Review
BibTex RIS Cite

New Type Sulfonated Polyimide Membrane Fuel Cells and Applications

Year 2020, Volume: 10 Issue: 4, 2714 - 2729, 15.12.2020
https://doi.org/10.21597/jist.731572

Abstract

Many theoretical and experimental studies on sulfonated polyimides and their applications used in the field of fuel cells have been done by scientists. Different variations of sulfonated polyimides with various methods have been found and the studies described below have been carried out with the aim of providing high performance at low cost in use as fuel cells. In studies, brand new sulfonated polyimides with varying chemical structure for fuel cell applications have been synthesized and characterized. In studies, generally fuel cell; The properties that will affect the performance of the membrane such as imidization, thermal stability, water uptake, ion exchange capacity, proton conductivity, hydrolytic and oxidative stability have been investigated. It is also intended to make the sulphonated polyimide membrane at low cost with high proton conductivity suitable for use as a polymer electrolyte membrane for the fuel cell. In our review study, fuel cell uses of these new materials were investigated.

References

  • Akbarian-Feizi L, Mehdipour-Ataei S,Yeganeh H, 2010. Survey of sulfonated polyimide membrane as a good candidate for nafion substitution in fuel cell. International Journal of Hydrogen Energy, 35(17): 9385-9397.
  • Aoki M., Uchida H, Watanabe M, 2006. Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells. Electrochemistry Communications, 8(9): 1509-1513.
  • Aoki M., Uchida H, Watanabe M, 2005. Novel evaluation method for degradation rate of polymer electrolytes in fuel cells. Electrochemistry Communications, 7(12): 1434-1438.
  • Asadullah S, et al., 2020. Sulfonated porous surface of tantalum pentoxide/polyimide composite with micro-submicro structures displaying antibacterial performances and stimulating cell responses. Materials & Design, 190, 108510.
  • Bi H, et al., 2010. Preparation and properties of cross-linked sulfonated poly(arylene ether sulfone)/sulfonated polyimide blend membranes for fuel cell application. Journal of Membrane Science, 350(1): 109-116.
  • Chen K., et al., 2009. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for fuel cell application. Polymer, 50(2): 510-518.
  • Fujimura M, Hashimoto T, Kawai H, 1982. Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum. Macromolecules, 15(1): 136-144.
  • Grady B, 1999. Introduction to Ionomers By Adi Eisenberg and Joon-Seop Kim (McGill University). Wiley-Interscience:  New York. 1998. xxi + 327 pp. $99.95. ISBN 0-471-24678-6. Journal of the American Chemical Society, 121(21): 5101-5101.
  • Heinzel A, Barragán VM, 1999. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources, 84(1): 70-74.
  • Heinzel A, et al., 1998. Membrane fuel cells concepts and system design. Electrochimica Acta, 43(24): 3817-3820.
  • Hickner MA, Pivovar BS, 2005. The Chemical and Structural Nature of Proton Exchange Membrane Fuel Cell Properties. Fuel Cells, 5(2): 213-229.
  • Hickner MA, et al., 2004. Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 104(10): 4587-4612.
  • Higashihara T, Matsumoto K, Ueda M, 2009. Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer, 50(23): 5341-5357.
  • Hogarth WHJ, Diniz da Costa J C, Lu G Q, 2005. Solid acid membranes for high temperature (140°C) proton exchange membrane fuel cells. Journal of Power Sources, 142(1): 223-237.
  • Huang X, et al., 2006. Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability. Journal of Polymer Science Part B: Polymer Physics, 44(16): 2346-2357.
  • Ito G, Tanaka M, Kawakami H, 2018. Sulfonated polyimide nanofiber framework: Evaluation of intrinsic proton conductivity and application to composite membranes for fuel cells. Solid State Ionics, 317: 244-255.
  • Kabasawa A, et al., 2009. Durability of a novel sulfonated polyimide membrane in polymer electrolyte fuel cell operation. Electrochimica Acta, 54(3): 1076-1082.
  • Kim Y, et al., 2004. Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: Composition and morphology effects on the methanol permeability. Journal of Membrane Science, 243: 317-326.
  • Kins CF, et al., 2014. Morphological Anisotropy and Proton Conduction in Multiblock Copolyimide Electrolyte Membranes. Macromolecules, 47(8): 2645-2658.
  • Ladewig B, Al-Shaeli MNZ, 2017. Fundamentals of Membrane Processes, in Fundamentals of Membrane Bioreactors: Materials, Systems and Membrane Fouling, B. Ladewig and M.N.Z. Al-Shaeli, Editors., Springer Singapore: Singapore, 13-37.
