Research Article
BibTex RIS Cite

Manyetik Fe3O4 Nanopartiküllerinin Siyanurik Klorür Yoluyla Poli (ԑ-Kaprolakton)’ a Bağlanması, Termal ve Manyetik Özelliklerinin İncelenmesi

Year 2020, Volume: 10 Issue: 4, 2730 - 2739, 15.12.2020
https://doi.org/10.21597/jist.734090

Abstract

Bu çalışmada öncelikle halka açılma polimerizasyon yöntemiyle poli (ԑ-kaprolakton) (PCL) sentezlendi. Ardından PCL’ ye siyanürik klorür (CC) bileşiği bağlandı ve 3-aminopropil trimetoksisilan ile kaplanmış manyetik Fe3O4 nanopartikülleri (MNP) ile modifiye edildi. Sentezlenen polimerlerin karekterizasyonu FT-IR, 1H-NMR ve 13C-NMR ile yapıldı. Termal veriler a-MNP’ nin termal kararlılığının (PCL-g-CC) bağlandıktan sonra düştüğünü gösterdi. Titreşimli numune manyetometre (VSM) ölçümlerinden (a-MNP)’ nin doygunluk manyetizasyon değeri (Ms) 52.07 emug-1 ve [PCL-g-CC-g-(a-MNP)]’ nin Ms değerinin ise 32.08 emug-1 olduğu belirlendi. Ayrıca VSM ölçümlerinden partikül boyutları a-MNP ve [PCL-g-CC-g-(a-MNP)] için sırasıyla 15.98 nm ve 21.41 nm olarak hesaplandı. [PCL-g-CC-g-(a-MNP)] SEM görüntüsünde a-MNP’ nin polimer içerisinde hapsolduğu belirlenirken, EDX verilerinde görülen Fe atomu, yapıda MNP’ nin olduğunu kanıtlar niteliktedir.

Supporting Institution

Fırat Üniversitesi

Project Number

FF.15.11

References

  • Blotny G, 2006. Recent applications of 2, 4, 6-trichloro-1, 3, 5-triazine and its derivatives in organic synthesis. Tetrahedron, 62 (41): 9507-9522.
  • Burke NA, Stöver HD, Dawson FP, 2002. Magnetic nanocomposites: preparation and characterization of polymer-coated iron nanoparticles. Chemistry of Materials, 14 (11): 4752-4761.
  • Chang M, Matuszko A. (1962). Synthesis and Properties of Some Cyanuric Chloride Derivatives: Bureau Of Naval Weapons Washington DC.
  • Kalkan NA, Aksoy S, Aksoy EA, Hasirci N, 2012. Preparation of chitosan‐coated magnetite nanoparticles and application for immobilization of laccase. Journal of Applied Polymer Science, 123 (2): 707-716.
  • Kommareddi NS, Tata M, John VT, McPherson GL, Herman MF, Lee Y-S ve Kaplan DL, 1996. Synthesis of superparamagnetic polymer− ferrite composites using surfactant microstructures. Chemistry of Materials, 8 (3): 801-809.
  • Kumar R, Gupta L, Pal P, Khan S, Singh N, Katiyar SB ve Kanaujiya JK, 2010. Synthesis and cytotoxicity evaluation of (tetrahydro-β-carboline)-1, 3, 5-triazine hybrids as anticancer agents. European journal of medicinal chemistry, 45 (6): 2265-2276.
  • Ma X, Tan S-T, Khoo C-L, Sim H-M, Chan L-W, Chui W-K, 2011. Synthesis and antimicrobial activity of N1-benzyl or N1-benzyloxy-1, 6-dihydro-1, 3, 5-triazine-2, 4-diamines. Bioorganic & medicinal chemistry letters, 21 (18): 5428-5431.
  • Pekdemir ME. (2019). Manyetik nanotanecikler üzerinde modifikasyon çalışmaları (Doktora Tezi), Fırat Üniversitesi, Fen Bilimleri Enstitüsü.
  • Pekdemir ME, Ertürkan D, Külah H, Boyacı İH, Özgen C, Tamer U, 2012. Ultrasensitive and selective homogeneous sandwich immunoassay detection by Surface Enhanced Raman Scattering (SERS). Analyst, 137 (20): 4834-4840.
  • Popiołek Ł, Baran I, 2015. Synthesis of New Cyanuric Chloride Derivatives. International Research Journal of Pure and Applied Chemistry1-6.
  • Seckin T, Vural S, Köytepe S, 2010. Preparation and structural properties of Fe 3 O 4–polyimide hybrid nanocomposites. Polymer bulletin, 64 (2): 115.
  • Soozanipour A, Taheri-Kafrani A, Barkhori M, Nasrollahzadeh M, 2019. Preparation of a stable and robust nanobiocatalyst by efficiently immobilizing of pectinase onto cyanuric chloride-functionalized chitosan grafted magnetic nanoparticles. Journal of colloid and interface science, 536 261-270.
  • Soozanipour A, Taheri-Kafrani A, Isfahani AL, 2015. Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chemical Engineering Journal, 270 235-243.
  • Wang Q, Liu G, Shao R, Huang R, 2003. Synthesis and antivirus activity of 1, 3, 5‐triazine derivatives. Heteroatom Chemistry: An International Journal of Main Group Elements, 14 (6): 542-545.
  • Xie J, Xu C, Xu Z, Hou Y, Young KL, Wang S ve Sun S, 2006. Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Chemistry of Materials, 18 (23): 5401-5403.
  • Yaacob II, Nunes AC, Bose A, 1995. Magnetic nanoparticles produced in spontaneous cationic-anionic vesicles: room temperature synthesis and characterization. Journal of colloid and interface science, 171 (1): 73-84.

