Research Article
BibTex RIS Cite

Tuz Stresine Maruz Bırakılan Kanola (Brassica napus L.)’da Priming Uygulamalarının (Salisilik Asit ve Askorbik Asit) Çimlenme Üzerine Etkisi

Year 2020, Volume: 10 Issue: 4, 3109 - 3121, 15.12.2020
https://doi.org/10.21597/jist.757788

Abstract

Bu araştırmada, tuz stresine maruz bırakılan kanola (Brassica napus L.) tohumlarına salisilik asit (SA) ve askorbik asit (AsA) ile priming yapılarak çimlenmeye etkilerinin belirlenmesi ve bu uygulamaların optimum konsantrasyonlarının tespit edilmesi amaçlanmıştır. Araştırmada, 5 farklı NaCI konsantrasyonu (kontrol, 50, 100, 150, 200 mM) ile 2 farklı priming uygulaması (SA ve AsA ) ve her priming uygulamasının 5 farklı konsantrasyonu (kontrol, 0.5, 1.0, 1.5, 2.0 mM) ele alınmıştır. Çalışma tesadüf parsellerinde faktöriyel deneme desenine göre dört tekerrürlü olarak yürütülmüştür. Araştırma sonucunda çimlenme oranı (%), ortalama çimlenme süresi (gün) ve çimlenme indeksi (hızı) değerleri incelenmiştir. SA uygulamaları arasında, 0.5 mM SA konsantrasyonunun, artan tuz dozlarında tuz stresinin olumsuz etkisini azaltarak çimlenmeyi hızlandırdığı, ortalama çimlenme süresini kısalttığı ve çimlenme oranını artırdığı tespit edilmiştir. SA konsantrasyonu artıkça (1.5 mM ve 2.0 mM SA) tüm tuz uygulamalarında çimlenmenin olumsuz etkilendiği belirlenmiştir. AsA uygulamaları arasında ise 0.5, 1.0, 1.5 mM konsantrasyonlarının, tuz stresinin olumsuz etkisini büyük ölçüde azaltarak çimlenme oranı ve çimlenme indeksi değerlerine olumlu etkide bulunduğu belirlenirken, ortalama çimlenme süresi üzerine etki etmediği tespit edilmiştir. Kanola tonumlarına çimlenme öncesi uygulanan SA ve AsA ile priming uygulamalarının, tuz stresinin çimlenme engelleyici etkisini önemli ölçüde ortadan kaldırdığı saptanmış olup, 0.5 mM SA/AsA konsantrasyonları optimum doz olarak belirlenmiştir.