  • Lee S, et al., 2015. Synthesis and characterization of crosslink-free highly sulfonated multi-block poly(arylene ether sulfone) multi-block membranes for fuel cells. Journal of Materials Chemistry A, 3(5): 1833-1836.
  • Lee CH, et al., 2009. Chemically Tuned Anode with Tailored Aqueous Hydrocarbon Binder for Direct Methanol Fuel Cells. Langmuir, 25(14): 8217-8225.
  • Lee SY, Yasuda T, Watanabe M, 2010. Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. Journal of Power Sources, 195(18): 5909-5914.
  • Li Q, et al., 2003. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26): 4896-4915.
  • Liaqat K, et al., Synthesis and characterization of novel sulfonated polyimide with varying chemical structure for fuel cell applications. Solid State Ionics, 2018. 319: 141-147.
  • Liaw DJ, et al., 2012. Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 37(7): 907-974.
  • Lin CC, et al., 2012. Preparation and performance of sulfonated polyimide/Nafion multilayer membrane for proton exchange membrane fuel cell. Journal of Power Sources, 200: 1-7.
  • Liu D, et al., 2011. Novel nanocomposite membranes based on sulfonated mesoporous silica nanoparticles modified sulfonated polyimides for direct methanol fuel cells. Journal of Membrane Science, 366(1): 251-257.
  • Miyake J, Mochizuki T, Miyatake K, 2015. Effect of the Hydrophilic Component in Aromatic Ionomers: Simple Structure Provides Improved Properties as Fuel Cell Membranes. ACS Macro Letters, 4(7): 750-754.
  • Miyatake K, Asano N, Watanabe M, 2003. Synthesis and properties of novel sulfonated polyimides containing 1,5-naphthylene moieties. Journal of Polymer Science Part A: Polymer Chemistry, 41(24): 3901-3907.
  • Miyatake K, et al., 2012. Durability of sulfonated polyimide membrane in humidity cycling for fuel cell applications. Journal of Power Sources, 204: 74-78.
  • Mlyatake K, Watanabe M, 2005. Recent Progress in Proton Conducting Membranes for PEFCs. Electrochemistry, 73(1): 12-19.
  • Nagao Y, et al., 2019. Introducing planar hydrophobic groups into an alkyl-sulfonated rigid polyimide and how this affects morphology and proton conductivity. Electrochimica Acta, 300: 333-340.
  • Nguyen TH, Wang C, Wang X, 2009. Pore-filling membrane for direct methanol fuel cells based on sulfonated poly(styrene-ran-ethylene) and porous polyimide matrix. Journal of Membrane Science, 342(1): 208-214.
  • Rikukawa M, Sanui K, 2000. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science, 25(10): 1463-1502.
  • Rozière J, Jones DJ, 2003. Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells. Annual Review of Materials Research, 33(1): 503-555.
  • Saito J, et al., 2010. Proton conductive polyimide ionomer membranes: Effect of NH, OH, and COOH groups. Journal of Polymer Science Part A: Polymer Chemistry, 48(13): 2846-2854.
  • Shao L, Lau CH, Chung TS, 2009. A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification. International journal of hydrogen energy, 34(20): 8716-8722.
  • Sheng L, et al., 2014. Poly(arylene ether ether nitrile)s Containing Flexible Alkylsulfonated Side Chains for Polymer Electrolyte Membranes. Journal of Polymer Science A Polymer Chemistry, 52: 21-29.
  • Song Y, et al., 2014. Sulfonated polyimides and their polysilsesquioxane hybrid membranes for fuel cells. Solid State Ionics, 258: 92-100.
  • Steele BCH, Heinzel A, 2001. Materials for fuel-cell technologies. Nature, 414(6861): 345-352.
  • Voss H, Huff J, 1997. Portable fuel cell power generator. Journal of Power Sources, 65(1): 155-158.
  • Xiao L, et al., 2005. Synthesis and Characterization of Pyridine-Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. Fuel Cells, 5(2): 287-295.
  • Yamazaki K, et al., 2012. Sulfonated block-graft copolyimide for high proton conductive and low gas permeable polymer electrolyte membrane. Journal of Power Sources, 216: 387–394.
  • Yin Y, et al., 2006. On the Development of Naphthalene-Based Sulfonated Polyimide Membranes for Fuel Cell Applications. Polymer Journal, 38(3): 197-219.
  • Yin Y, et al., 2006. Water Stability of Sulfonated Polyimide Membranes. Macromolecules, 39(3): 1189-1198.
  • You PY, Kamarudin SK, Masdar MS, 2019. Improved performance of sulfonated polyimide composite membranes with rice husk ash as a bio-filler for application in direct methanol fuel cells. International Journal of Hydrogen Energy, 44(3): 1857-1866.
  • Zhang D, et al., 2020. Effects of sulfonate incorporation and structural isomerism on physical and gas transport properties of soluble sulfonated polyimides. Polymer, 191: 122263.
  • Zhang H, Shen PK, 2012. Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chemical Reviews, 112(5): 2780-2832.