Linking Magnetic Fe3O4 Nanoparticles to Poly (ԑ-caprolactone) via Cyanuric Chloride, Investigation of Thermal and Magnetic Properties

Year 2020, Volume: 10 Issue: 4, 2730 - 2739, 15.12.2020
https://doi.org/10.21597/jist.734090

Abstract

In this study, firstly poly (ԑ-caprolactone) (PCL) was synthesized by ring opening polymerization. Next, cyanuric chloride (CC) was bonded to PCL and modified by magnetic Fe3O4 nanoparticles capped with 3-aminopropyl trimethoxysilane. Synthesized polymers were characterized by FT-IR, 1H-NMR ve 13C-NMR. Thermal datas showed that thermal stability of a-MNP decreased after bonded to (PCL-g-CC). It was determined from the vibrating sample magnetometer (VSM) measurements that the saturation magnetization (Ms) of a-MNP and PCL-g-CC-g-(a-MNP)] were 52.07 emug-1 and 32.08 emug-1. Additionally, particle sizes of a-MNP and [PCL-g-CC-g-(a-MNP)] was calculated 15.98 nm and 21.41 nm, respectively. While determining that a-MNP was trapped in the polymer in the SEM image of [PCL-g-CC-g-(a-MNP)], the Fe atom seen in the EDX data proves that there was MNP in the structure.

Project Number

FF.15.11

References

  • Blotny G, 2006. Recent applications of 2, 4, 6-trichloro-1, 3, 5-triazine and its derivatives in organic synthesis. Tetrahedron, 62 (41): 9507-9522.
  • Burke NA, Stöver HD, Dawson FP, 2002. Magnetic nanocomposites: preparation and characterization of polymer-coated iron nanoparticles. Chemistry of Materials, 14 (11): 4752-4761.
  • Chang M, Matuszko A. (1962). Synthesis and Properties of Some Cyanuric Chloride Derivatives: Bureau Of Naval Weapons Washington DC.
  • Kalkan NA, Aksoy S, Aksoy EA, Hasirci N, 2012. Preparation of chitosan‐coated magnetite nanoparticles and application for immobilization of laccase. Journal of Applied Polymer Science, 123 (2): 707-716.
  • Kommareddi NS, Tata M, John VT, McPherson GL, Herman MF, Lee Y-S ve Kaplan DL, 1996. Synthesis of superparamagnetic polymer− ferrite composites using surfactant microstructures. Chemistry of Materials, 8 (3): 801-809.
  • Kumar R, Gupta L, Pal P, Khan S, Singh N, Katiyar SB ve Kanaujiya JK, 2010. Synthesis and cytotoxicity evaluation of (tetrahydro-β-carboline)-1, 3, 5-triazine hybrids as anticancer agents. European journal of medicinal chemistry, 45 (6): 2265-2276.
  • Ma X, Tan S-T, Khoo C-L, Sim H-M, Chan L-W, Chui W-K, 2011. Synthesis and antimicrobial activity of N1-benzyl or N1-benzyloxy-1, 6-dihydro-1, 3, 5-triazine-2, 4-diamines. Bioorganic & medicinal chemistry letters, 21 (18): 5428-5431.
  • Pekdemir ME. (2019). Manyetik nanotanecikler üzerinde modifikasyon çalışmaları (Doktora Tezi), Fırat Üniversitesi, Fen Bilimleri Enstitüsü.
  • Pekdemir ME, Ertürkan D, Külah H, Boyacı İH, Özgen C, Tamer U, 2012. Ultrasensitive and selective homogeneous sandwich immunoassay detection by Surface Enhanced Raman Scattering (SERS). Analyst, 137 (20): 4834-4840.
  • Popiołek Ł, Baran I, 2015. Synthesis of New Cyanuric Chloride Derivatives. International Research Journal of Pure and Applied Chemistry1-6.
  • Seckin T, Vural S, Köytepe S, 2010. Preparation and structural properties of Fe 3 O 4–polyimide hybrid nanocomposites. Polymer bulletin, 64 (2): 115.
  • Soozanipour A, Taheri-Kafrani A, Barkhori M, Nasrollahzadeh M, 2019. Preparation of a stable and robust nanobiocatalyst by efficiently immobilizing of pectinase onto cyanuric chloride-functionalized chitosan grafted magnetic nanoparticles. Journal of colloid and interface science, 536 261-270.
  • Soozanipour A, Taheri-Kafrani A, Isfahani AL, 2015. Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chemical Engineering Journal, 270 235-243.
  • Wang Q, Liu G, Shao R, Huang R, 2003. Synthesis and antivirus activity of 1, 3, 5‐triazine derivatives. Heteroatom Chemistry: An International Journal of Main Group Elements, 14 (6): 542-545.
  • Xie J, Xu C, Xu Z, Hou Y, Young KL, Wang S ve Sun S, 2006. Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Chemistry of Materials, 18 (23): 5401-5403.
  • Yaacob II, Nunes AC, Bose A, 1995. Magnetic nanoparticles produced in spontaneous cationic-anionic vesicles: room temperature synthesis and characterization. Journal of colloid and interface science, 171 (1): 73-84.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Mustafa Ersin Pekdemir 0000-0002-4979-1777