References

  • Afzal I, Basra S, Farooq M, Nawaz A, 2006. Alleviation of Salinity Stress in Spring Wheat by Hormonal Priming with ABA, Salicylic Acid and Ascorbic Acid. International Journal of Agriculture and Biology, 8 (1): 23-28.
  • Almansouri M, Kinet JM, Lutts S, 2001. Effect of Salt and Osmotic Stresses on Germination in Durum Wheat (Triticum durum Desf.). Plant and Soil, 231 (2):243-254.
  • Anaya F, Fghire R, Wahbi S, Loutfi K, 2018. Influence of Salicylic Acid on Seed Germination of Vicia faba L. under Salt Stress. Journal of the Saudi Society of Agricultural Sciences, 17 (1):1-8.
  • Anğın N, Vurarak, Y, 2012. Çukurova Bölgesine Uygun Kolza (Brassica napus L.) Çeşitlerinin Belirlenmesi. International Journal of Agricultural and Natural Sciences, 5 (1):90-92.
  • Arafa A, Khafagy M, El-Banna M, 2009. The Effect of Glycinebetaine or Ascorbic Acid on Grain Germination and Leaf Structure of Sorghum Plants Grown Under Salinity Stress. Australian Journal of Crop Science, 3 (5): 294.
  • Arrigoni O, Calabrese G, De Gara L, Bitonti MB, Liso R, 1997. Correlation between Changes in Cell Ascorbate and Growth of Lupinus albus Seedlings. Journal of Plant Physiology, 150 (3):302-308.
  • Aydın İ, Atıcı Ö, 2015. Tuz Stresinin Bazi Kültür Bitkilerinde Çimlenme ve Fide Gelişimi Üzerine Etkileri. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 3 (2): 1-15.
  • Azooz MM, Alzahrani AM, Youssef MM, 2013. The Potential Role of Seed Priming with Ascorbic Acid and Nicotinamide and Their Interactions to Enhance Salt Tolerance in Broad Bean (Vicia faba L.). Australian Journal of Crop Science, 7 (13): 2091.
  • Baninasab B, Baghbanha M, 2013. Influence of Salicylic Acid Pre-Treatment on Emergence and Early Seedling Growth of Cucumber (Cucumis sativus) under Salt Stress. Internatıonal Journal Of Plant Productıon, 7 (2): 187-206.
  • Baran M, Gökdoğan O, Karaağaç H, 2014. Kanola Üretiminde Enerji Kullanım Etkinliğinin Belirlenmesi (Kırklareli ili örneği). Türk Tarım ve Doğa Bilimleri Dergisi, 1(3): 331-337.
  • Bassuony F, Hassanein R, Baraka D, Khalil R, 2008. Physiological Effects of Nicotinamide and Ascorbic Acid on Zea Mays Plant Grown Under Salinity Stress. II-Changes in Nitrogen Constituents, Protein Profiles, Protease Enzyme and Certain Inorganic Cations. Australian Journal of Basic and Applied Sciences, 2 (3): 350-359. Beğbağa M, Öztürk Ö, 2008. Ege Bölgesi Koşullarında Bazı Kışlık Kolza Çeşitlerinde Farklı Ekim Zamanı Uygulamalarının Verim, Verim Unsurları ve Kalite Üzerine Etkileri. Selçuk Tarım Bilimleri Dergisi, 22 (44):84-98.
  • Bybordi A, 2010. The Influence of Salt Stress on Seed Germination, Growth and Yield of Canola Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38 (1): 128-133.
  • Cantliffe DJ, 2001. Seed Enhancements, IX International Symposium on Timing of Field Production in Vegetable Crops, 607:53-59.
  • Conklin PL, 2001. Recent Advances in the Role and Biosynthesis of Ascorbic Acid in Plants. Plant, Cell & Environment, 24 (4): 383-394.
  • Cuartero J, Bolarin M, Asins M, Moreno V, 2006. Increasing Salt Tolerance in the Tomato, Journal of Experimental Botany, 57 (5): 1045-1058.
  • Darçın ES, Yusuf K, Kenan T, 2014. In vitro Koşullarda Humik Maddelerin Kolza Bitkisinin Fizyolojik Özellikleri, Sürgün Rejenerasyonu ve Antioksidant Enzim Aktiviteleri Üzerine Etkisi. International Journal of Agricultural and Natural Sciences, 7 (1):55-61.
  • De Gara L, 2003. Ascorbate and plant growth–from germination to cell death. Vitamin C: Functions and Biochemistry in Animals and Plants, 83-95.
  • Dubey R, Rani M, 1990. Influence of NaCl Salinity on the Behaviour of Protease, Aminopeptidase and Carboxypeptidase in Rice Seedlings in Relation to Salt Tolerance. Functional Plant Biology, 17 (2): 215-221.
  • Ekmekçi BA, Karaman M, 2012. Exogenous Ascorbic Acid Increases Resistance to Salt of Silybum marianum (L.). African Journal of Biotechnology, 11 (42):9932-9940.
  • Ekmekçi E, Apan M, Kara T, 2005. Tuzluluğun Bitki Gelişimine Etkisi. Anadolu Tarım Bilimleri Dergisi. 20 (3): 118-125.
  • Ellis R, Roberts E, 1981. An Investigation into the Possible Effects of Ripeness and Repeated Threshing on Barley Seed Longevity under Six Different Storage Environments. Annals of Botany, 48 (1): 93-96.
  • Farahbakhsh H, 2012. Germination and Seedling Growth in Unprimed and Primed Seeds of Fennel as Affected by Reduced Water Potential Induced by NaCl. International Research Journal of Applied and Basic Sciences, 3 (4): 737-744.
  • Gürsoy M, Nofouzi F, Başalma D, 2016. Humik Asit Uygulama Zamani Ve Dozlarinin Kişlik Kolzada Verim Ve Verim Öğelerine Etkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25 (özel sayi-2): 131-136.
  • Habib N, Ashraf M, Ahmad MSA, 2010. Enhancement in Seed Germinability of Rice (Oryza Sativa L.) By Pre-Sowing Seed Treatment with Nitric Oxide (NO) Under Salt Stress. Pakistan Journal of Botany, 42 (6): 4071-4078.
  • Hara M, Furukawa J, Sato A, Mizoguchi T, Miura K, 2012. Abiotic Stress and Role of Salicylic Acid in Plants, In: Abiotic Stress Responses in Plants. Eds: Springer, p. 235-251.
  • Hasegawa P, Bressan R, Handa A, 1986. Cellular Mechanisms of Salinity Tolerance. HortScience, 21 (6): 1317-1324.
  • Hubbard M, Germida J, Vujanovic V, 2012. Fungal Endophytes Improve Wheat Seed Germination Under Heat and Drought Stress. Botany, 90 (2): 137-149.
  • Jam B, Shekari F, Azimi M, Zangani E, 2012. Effect of Priming by Salicylic Acid on Germination and Seedling Growth of Safflower Seeds under Cacl2 Stress. Internatıonal Journal of Agrıcultural Research And Revıews, 2: 1097-1105.
  • Jini D, Joseph B, 2017. Physiological Mechanism of Salicylic Acid for Alleviation of Salt Stress in Rice. Rice Science, 24 (2): 97-108.
