Research Article
BibTex RIS Cite

CFD Analysis of Shell and Tube Heat Exchanger with Flower Type Baffle

Year 2021, Volume: 11 Issue: 1, 428 - 439, 01.03.2021
https://doi.org/10.21597/jist.799012

Abstract

One of the most important factors that influence the thermal and hydraulic performance of shell and tube heat exchangers is the baffle. In this study, a CFD analysis of shell and tube heat exchanger with a flower type baffle was carried out using the ANSYS Fluent program. The objective of the analyses was to investigate the effect of flower type baffle on the shell side heat transfer coefficient, pressure drop and heat transfer rate per pressure drop. In addition, the flower type baffle and the conventional single segmental baffle were compared. Water was used as the working fluid on the shell side of the designed shell and tube heat exchanger. In the analyses, four different mass flow rates (1.2 kg s-1, 1.5 kg s-1, 1.8 kg s-1 ve 2.1 kg s-1) were examined for the fluid on the shell side. According to the results obtained from the study, it was observed that the flower type baffle increased the heat transfer rate per pressure drop compared to the conventional single segmental baffle.

References

  • Ambekar AS, Sivakumar R, Anantharaman N, Vivekenandan M, 2016. CFD Simulation Study of Shell and Tube Heat Exchangers with Different Baffle Segment Configurations. Applied Thermal Engineering, 108: 999-1007.
  • Bayram H, Sevilgen G, 2018. Numerical Investigation of the Effects of Different Baffle Types on the Thermal Performance of a Shell and Tube Heat Exchanger. Academic Platform Journal of Engineering and Science, 6(3): 58-66.
  • Bichkar P, Dandgaval O, Dalvi P, Godase R, Dey T, 2018. Study of Shell and Tube Heat Exchanger with the Effect of Types of Baffles. Procedia Manufacturing, 20: 195-200.
  • Cao Z, Du T, Liu Z, Zhai H, Duan Z, 2019. Experimental and Numerical Investigation on Heat Transfer and Fluid Flow Performance of Sextant Helical Baffle Heat Exchangers. International Journal of Heat and Mass Transfer, 142: 118437.
  • Gao B, Bi Q, Nie Z, Wu J, 2015. Experimental Study of Effects of Baffle Helix Angle on Shell-Side Performance of Shell-and-Tube Heat Exchangers with Discontinuous Helical Baffles. Experimental Thermal and Fluid Science, 68:48-57.
  • Genceli OF, 2017. Isı Değiştiricileri. Birsen Yayınevi, İstanbul.
  • He L, Li P, 2018. Numerical Investigation on Double Tube-Pass Shell-and-Tube Heat Exchangers with Different Baffle Configurations. Applied Thermal Engineering, 143: 561-569.
  • Kahraman G, 2020. Investigation of the Effect of Operating Conditions Change on Water Hammer in Hydroelectric Power Plants. Journal of Failure Analysis and Prevention, 20(4): 1445-1449.
  • Li N, Chen J, Cheng T, Klemes JJ, Varbanov PS, Wang Q, Yang W, Liu X, Zeng M, 2020. Analysing Thermal-Hydraulic Performance and Energy Efficiency of Shell-and-Tube Heat Exchangers with Longitudinal Flow Based on Experiment and Numerical Simulation. Energy, 202: 117757.
  • Ma L, Wang K, Liu M, Wang D, Liu T, Wang Y, Liu Z, 2017. Numerical Study on Performances of Shell-Side in Trefoil-Hole and Quatrefoil-Hole Baffle Heat Exchangers. Applied Thermal Engineering, 123: 1444-1455.
  • Maakoul AE, Laknizi A, Saadeddine S, Metouni ME, Zaite A, Meziane M, Abdellah AB, 2016. Numerical Comparison of Shell-Side Performance for Shell and Tube Heat Exchangers with Trefoil-Hole, Helical and Segmental Baffles. Applied Thermal Engineering, 109: 175-185.
  • Taher FN, Movassag SZ, Razmi K, Azar RT, 2012. Baffle Space Impact on the Performance of Helical Baffle Shell and Tube Heat Exchangers. Applied Thermal Engineering, 44: 143-149.
  • Wen J, Yang H, Wang S, Xu S, Xue Y, Tuo H, 2015. Numerical Investigation on Baffle Configuration Improvement of the Heat Exchanger with Helical Baffles. Energy Conversion and Management, 89:438-448.
  • Yang JF, Zeng M, Wang QW, 2015. Numerical Investigation on Combined Single Shell-Pass Shell-and-Tube Heat Exchanger with Two-Layer Continuous Helical Baffles. International Journal of Heat and Mass Transfer, 84: 103-113.
  • Yang S, Chen Y, Wu J, Gu H, 2018. Influence of Baffle Configurations on Flow and Heat Transfer Characteristics of Unilateral Type Helical Baffle Heat Exchangers. Applied Thermal Engineering, 133:739-748.
  • You Y, Fan A, Huang S, Liu W, 2012. Numerical Modeling and Experimental Validation of Heat Transfer and Flow Resistance on the Shell Side of a Shell-and-Tube Heat Exchanger with Flower Baffles. International Journal of Heat and Mass Transfer, 55:7561-7569.

