı Eşanjörlerinde Isı Transferi İyileştirme Yöntemlerinin Sayısal Ve Deneysel Olarak İncelenmesi. Politeknik Dergisi, 17(4): 183-191
  • Dal AR, 2019. Düz Plakalı Borulu Bir Isı Değiştiricisinin Optimum Kanatçık Aralığının Sayısal Analizi. Ömer Halis demir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1): 479-501.
  • Dizaji HS, Jafarmada S, Asaadi S, 2017. Experimental Exergy Analysis For Shell And Tube Heat Exchanger Made Of Corrugated Shell And Corrugated Tube. Exp. Therm. Fluid Sci., 475–481.
  • Eryener D, 2006. Thermoeconomic Optimization Of Baffle Spacing For Shell And Tube Heat Exchangers. Energy Convers. Manag. 47 (11–12): 1478–1489.
  • Fraas AP, 1989. Heat Exchanger Design. John Wiley&Sons.
  • Genceli, OF, 1999. Isı Degistiricileri. Birsen Yayın evi, İstanbul, 424 S.
  • Gao B, Bi Q, Nie Zi, Wu J, 2015. Experimental Study Of Effects Of Baffle Helix Angle On Shell-Side Performance Of Shell-And-Tube Heat Exchangers With Discontinuous Helical Baffles. Exp. Therm. Fluid Sci., 48–57.
  • Ghani S, Gamaledin SMA, Rashwana MM, Atieh MA, 2018. Experimental İnvestigation Of Double-Pipe Heat Exchangers in Air Conditioning Applications. Energy And Buildings, 158: 801-811.
  • Gupta P, Atrey Md. 2000. Performance Evaluation Of Counter Flow Heat Exchangers Considering The Effect Of Heat İn Leak And Longitudinal Conduction For Low temperature Applications. Cryogenics, 40(7): 469–474.
  • Imrana M, Pambudi AN, Farooq M, 2017. Thermal And Hydraulic Optimization Of Plate Heat Exchanger Using Multi Objective Genetic Algorithm. Case Studies in Thermal Engineering, 10: 570-578.
  • Kakac S, Lui H, 2002. Heat exchangers. Selection,Ratingand thermal design,Second edi,Crcpress,Florida,
  • Kırtepe E, Özbalta N, 2018. Kanatlı-Borulu Isı Değiştiricilerde Belirsizlik Analizi. Dümf Mühendislik Dergisi, 9 (1): 161 - 175.
  • Kızılkan Ö, 2007. Gövde Borulu Bir Isı Değiştiricisinde Şaşırtma Levhasının Isı Tasınım Katsayısına Ve Basınç Düşümüne Etkisinin İncelenmesi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 11(3): 246-251.
  • S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75(1)(1953)3-8.
  • Liou TM, Hwang JJ, 1992. Developing Heat Transfer And Friction İn A Ribbed Rectangular Duct With Flow Separation At Inlet. Asme J. Fluids Eng., 114 (3): 565-573.
  • Liu L, Ding N, Shi J, Xu N, Guo W, Wu C, 2016. Failure Analysis Of Tube-To-Tube sheet Welded Joints İn A Shell-Tube Heat Exchanger. Case Stud. Eng. Fail. Anal. 32–40.
  • Mirzaei M, Hajabdollahi H, Fadakar H, 2017. Multi-Objective Optimization Of Shell-And-Tube Heat Exchanger By Constructal Theory. Appl. Therm. Eng., 125: 9–19.
  • Naphon P, Suchana T, 2011. Int. Communications İn Heat And Mass Transfer, 38: 236-241.
  • Omidi M, Farhadi M, Jafari M, 2017. A comprehensive review on double pipe heat exchangers, Appl.Therm.Eng., 110: 1075–1090.
  • Patel VK, Rao RV, 2010. Design Optimization Of Shell-And-Tube Heat Exchanger Using Particle Swarm Optimization Technique. Appl Therm Eng., 30: 1417–1425.
  • Pourahmad S, Pesteei SM, 2016. Effectiveness-Ntu Analyses in A Double Tube Heat Exchanger Equipped With Wavy Strip Considering Various Angles. Energy Conversion And Management, 123: 462-469.
  • Rao RV, Patel VK, 2013. Multi-Objective Optimization Of Heat Exchangers Using A Modified Teaching-Learning Based Optimization. Algorithm, Appl Math Model, 37:1147–1162.
  • Rao RV, Patel VK, 2010. Thermodynamic Optimization Of Cross-Flow Plate-Fin Heat Exchangers Using A Particle Swarm Optimization. Technique, Int J Therm Sci., 49: 1712–1721.
  • Rao RV, Patel VK, 2011. Design Optimization Of Rotary Regenerator Using Artificial Bee Colony Algorithm. P I Mech Eng A-J Pow, 225: 1088–1098.
  • Saunders EAD, 1988. Heat Exchangers-Selection, Design & Construction. Longman&Scientific Technical, 1-160.
  • Shah RK, Sekulic DP, 2003. Fundamentals Of Heat Exchanger Design. John Wiley & Sons, Inc., New Jersey, 976, USA.
  • Shinde S, Chavan U, 2017. Numerical And Experimental Analysis On Shell Side Thermo-Hydraulic Performance Of Shell And Tube Heat Exchanger With Continuous Helical Frp Baffles. Therm. Sci.Eng., 5: 158-171.
  • Walker G, 1990. Industrial Heat Exchangers. A Basic Guide, Second Edition, Hemisphere Publishing Corporation, 410.
  • Wang L, Sunden B, Manglik RM, 2007. Plate Heat Exchangers: Design, Applications And Performance. 288, USA.
  • Yılmaz M, Şara ON, 2000. Isı Değiştirici Seçimi. Mühendis ve Makine, 41(490): 24-37.
  • Yu C, Ren Z, Zeng M, 2018. Numerical İnvestigation Of Shell-Side Performance For Shell And Tube Heat Exchangers With Two Different Clamping Type Anti-Vibration Baffles. Appl. Therm. Eng., 133: 125-136.
  • Zhang J, Zhu X, Mondejar ME, Haglind F, 2019. A Review Of Heat Transfer Enhancement Techniques İn Plate Heat Exchangers. Renewable And Sustainable Energy Reviews, 101: 305-328.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Eda Feyza Akyürek 0000-0003-4007-6846