  • Kaydan D, Yagmur M, Okut N, 2007. Effects of Salicylic Acid on the Growth and Some Physiological Characters in Salt Stressed Wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi, 13 (2):114-119.
  • Khajeh-Hosseini M, Powell A, Bingham I, 2003. The Interaction between Salinity Stress and Seed Vigour during Germination of Soyabean Seeds. Seed Science and technology, 31 (3): 715-725.
  • Khan MA, Ahmed MZ, Hameed A, 2006. Effect of Sea Salt and L-Ascorbic Acid on the Seed Germination of Halophytes. Journal of Arid Environments, 67 (3): 535-540.
  • Khan MB, Gurchani MA, Hussain M, Freed S, Mahmood K., 2011. Wheat Seed Enhancement by Vitamin and Hormonal Priming, Pakistan Journal of Botany, 43 (3):1495-1499.
  • Lee S, Kim S, Park C, 2010. Salicylic Acid Promotes Seed Germination Under High Salinity By Modulating Antioxidant Activity In Arabidopsis, New Phytologist, 188 (2):626-637.
  • Lee SS, Kim JH, Hong SB, Yun SH, Park EH, 1998. Priming Effect of Rice Seeds on Seedling Establishment under Adverse Soil Conditions. Korean Journal of Crop Science, 43 (3): 194-198.
  • Maguire JD, 1962. Speed of Germination—Aid In Selection and Evaluation for Seedling Emergence and Vigor 1. Crop science. 2 (2): 176-177.
  • Maiti R, Pramanik K, 2013. Vegetable Seed Priming: A Low Cost, Simple and Powerful Techniques for Farmers’ Livelihood. International Journal of Bio-resource and Stress Management, 4 (4): 475-481.
  • McDonald MB, 2000. Seed Priming, Seed Technology and Its Biological Basis. Sheffield Academic Press, Sheffield, 287-325.
  • Miura K, Tada Y, 2014. Regulation of Water, Salinity and Cold Stress Responses by Salicylic Acid. Frontiers in Plant Science, 5: 4.
  • Mohammadi G, 2009. The Influence of NaCl Priming on Seed Germination and Seedling Growth of Canola (Brassica napus L.) Under Salinity Conditions. American-Eurasian Journal of Agricultural and Environmental Science, 5 (5): 696-700.
  • Mohsen A, Ebrahim M, Ghoraba W, 2013. Effect of Salinity Stress on Vicia Faba Productivity with Respect to Ascorbic Acid Treatment. Iranıan Journal Of Plant Physıology, 3 (3): 725-736.
  • Munns R, 2002. Comparative Physiology of Salt and Water Stress. Plant, Cell & Environment, 25 (2): 239-250.
  • Munns R, Tester M, 2008. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59: 651-681.
  • Murillo‐Amador B, López‐Aguilar R, Kaya C, Larrinaga‐Mayoral J, Flores‐Hernández A, 2002. Comparative Effects of NaCl and Polyethylene Glycol on Germination, Emergence and Seedling Growth of Cowpea. Journal of Agronomy and Crop Science, 188 (4): 235-247.
  • Nawaz K, Ashraf M, 2010. Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. Journal of Agronomy and Crop Science, 196 (1):28-37.
  • Nazarian G, 2016. Tuzluluk Stresinde Kanola Bitkisinin Morfolojik Ve Fizyolojik Özellikleri Üzerine Salisilik Asidin Priming Uygulamasının Etkisi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Noctor G, Foyer CH, 1998. Ascorbate and Glutathione: Keeping Active Oxygen under Control, Annual Review of Plant Biology, 49 (1): 249-279.
  • Nun NB, Plakhine D, Joel DM, Mayer AM, 2003. Changes in the Activity of the Alternative Oxidase in Orobanche Seeds during Conditioning and Their Possible Physiological Function. Phytochemistry, 64 (1): 235-241.
  • Palma F, López-Gómez M, Tejera N, Lluch C, 2013. Salicylic Acid Improves The Salinity Tolerance of Medicago Sativa in Symbiosis With Sinorhizobium Meliloti by Preventing Nitrogen Fixation Inhibition. Plant Science, 208: 75-82.
  • Rivas-San Vicente M, Plasencia J., 2011. Salicylic Acid beyond Defence: its Role in Plant Growth and Development, Journal of Experimental Botany, 62 (10):3321-3338.
  • Saeidnia S, Gohari AR, 2012. Importance of Brassica napus as a medicinal food plant. Journal of Medicinal Plants Research, 6 (14): 2700-2703.
  • Sattar A, Badshah A, 1995. Biosynthesis of Ascorbic Acid in Germinating Rapeseed Cultivars. Plant Foods for Human Nutrition, 47 (1): 63-70.
  • Semida WM, Abd El-Mageed TA, Mohamed SE, El-Sawah NA, 2017. Combined Effect of Deficit Irrigation and Foliar-Applied Salicylic Acid on Physiological Responses, Yield, And Water-Use Efficiency of Onion Plants in Saline Calcareous Soil. Archives of Agronomy and Soil Science, 63 (9): 1227-1239.
  • Smirnoff N, Wheeler GL, 2000. Ascorbic Acid in Plants: Biosynthesis and Function. Critical Reviews in Plant Sciences, 19 (4), 267-290.
  • Soliman M, Al-Juhani R, Hashash M, Al-Juhani F, 2016. Effect of Seed Priming With Salicylic Acid on Seed Germination and Seedling Growth of Broad Bean (Vicia faba L.). International Journal of Agricultural Technology, 12 (6):1125-1138.
  • Staswick P, Raskin I, Arteca R, 1995. Jasmonates, Salicylic Acid and Brassinosteroids, In: Plant Hormones. Eds: Springer, p. 179-213.
  • Tuna AL, Kaya C, Dikilitaş M, Yokas İ, Burun B, Altunlu H, 2007. Comparative Effects of Various Salicylic Acid Derivatives on Key Growth Parameters and Some Enzyme Activities in Salinity Stressed Maize (Zea mays L.) Plants. Pakistan Journal of Botany, 39 (3): 787-798.
  • Uyanık M, Kara ŞM, Korkmaz K, 2014. Bazı Kışlık Kolza (Brassica napus L.) Çeşitlerinin Çimlenme Döneminde Tuz Stresine Tepkilerinin Belirlenmesi. Tarım Bilimleri Dergisi, 20 (2014):368-375.
  • Wu L, Guo X, Harivandi MA, 1998. Allelopathic Effects of Phenolic Acids Detected in Buffalograss (Buchloe dactyloides) Clippings on Growth of Annual Bluegrass (Poa annua) and Buffalograss Seedlings. Environmental and Experimental Botany, 39 (2): 159-167.
  • Yadav P, Maya K, Zakwan A, 2011. Seed Priming Mediated Germination Improvement and Tolerance to Subsequent Exposure to Cold And Salt Stress in Capsicum. Research Journal of Seed Science, 4 (3): 125-136.
  • Zhang S, Gao J, Song J, Zhang SG, Gao JY, Song JZ, 1999. Effects of Salicylic Acid and Aspirin on Wheat Seed Germination under Salt Stress. Plant Physiology Communications, 35: 29-32.