Çiçek Tip Şaşırtma Levhasına Sahip Gövde Borulu Isı Değiştiricinin CFD Analizi

Year 2021, Volume: 11 Issue: 1, 428 - 439, 01.03.2021
https://doi.org/10.21597/jist.799012

Abstract

Gövde borulu ısı değiştiricilerinin ısıl ve hidrolik performansını etkileyen en önemli faktörlerden bir tanesi şaşırtma levhasıdır. Bu çalışmada, ANSYS Fluent programı aracılığıyla, çiçek tip şaşırtma levhasına sahip gövde borulu ısı değiştiricinin CFD analizi yapılmıştır. Analizlerde, çiçek tip şaşırtma levhasının gövde tarafı ısı taşınım katsayısına, basınç düşüşüne ve basınç düşüşü başına düşen ısı transfer oranına etkisini araştırmak amaçlanmıştır. Ek olarak, çiçek tip şaşırtma levhası ile geleneksel tek parçalı şaşırtma levhası karşılaştırılmıştır. Tasarlanan gövde borulu ısı değiştiricinin gövde tarafında çalışma akışkanı olarak su kullanılmıştır. Analizlerde, gövde tarafındaki akışkan için dört farklı kütlesel debi (1.2 kg s-1, 1.5 kg s-1, 1.8 kg s-1 ve 2.1 kg s-1) incelenmiştir. Çalışmadan elde edilen sonuçlara göre, çiçek tip şaşırtma levhasının geleneksel tek parçalı şaşırtma levhasına göre basınç düşüşü başına düşen ısı transfer oranını artırdığı gözlemlenmiştir.