Kadir Geliş 0000-0001-8612-2233

Mehmet Yoladı 0000-0002-4729-0768

Publication Date June 1, 2020
Submission Date August 7, 2019
Acceptance Date January 25, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Akyürek, E. F., Geliş, K., & Yoladı, M. (2020). Farklı Tip Isı Değiştiriciler için Termodinamik Analiz. Journal of the Institute of Science and Technology, 10(2), 1202-1212. https://doi.org/10.21597/jist.603325
AMA Akyürek EF, Geliş K, Yoladı M. Farklı Tip Isı Değiştiriciler için Termodinamik Analiz. J. Inst. Sci. and Tech. June 2020;10(2):1202-1212. doi:10.21597/jist.603325
Chicago Akyürek, Eda Feyza, Kadir Geliş, and Mehmet Yoladı. “Farklı Tip Isı Değiştiriciler için Termodinamik Analiz”. Journal of the Institute of Science and Technology 10, no. 2 (June 2020): 1202-12. https://doi.org/10.21597/jist.603325.
EndNote Akyürek EF, Geliş K, Yoladı M (June 1, 2020) Farklı Tip Isı Değiştiriciler için Termodinamik Analiz. Journal of the Institute of Science and Technology 10 2 1202–1212.
IEEE E. F. Akyürek, K. Geliş, and M. Yoladı, “Farklı Tip Isı Değiştiriciler için Termodinamik Analiz”, J. Inst. Sci. and Tech., vol. 10, no. 2, pp. 1202–1212, 2020, doi: 10.21597/jist.603325.
ISNAD Akyürek, Eda Feyza et al. “Farklı Tip Isı Değiştiriciler için Termodinamik Analiz”. Journal of the Institute of Science and Technology 10/2 (June 2020), 1202-1212. https://doi.org/10.21597/jist.603325.
JAMA Akyürek EF, Geliş K, Yoladı M. Farklı Tip Isı Değiştiriciler için Termodinamik Analiz. J. Inst. Sci. and Tech. 2020;10:1202–1212.
MLA Akyürek, Eda Feyza et al. “Farklı Tip Isı Değiştiriciler için Termodinamik Analiz”. Journal of the Institute of Science and Technology, vol. 10, no. 2, 2020, pp. 1202-1, doi:10.21597/jist.603325.
Vancouver Akyürek EF, Geliş K, Yoladı M. Farklı Tip Isı Değiştiriciler için Termodinamik Analiz. J. Inst. Sci. and Tech. 2020;10(2):1202-1.