Effect of Priming Applications (Salicylic Acid and Ascorbic Acid) on Germination in Canola Under Salt Stress (Brassica napus L.)

Year 2020, Volume: 10 Issue: 4, 3109 - 3121, 15.12.2020
https://doi.org/10.21597/jist.757788

Abstract

In this study, it was aimed to determine the effects of germination of canola (Brassica napus L.) seeds on germination by priming with salicylic acid (SA) and ascorbic acid (AsA) and to determine the optimum concentrations of these applications. In the study, 5 different NaCI concentrations (control, 50, 100, 150, 200 mM) and 2 different priming applications (SA and AsA) and 5 different concentrations (control, 0.5, 1.0, 1.5, 2.0 mM) of each priming application were discussed. The experiment was established in randomized plots with 4 replications according to the factorial design. As a result of the research, the germination rate (%), mean germination time (days) and germination index were examined. Among SA applications, 0.5 mM SA concentration was found to reduce the negative effect of salt stress at increasing salt doses, accelerate germination, shorten the average germination time and increase the germination rate. As the SA concentration increased (1.5 mM and 2.0 mM SA) it was determined that germination was negatively affected in all salt applications. Among AsA applications, it was determined that 0.5, 1.0, 1.5 mM concentrations had a positive effect on the germination rate and germination index values by decreasing the negative effect of salt stress, while not affecting the average germination time. Priming applications with SA and AsA, which we applied to canola seeds before germination, have been found to significantly eliminate the germination inhibitory effect of salt stress, and 0.5 mM SA / AsA concentrations were determined optimally.