Mehmet Coşkun 0000-0002-2379-1795

Project Number FF.15.11
Publication Date December 15, 2020
Submission Date May 8, 2020
Acceptance Date July 14, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Pekdemir, M. E., & Coşkun, M. (2020). Manyetik Fe3O4 Nanopartiküllerinin Siyanurik Klorür Yoluyla Poli (ԑ-Kaprolakton)’ a Bağlanması, Termal ve Manyetik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 10(4), 2730-2739. https://doi.org/10.21597/jist.734090
AMA Pekdemir ME, Coşkun M. Manyetik Fe3O4 Nanopartiküllerinin Siyanurik Klorür Yoluyla Poli (ԑ-Kaprolakton)’ a Bağlanması, Termal ve Manyetik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. December 2020;10(4):2730-2739. doi:10.21597/jist.734090
Chicago Pekdemir, Mustafa Ersin, and Mehmet Coşkun. “Manyetik Fe3O4 Nanopartiküllerinin Siyanurik Klorür Yoluyla Poli (ԑ-Kaprolakton)’ a Bağlanması, Termal Ve Manyetik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 10, no. 4 (December 2020): 2730-39. https://doi.org/10.21597/jist.734090.
EndNote Pekdemir ME, Coşkun M (December 1, 2020) Manyetik Fe3O4 Nanopartiküllerinin Siyanurik Klorür Yoluyla Poli (ԑ-Kaprolakton)’ a Bağlanması, Termal ve Manyetik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology 10 4 2730–2739.
IEEE M. E. Pekdemir and M. Coşkun, “Manyetik Fe3O4 Nanopartiküllerinin Siyanurik Klorür Yoluyla Poli (ԑ-Kaprolakton)’ a Bağlanması, Termal ve Manyetik Özelliklerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 10, no. 4, pp. 2730–2739, 2020, doi: 10.21597/jist.734090.
ISNAD Pekdemir, Mustafa Ersin - Coşkun, Mehmet. “Manyetik Fe3O4 Nanopartiküllerinin Siyanurik Klorür Yoluyla Poli (ԑ-Kaprolakton)’ a Bağlanması, Termal Ve Manyetik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 10/4 (December 2020), 2730-2739. https://doi.org/10.21597/jist.734090.
JAMA Pekdemir ME, Coşkun M. Manyetik Fe3O4 Nanopartiküllerinin Siyanurik Klorür Yoluyla Poli (ԑ-Kaprolakton)’ a Bağlanması, Termal ve Manyetik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2020;10:2730–2739.
MLA Pekdemir, Mustafa Ersin and Mehmet Coşkun. “Manyetik Fe3O4 Nanopartiküllerinin Siyanurik Klorür Yoluyla Poli (ԑ-Kaprolakton)’ a Bağlanması, Termal Ve Manyetik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 10, no. 4, 2020, pp. 2730-9, doi:10.21597/jist.734090.
Vancouver Pekdemir ME, Coşkun M. Manyetik Fe3O4 Nanopartiküllerinin Siyanurik Klorür Yoluyla Poli (ԑ-Kaprolakton)’ a Bağlanması, Termal ve Manyetik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2020;10(4):2730-9.