Yeni Tip Sülfonlanmış Poliimid Membranlı Yakıt Hücreleri ve Uygulamaları

Year 2020, Volume: 10 Issue: 4, 2714 - 2729, 15.12.2020
https://doi.org/10.21597/jist.731572

Abstract

Yakıt hücreleri alanında kullanılan sülfonlanmış poliimidler ve uygulamaları hakkında birçok teoriksel ve deneysel çalışmalar bilim insanları tarafından yapılmıştır. Çeşitli yöntemlerle sülfonlanmış poliimidlerin farklı varyasyonları bulunmuş ve yakıt hücresi olarak kullanımında düşük maliyette yüksek performans sergilemesi amaçlanarak aşağıda anlatılan çalışmalar gerçekleştirilmiştir. Çalışmalarda yakıt hücresi uygulamaları için değişen kimyasal yapıya sahip yepyeni sülfonlanmış poliimidler sentezlenmiş ve karakterize edilmiştir. Çalışmalarda genellikle yakıt hücresinin; membranın imidizasyonu, termal kararlılığı, su alımı, iyon değişimi kapasitesi, proton iletkenliği, hidrolitik ve oksidatif kararlılıkları gibi performansını etkileyecek özellikler incelenmiştir. Aynı zamanda, düşük maliyette, yüksek proton iletkenliği ile sülfonlanmış poliimid membranın yakıt hücresi için bir polimer elektrolit membran olarak kullanılmak üzere uygun hale getirilmesi amaçlanmıştır. Derleme çalışmamızda bu yeni materyallerin yakıt hücresi kullanımları araştırılmıştır.