References

  • Afzal I, Basra S, Farooq M, Nawaz A, 2006. Alleviation of Salinity Stress in Spring Wheat by Hormonal Priming with ABA, Salicylic Acid and Ascorbic Acid. International Journal of Agriculture and Biology, 8 (1): 23-28.
  • Almansouri M, Kinet JM, Lutts S, 2001. Effect of Salt and Osmotic Stresses on Germination in Durum Wheat (Triticum durum Desf.). Plant and Soil, 231 (2):243-254.
  • Anaya F, Fghire R, Wahbi S, Loutfi K, 2018. Influence of Salicylic Acid on Seed Germination of Vicia faba L. under Salt Stress. Journal of the Saudi Society of Agricultural Sciences, 17 (1):1-8.
  • Anğın N, Vurarak, Y, 2012. Çukurova Bölgesine Uygun Kolza (Brassica napus L.) Çeşitlerinin Belirlenmesi. International Journal of Agricultural and Natural Sciences, 5 (1):90-92.
  • Arafa A, Khafagy M, El-Banna M, 2009. The Effect of Glycinebetaine or Ascorbic Acid on Grain Germination and Leaf Structure of Sorghum Plants Grown Under Salinity Stress. Australian Journal of Crop Science, 3 (5): 294.
  • Arrigoni O, Calabrese G, De Gara L, Bitonti MB, Liso R, 1997. Correlation between Changes in Cell Ascorbate and Growth of Lupinus albus Seedlings. Journal of Plant Physiology, 150 (3):302-308.
  • Aydın İ, Atıcı Ö, 2015. Tuz Stresinin Bazi Kültür Bitkilerinde Çimlenme ve Fide Gelişimi Üzerine Etkileri. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 3 (2): 1-15.
  • Azooz MM, Alzahrani AM, Youssef MM, 2013. The Potential Role of Seed Priming with Ascorbic Acid and Nicotinamide and Their Interactions to Enhance Salt Tolerance in Broad Bean (Vicia faba L.). Australian Journal of Crop Science, 7 (13): 2091.
  • Baninasab B, Baghbanha M, 2013. Influence of Salicylic Acid Pre-Treatment on Emergence and Early Seedling Growth of Cucumber (Cucumis sativus) under Salt Stress. Internatıonal Journal Of Plant Productıon, 7 (2): 187-206.
  • Baran M, Gökdoğan O, Karaağaç H, 2014. Kanola Üretiminde Enerji Kullanım Etkinliğinin Belirlenmesi (Kırklareli ili örneği). Türk Tarım ve Doğa Bilimleri Dergisi, 1(3): 331-337.
  • Bassuony F, Hassanein R, Baraka D, Khalil R, 2008. Physiological Effects of Nicotinamide and Ascorbic Acid on Zea Mays Plant Grown Under Salinity Stress. II-Changes in Nitrogen Constituents, Protein Profiles, Protease Enzyme and Certain Inorganic Cations. Australian Journal of Basic and Applied Sciences, 2 (3): 350-359. Beğbağa M, Öztürk Ö, 2008. Ege Bölgesi Koşullarında Bazı Kışlık Kolza Çeşitlerinde Farklı Ekim Zamanı Uygulamalarının Verim, Verim Unsurları ve Kalite Üzerine Etkileri. Selçuk Tarım Bilimleri Dergisi, 22 (44):84-98.
  • Bybordi A, 2010. The Influence of Salt Stress on Seed Germination, Growth and Yield of Canola Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38 (1): 128-133.
  • Cantliffe DJ, 2001. Seed Enhancements, IX International Symposium on Timing of Field Production in Vegetable Crops, 607:53-59.
  • Conklin PL, 2001. Recent Advances in the Role and Biosynthesis of Ascorbic Acid in Plants. Plant, Cell & Environment, 24 (4): 383-394.
  • Cuartero J, Bolarin M, Asins M, Moreno V, 2006. Increasing Salt Tolerance in the Tomato, Journal of Experimental Botany, 57 (5): 1045-1058.
  • Darçın ES, Yusuf K, Kenan T, 2014. In vitro Koşullarda Humik Maddelerin Kolza Bitkisinin Fizyolojik Özellikleri, Sürgün Rejenerasyonu ve Antioksidant Enzim Aktiviteleri Üzerine Etkisi. International Journal of Agricultural and Natural Sciences, 7 (1):55-61.
  • De Gara L, 2003. Ascorbate and plant growth–from germination to cell death. Vitamin C: Functions and Biochemistry in Animals and Plants, 83-95.
  • Dubey R, Rani M, 1990. Influence of NaCl Salinity on the Behaviour of Protease, Aminopeptidase and Carboxypeptidase in Rice Seedlings in Relation to Salt Tolerance. Functional Plant Biology, 17 (2): 215-221.
  • Ekmekçi BA, Karaman M, 2012. Exogenous Ascorbic Acid Increases Resistance to Salt of Silybum marianum (L.). African Journal of Biotechnology, 11 (42):9932-9940.
  • Ekmekçi E, Apan M, Kara T, 2005. Tuzluluğun Bitki Gelişimine Etkisi. Anadolu Tarım Bilimleri Dergisi. 20 (3): 118-125.
  • Ellis R, Roberts E, 1981. An Investigation into the Possible Effects of Ripeness and Repeated Threshing on Barley Seed Longevity under Six Different Storage Environments. Annals of Botany, 48 (1): 93-96.
  • Farahbakhsh H, 2012. Germination and Seedling Growth in Unprimed and Primed Seeds of Fennel as Affected by Reduced Water Potential Induced by NaCl. International Research Journal of Applied and Basic Sciences, 3 (4): 737-744.
  • Gürsoy M, Nofouzi F, Başalma D, 2016. Humik Asit Uygulama Zamani Ve Dozlarinin Kişlik Kolzada Verim Ve Verim Öğelerine Etkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25 (özel sayi-2): 131-136.
  • Habib N, Ashraf M, Ahmad MSA, 2010. Enhancement in Seed Germinability of Rice (Oryza Sativa L.) By Pre-Sowing Seed Treatment with Nitric Oxide (NO) Under Salt Stress. Pakistan Journal of Botany, 42 (6): 4071-4078.
  • Hara M, Furukawa J, Sato A, Mizoguchi T, Miura K, 2012. Abiotic Stress and Role of Salicylic Acid in Plants, In: Abiotic Stress Responses in Plants. Eds: Springer, p. 235-251.
  • Hasegawa P, Bressan R, Handa A, 1986. Cellular Mechanisms of Salinity Tolerance. HortScience, 21 (6): 1317-1324.
  • Hubbard M, Germida J, Vujanovic V, 2012. Fungal Endophytes Improve Wheat Seed Germination Under Heat and Drought Stress. Botany, 90 (2): 137-149.
  • Jam B, Shekari F, Azimi M, Zangani E, 2012. Effect of Priming by Salicylic Acid on Germination and Seedling Growth of Safflower Seeds under Cacl2 Stress. Internatıonal Journal of Agrıcultural Research And Revıews, 2: 1097-1105.
  • Jini D, Joseph B, 2017. Physiological Mechanism of Salicylic Acid for Alleviation of Salt Stress in Rice. Rice Science, 24 (2): 97-108.
  • Kaydan D, Yagmur M, Okut N, 2007. Effects of Salicylic Acid on the Growth and Some Physiological Characters in Salt Stressed Wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi, 13 (2):114-119.
  • Khajeh-Hosseini M, Powell A, Bingham I, 2003. The Interaction between Salinity Stress and Seed Vigour during Germination of Soyabean Seeds. Seed Science and technology, 31 (3): 715-725.
  • Khan MA, Ahmed MZ, Hameed A, 2006. Effect of Sea Salt and L-Ascorbic Acid on the Seed Germination of Halophytes. Journal of Arid Environments, 67 (3): 535-540.
  • Khan MB, Gurchani MA, Hussain M, Freed S, Mahmood K., 2011. Wheat Seed Enhancement by Vitamin and Hormonal Priming, Pakistan Journal of Botany, 43 (3):1495-1499.
  • Lee S, Kim S, Park C, 2010. Salicylic Acid Promotes Seed Germination Under High Salinity By Modulating Antioxidant Activity In Arabidopsis, New Phytologist, 188 (2):626-637.
  • Lee SS, Kim JH, Hong SB, Yun SH, Park EH, 1998. Priming Effect of Rice Seeds on Seedling Establishment under Adverse Soil Conditions. Korean Journal of Crop Science, 43 (3): 194-198.
  • Maguire JD, 1962. Speed of Germination—Aid In Selection and Evaluation for Seedling Emergence and Vigor 1. Crop science. 2 (2): 176-177.
  • Maiti R, Pramanik K, 2013. Vegetable Seed Priming: A Low Cost, Simple and Powerful Techniques for Farmers’ Livelihood. International Journal of Bio-resource and Stress Management, 4 (4): 475-481.
  • McDonald MB, 2000. Seed Priming, Seed Technology and Its Biological Basis. Sheffield Academic Press, Sheffield, 287-325.
  • Miura K, Tada Y, 2014. Regulation of Water, Salinity and Cold Stress Responses by Salicylic Acid. Frontiers in Plant Science, 5: 4.
  • Mohammadi G, 2009. The Influence of NaCl Priming on Seed Germination and Seedling Growth of Canola (Brassica napus L.) Under Salinity Conditions. American-Eurasian Journal of Agricultural and Environmental Science, 5 (5): 696-700.
  • Mohsen A, Ebrahim M, Ghoraba W, 2013. Effect of Salinity Stress on Vicia Faba Productivity with Respect to Ascorbic Acid Treatment. Iranıan Journal Of Plant Physıology, 3 (3): 725-736.