References

  • Akbarian-Feizi L, Mehdipour-Ataei S,Yeganeh H, 2010. Survey of sulfonated polyimide membrane as a good candidate for nafion substitution in fuel cell. International Journal of Hydrogen Energy, 35(17): 9385-9397.
  • Aoki M., Uchida H, Watanabe M, 2006. Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells. Electrochemistry Communications, 8(9): 1509-1513.
  • Aoki M., Uchida H, Watanabe M, 2005. Novel evaluation method for degradation rate of polymer electrolytes in fuel cells. Electrochemistry Communications, 7(12): 1434-1438.
  • Asadullah S, et al., 2020. Sulfonated porous surface of tantalum pentoxide/polyimide composite with micro-submicro structures displaying antibacterial performances and stimulating cell responses. Materials & Design, 190, 108510.
  • Bi H, et al., 2010. Preparation and properties of cross-linked sulfonated poly(arylene ether sulfone)/sulfonated polyimide blend membranes for fuel cell application. Journal of Membrane Science, 350(1): 109-116.
  • Chen K., et al., 2009. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for fuel cell application. Polymer, 50(2): 510-518.
  • Fujimura M, Hashimoto T, Kawai H, 1982. Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum. Macromolecules, 15(1): 136-144.
  • Grady B, 1999. Introduction to Ionomers By Adi Eisenberg and Joon-Seop Kim (McGill University). Wiley-Interscience:  New York. 1998. xxi + 327 pp. $99.95. ISBN 0-471-24678-6. Journal of the American Chemical Society, 121(21): 5101-5101.
  • Heinzel A, Barragán VM, 1999. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources, 84(1): 70-74.
  • Heinzel A, et al., 1998. Membrane fuel cells concepts and system design. Electrochimica Acta, 43(24): 3817-3820.
  • Hickner MA, Pivovar BS, 2005. The Chemical and Structural Nature of Proton Exchange Membrane Fuel Cell Properties. Fuel Cells, 5(2): 213-229.
  • Hickner MA, et al., 2004. Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 104(10): 4587-4612.
  • Higashihara T, Matsumoto K, Ueda M, 2009. Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer, 50(23): 5341-5357.
  • Hogarth WHJ, Diniz da Costa J C, Lu G Q, 2005. Solid acid membranes for high temperature (140°C) proton exchange membrane fuel cells. Journal of Power Sources, 142(1): 223-237.
  • Huang X, et al., 2006. Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability. Journal of Polymer Science Part B: Polymer Physics, 44(16): 2346-2357.
  • Ito G, Tanaka M, Kawakami H, 2018. Sulfonated polyimide nanofiber framework: Evaluation of intrinsic proton conductivity and application to composite membranes for fuel cells. Solid State Ionics, 317: 244-255.
  • Kabasawa A, et al., 2009. Durability of a novel sulfonated polyimide membrane in polymer electrolyte fuel cell operation. Electrochimica Acta, 54(3): 1076-1082.
  • Kim Y, et al., 2004. Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: Composition and morphology effects on the methanol permeability. Journal of Membrane Science, 243: 317-326.
  • Kins CF, et al., 2014. Morphological Anisotropy and Proton Conduction in Multiblock Copolyimide Electrolyte Membranes. Macromolecules, 47(8): 2645-2658.
  • Ladewig B, Al-Shaeli MNZ, 2017. Fundamentals of Membrane Processes, in Fundamentals of Membrane Bioreactors: Materials, Systems and Membrane Fouling, B. Ladewig and M.N.Z. Al-Shaeli, Editors., Springer Singapore: Singapore, 13-37.
  • Lee S, et al., 2015. Synthesis and characterization of crosslink-free highly sulfonated multi-block poly(arylene ether sulfone) multi-block membranes for fuel cells. Journal of Materials Chemistry A, 3(5): 1833-1836.
  • Lee CH, et al., 2009. Chemically Tuned Anode with Tailored Aqueous Hydrocarbon Binder for Direct Methanol Fuel Cells. Langmuir, 25(14): 8217-8225.
  • Lee SY, Yasuda T, Watanabe M, 2010. Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. Journal of Power Sources, 195(18): 5909-5914.
  • Li Q, et al., 2003. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26): 4896-4915.
  • Liaqat K, et al., Synthesis and characterization of novel sulfonated polyimide with varying chemical structure for fuel cell applications. Solid State Ionics, 2018. 319: 141-147.
  • Liaw DJ, et al., 2012. Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 37(7): 907-974.
  • Lin CC, et al., 2012. Preparation and performance of sulfonated polyimide/Nafion multilayer membrane for proton exchange membrane fuel cell. Journal of Power Sources, 200: 1-7.
  • Liu D, et al., 2011. Novel nanocomposite membranes based on sulfonated mesoporous silica nanoparticles modified sulfonated polyimides for direct methanol fuel cells. Journal of Membrane Science, 366(1): 251-257.
  • Miyake J, Mochizuki T, Miyatake K, 2015. Effect of the Hydrophilic Component in Aromatic Ionomers: Simple Structure Provides Improved Properties as Fuel Cell Membranes. ACS Macro Letters, 4(7): 750-754.
  • Miyatake K, Asano N, Watanabe M, 2003. Synthesis and properties of novel sulfonated polyimides containing 1,5-naphthylene moieties. Journal of Polymer Science Part A: Polymer Chemistry, 41(24): 3901-3907.
  • Miyatake K, et al., 2012. Durability of sulfonated polyimide membrane in humidity cycling for fuel cell applications. Journal of Power Sources, 204: 74-78.
  • Mlyatake K, Watanabe M, 2005. Recent Progress in Proton Conducting Membranes for PEFCs. Electrochemistry, 73(1): 12-19.
  • Nagao Y, et al., 2019. Introducing planar hydrophobic groups into an alkyl-sulfonated rigid polyimide and how this affects morphology and proton conductivity. Electrochimica Acta, 300: 333-340.
  • Nguyen TH, Wang C, Wang X, 2009. Pore-filling membrane for direct methanol fuel cells based on sulfonated poly(styrene-ran-ethylene) and porous polyimide matrix. Journal of Membrane Science, 342(1): 208-214.
  • Rikukawa M, Sanui K, 2000. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science, 25(10): 1463-1502.
  • Rozière J, Jones DJ, 2003. Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells. Annual Review of Materials Research, 33(1): 503-555.
  • Saito J, et al., 2010. Proton conductive polyimide ionomer membranes: Effect of NH, OH, and COOH groups. Journal of Polymer Science Part A: Polymer Chemistry, 48(13): 2846-2854.
  • Shao L, Lau CH, Chung TS, 2009. A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification. International journal of hydrogen energy, 34(20): 8716-8722.
  • Sheng L, et al., 2014. Poly(arylene ether ether nitrile)s Containing Flexible Alkylsulfonated Side Chains for Polymer Electrolyte Membranes. Journal of Polymer Science A Polymer Chemistry, 52: 21-29.
  • Song Y, et al., 2014. Sulfonated polyimides and their polysilsesquioxane hybrid membranes for fuel cells. Solid State Ionics, 258: 92-100.
  • Steele BCH, Heinzel A, 2001. Materials for fuel-cell technologies. Nature, 414(6861): 345-352.
  • Voss H, Huff J, 1997. Portable fuel cell power generator. Journal of Power Sources, 65(1): 155-158.
  • Xiao L, et al., 2005. Synthesis and Characterization of Pyridine-Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. Fuel Cells, 5(2): 287-295.
  • Yamazaki K, et al., 2012. Sulfonated block-graft copolyimide for high proton conductive and low gas permeable polymer electrolyte membrane. Journal of Power Sources, 216: 387–394.
  • Yin Y, et al., 2006. On the Development of Naphthalene-Based Sulfonated Polyimide Membranes for Fuel Cell Applications. Polymer Journal, 38(3): 197-219.
  • Yin Y, et al., 2006. Water Stability of Sulfonated Polyimide Membranes. Macromolecules, 39(3): 1189-1198.
  • You PY, Kamarudin SK, Masdar MS, 2019. Improved performance of sulfonated polyimide composite membranes with rice husk ash as a bio-filler for application in direct methanol fuel cells. International Journal of Hydrogen Energy, 44(3): 1857-1866.
  • Zhang D, et al., 2020. Effects of sulfonate incorporation and structural isomerism on physical and gas transport properties of soluble sulfonated polyimides. Polymer, 191: 122263.
  • Zhang H, Shen PK, 2012. Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chemical Reviews, 112(5): 2780-2832.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Aslıhan Aycan Tanrıverdi 0000-0001-5811-8253