  • Munns R, 2002. Comparative Physiology of Salt and Water Stress. Plant, Cell & Environment, 25 (2): 239-250.
  • Munns R, Tester M, 2008. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59: 651-681.
  • Murillo‐Amador B, López‐Aguilar R, Kaya C, Larrinaga‐Mayoral J, Flores‐Hernández A, 2002. Comparative Effects of NaCl and Polyethylene Glycol on Germination, Emergence and Seedling Growth of Cowpea. Journal of Agronomy and Crop Science, 188 (4): 235-247.
  • Nawaz K, Ashraf M, 2010. Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. Journal of Agronomy and Crop Science, 196 (1):28-37.
  • Nazarian G, 2016. Tuzluluk Stresinde Kanola Bitkisinin Morfolojik Ve Fizyolojik Özellikleri Üzerine Salisilik Asidin Priming Uygulamasının Etkisi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Noctor G, Foyer CH, 1998. Ascorbate and Glutathione: Keeping Active Oxygen under Control, Annual Review of Plant Biology, 49 (1): 249-279.
  • Nun NB, Plakhine D, Joel DM, Mayer AM, 2003. Changes in the Activity of the Alternative Oxidase in Orobanche Seeds during Conditioning and Their Possible Physiological Function. Phytochemistry, 64 (1): 235-241.
  • Palma F, López-Gómez M, Tejera N, Lluch C, 2013. Salicylic Acid Improves The Salinity Tolerance of Medicago Sativa in Symbiosis With Sinorhizobium Meliloti by Preventing Nitrogen Fixation Inhibition. Plant Science, 208: 75-82.
  • Rivas-San Vicente M, Plasencia J., 2011. Salicylic Acid beyond Defence: its Role in Plant Growth and Development, Journal of Experimental Botany, 62 (10):3321-3338.
  • Saeidnia S, Gohari AR, 2012. Importance of Brassica napus as a medicinal food plant. Journal of Medicinal Plants Research, 6 (14): 2700-2703.
  • Sattar A, Badshah A, 1995. Biosynthesis of Ascorbic Acid in Germinating Rapeseed Cultivars. Plant Foods for Human Nutrition, 47 (1): 63-70.
  • Semida WM, Abd El-Mageed TA, Mohamed SE, El-Sawah NA, 2017. Combined Effect of Deficit Irrigation and Foliar-Applied Salicylic Acid on Physiological Responses, Yield, And Water-Use Efficiency of Onion Plants in Saline Calcareous Soil. Archives of Agronomy and Soil Science, 63 (9): 1227-1239.
  • Smirnoff N, Wheeler GL, 2000. Ascorbic Acid in Plants: Biosynthesis and Function. Critical Reviews in Plant Sciences, 19 (4), 267-290.
  • Soliman M, Al-Juhani R, Hashash M, Al-Juhani F, 2016. Effect of Seed Priming With Salicylic Acid on Seed Germination and Seedling Growth of Broad Bean (Vicia faba L.). International Journal of Agricultural Technology, 12 (6):1125-1138.
  • Staswick P, Raskin I, Arteca R, 1995. Jasmonates, Salicylic Acid and Brassinosteroids, In: Plant Hormones. Eds: Springer, p. 179-213.
  • Tuna AL, Kaya C, Dikilitaş M, Yokas İ, Burun B, Altunlu H, 2007. Comparative Effects of Various Salicylic Acid Derivatives on Key Growth Parameters and Some Enzyme Activities in Salinity Stressed Maize (Zea mays L.) Plants. Pakistan Journal of Botany, 39 (3): 787-798.
  • Uyanık M, Kara ŞM, Korkmaz K, 2014. Bazı Kışlık Kolza (Brassica napus L.) Çeşitlerinin Çimlenme Döneminde Tuz Stresine Tepkilerinin Belirlenmesi. Tarım Bilimleri Dergisi, 20 (2014):368-375.
  • Wu L, Guo X, Harivandi MA, 1998. Allelopathic Effects of Phenolic Acids Detected in Buffalograss (Buchloe dactyloides) Clippings on Growth of Annual Bluegrass (Poa annua) and Buffalograss Seedlings. Environmental and Experimental Botany, 39 (2): 159-167.
  • Yadav P, Maya K, Zakwan A, 2011. Seed Priming Mediated Germination Improvement and Tolerance to Subsequent Exposure to Cold And Salt Stress in Capsicum. Research Journal of Seed Science, 4 (3): 125-136.
  • Zhang S, Gao J, Song J, Zhang SG, Gao JY, Song JZ, 1999. Effects of Salicylic Acid and Aspirin on Wheat Seed Germination under Salt Stress. Plant Physiology Communications, 35: 29-32.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Tarla Bitkileri / Field Crops
Authors

Münüre Tanur 0000-0001-5004-4771

Mustafa Yorgancılar 0000-0003-4938-8547

Publication Date December 15, 2020
Submission Date June 25, 2020
Acceptance Date October 30, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Tanur, M., & Yorgancılar, M. (2020). Tuz Stresine Maruz Bırakılan Kanola (Brassica napus L.)’da Priming Uygulamalarının (Salisilik Asit ve Askorbik Asit) Çimlenme Üzerine Etkisi. Journal of the Institute of Science and Technology, 10(4), 3109-3121. https://doi.org/10.21597/jist.757788
AMA Tanur M, Yorgancılar M. Tuz Stresine Maruz Bırakılan Kanola (Brassica napus L.)’da Priming Uygulamalarının (Salisilik Asit ve Askorbik Asit) Çimlenme Üzerine Etkisi. J. Inst. Sci. and Tech. December 2020;10(4):3109-3121. doi:10.21597/jist.757788
Chicago Tanur, Münüre, and Mustafa Yorgancılar. “Tuz Stresine Maruz Bırakılan Kanola (Brassica Napus L.)’da Priming Uygulamalarının (Salisilik Asit Ve Askorbik Asit) Çimlenme Üzerine Etkisi”. Journal of the Institute of Science and Technology 10, no. 4 (December 2020): 3109-21. https://doi.org/10.21597/jist.757788.
EndNote Tanur M, Yorgancılar M (December 1, 2020) Tuz Stresine Maruz Bırakılan Kanola (Brassica napus L.)’da Priming Uygulamalarının (Salisilik Asit ve Askorbik Asit) Çimlenme Üzerine Etkisi. Journal of the Institute of Science and Technology 10 4 3109–3121.
IEEE M. Tanur and M. Yorgancılar, “Tuz Stresine Maruz Bırakılan Kanola (Brassica napus L.)’da Priming Uygulamalarının (Salisilik Asit ve Askorbik Asit) Çimlenme Üzerine Etkisi”, J. Inst. Sci. and Tech., vol. 10, no. 4, pp. 3109–3121, 2020, doi: 10.21597/jist.757788.
ISNAD Tanur, Münüre - Yorgancılar, Mustafa. “Tuz Stresine Maruz Bırakılan Kanola (Brassica Napus L.)’da Priming Uygulamalarının (Salisilik Asit Ve Askorbik Asit) Çimlenme Üzerine Etkisi”. Journal of the Institute of Science and Technology 10/4 (December 2020), 3109-3121. https://doi.org/10.21597/jist.757788.
JAMA Tanur M, Yorgancılar M. Tuz Stresine Maruz Bırakılan Kanola (Brassica napus L.)’da Priming Uygulamalarının (Salisilik Asit ve Askorbik Asit) Çimlenme Üzerine Etkisi. J. Inst. Sci. and Tech. 2020;10:3109–3121.
MLA Tanur, Münüre and Mustafa Yorgancılar. “Tuz Stresine Maruz Bırakılan Kanola (Brassica Napus L.)’da Priming Uygulamalarının (Salisilik Asit Ve Askorbik Asit) Çimlenme Üzerine Etkisi”. Journal of the Institute of Science and Technology, vol. 10, no. 4, 2020, pp. 3109-21, doi:10.21597/jist.757788.
Vancouver Tanur M, Yorgancılar M. Tuz Stresine Maruz Bırakılan Kanola (Brassica napus L.)’da Priming Uygulamalarının (Salisilik Asit ve Askorbik Asit) Çimlenme Üzerine Etkisi. J. Inst. Sci. and Tech. 2020;10(4):3109-21.