Ümit Yıldıko 0000-0001-8627-9038

İsmail Çakmak This is me 0000-0002-3191-7570

Publication Date December 15, 2020
Submission Date May 3, 2020
Acceptance Date June 18, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Tanrıverdi, A. A., Yıldıko, Ü., & Çakmak, İ. (2020). Yeni Tip Sülfonlanmış Poliimid Membranlı Yakıt Hücreleri ve Uygulamaları. Journal of the Institute of Science and Technology, 10(4), 2714-2729. https://doi.org/10.21597/jist.731572
AMA Tanrıverdi AA, Yıldıko Ü, Çakmak İ. Yeni Tip Sülfonlanmış Poliimid Membranlı Yakıt Hücreleri ve Uygulamaları. J. Inst. Sci. and Tech. December 2020;10(4):2714-2729. doi:10.21597/jist.731572
Chicago Tanrıverdi, Aslıhan Aycan, Ümit Yıldıko, and İsmail Çakmak. “Yeni Tip Sülfonlanmış Poliimid Membranlı Yakıt Hücreleri Ve Uygulamaları”. Journal of the Institute of Science and Technology 10, no. 4 (December 2020): 2714-29. https://doi.org/10.21597/jist.731572.
EndNote Tanrıverdi AA, Yıldıko Ü, Çakmak İ (December 1, 2020) Yeni Tip Sülfonlanmış Poliimid Membranlı Yakıt Hücreleri ve Uygulamaları. Journal of the Institute of Science and Technology 10 4 2714–2729.
IEEE A. A. Tanrıverdi, Ü. Yıldıko, and İ. Çakmak, “Yeni Tip Sülfonlanmış Poliimid Membranlı Yakıt Hücreleri ve Uygulamaları”, J. Inst. Sci. and Tech., vol. 10, no. 4, pp. 2714–2729, 2020, doi: 10.21597/jist.731572.
ISNAD Tanrıverdi, Aslıhan Aycan et al. “Yeni Tip Sülfonlanmış Poliimid Membranlı Yakıt Hücreleri Ve Uygulamaları”. Journal of the Institute of Science and Technology 10/4 (December 2020), 2714-2729. https://doi.org/10.21597/jist.731572.
JAMA Tanrıverdi AA, Yıldıko Ü, Çakmak İ. Yeni Tip Sülfonlanmış Poliimid Membranlı Yakıt Hücreleri ve Uygulamaları. J. Inst. Sci. and Tech. 2020;10:2714–2729.
MLA Tanrıverdi, Aslıhan Aycan et al. “Yeni Tip Sülfonlanmış Poliimid Membranlı Yakıt Hücreleri Ve Uygulamaları”. Journal of the Institute of Science and Technology, vol. 10, no. 4, 2020, pp. 2714-29, doi:10.21597/jist.731572.
Vancouver Tanrıverdi AA, Yıldıko Ü, Çakmak İ. Yeni Tip Sülfonlanmış Poliimid Membranlı Yakıt Hücreleri ve Uygulamaları. J. Inst. Sci. and Tech. 2020;10(4):2714-29.