References

  • Ambekar AS, Sivakumar R, Anantharaman N, Vivekenandan M, 2016. CFD Simulation Study of Shell and Tube Heat Exchangers with Different Baffle Segment Configurations. Applied Thermal Engineering, 108: 999-1007.
  • Bayram H, Sevilgen G, 2018. Numerical Investigation of the Effects of Different Baffle Types on the Thermal Performance of a Shell and Tube Heat Exchanger. Academic Platform Journal of Engineering and Science, 6(3): 58-66.
  • Bichkar P, Dandgaval O, Dalvi P, Godase R, Dey T, 2018. Study of Shell and Tube Heat Exchanger with the Effect of Types of Baffles. Procedia Manufacturing, 20: 195-200.
  • Cao Z, Du T, Liu Z, Zhai H, Duan Z, 2019. Experimental and Numerical Investigation on Heat Transfer and Fluid Flow Performance of Sextant Helical Baffle Heat Exchangers. International Journal of Heat and Mass Transfer, 142: 118437.
  • Gao B, Bi Q, Nie Z, Wu J, 2015. Experimental Study of Effects of Baffle Helix Angle on Shell-Side Performance of Shell-and-Tube Heat Exchangers with Discontinuous Helical Baffles. Experimental Thermal and Fluid Science, 68:48-57.
  • Genceli OF, 2017. Isı Değiştiricileri. Birsen Yayınevi, İstanbul.
  • He L, Li P, 2018. Numerical Investigation on Double Tube-Pass Shell-and-Tube Heat Exchangers with Different Baffle Configurations. Applied Thermal Engineering, 143: 561-569.
  • Kahraman G, 2020. Investigation of the Effect of Operating Conditions Change on Water Hammer in Hydroelectric Power Plants. Journal of Failure Analysis and Prevention, 20(4): 1445-1449.
  • Li N, Chen J, Cheng T, Klemes JJ, Varbanov PS, Wang Q, Yang W, Liu X, Zeng M, 2020. Analysing Thermal-Hydraulic Performance and Energy Efficiency of Shell-and-Tube Heat Exchangers with Longitudinal Flow Based on Experiment and Numerical Simulation. Energy, 202: 117757.
  • Ma L, Wang K, Liu M, Wang D, Liu T, Wang Y, Liu Z, 2017. Numerical Study on Performances of Shell-Side in Trefoil-Hole and Quatrefoil-Hole Baffle Heat Exchangers. Applied Thermal Engineering, 123: 1444-1455.
  • Maakoul AE, Laknizi A, Saadeddine S, Metouni ME, Zaite A, Meziane M, Abdellah AB, 2016. Numerical Comparison of Shell-Side Performance for Shell and Tube Heat Exchangers with Trefoil-Hole, Helical and Segmental Baffles. Applied Thermal Engineering, 109: 175-185.
  • Taher FN, Movassag SZ, Razmi K, Azar RT, 2012. Baffle Space Impact on the Performance of Helical Baffle Shell and Tube Heat Exchangers. Applied Thermal Engineering, 44: 143-149.
  • Wen J, Yang H, Wang S, Xu S, Xue Y, Tuo H, 2015. Numerical Investigation on Baffle Configuration Improvement of the Heat Exchanger with Helical Baffles. Energy Conversion and Management, 89:438-448.
  • Yang JF, Zeng M, Wang QW, 2015. Numerical Investigation on Combined Single Shell-Pass Shell-and-Tube Heat Exchanger with Two-Layer Continuous Helical Baffles. International Journal of Heat and Mass Transfer, 84: 103-113.
  • Yang S, Chen Y, Wu J, Gu H, 2018. Influence of Baffle Configurations on Flow and Heat Transfer Characteristics of Unilateral Type Helical Baffle Heat Exchangers. Applied Thermal Engineering, 133:739-748.
  • You Y, Fan A, Huang S, Liu W, 2012. Numerical Modeling and Experimental Validation of Heat Transfer and Flow Resistance on the Shell Side of a Shell-and-Tube Heat Exchanger with Flower Baffles. International Journal of Heat and Mass Transfer, 55:7561-7569.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Erdem Işık 0000-0003-4715-6582

Volkan Tuğan 0000-0001-7910-1207

Publication Date March 1, 2021
Submission Date September 23, 2020
Acceptance Date November 5, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Işık, E., & Tuğan, V. (2021). Çiçek Tip Şaşırtma Levhasına Sahip Gövde Borulu Isı Değiştiricinin CFD Analizi. Journal of the Institute of Science and Technology, 11(1), 428-439. https://doi.org/10.21597/jist.799012
AMA Işık E, Tuğan V. Çiçek Tip Şaşırtma Levhasına Sahip Gövde Borulu Isı Değiştiricinin CFD Analizi. J. Inst. Sci. and Tech. March 2021;11(1):428-439. doi:10.21597/jist.799012
Chicago Işık, Erdem, and Volkan Tuğan. “Çiçek Tip Şaşırtma Levhasına Sahip Gövde Borulu Isı Değiştiricinin CFD Analizi”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 428-39. https://doi.org/10.21597/jist.799012.
EndNote Işık E, Tuğan V (March 1, 2021) Çiçek Tip Şaşırtma Levhasına Sahip Gövde Borulu Isı Değiştiricinin CFD Analizi. Journal of the Institute of Science and Technology 11 1 428–439.
IEEE E. Işık and V. Tuğan, “Çiçek Tip Şaşırtma Levhasına Sahip Gövde Borulu Isı Değiştiricinin CFD Analizi”, J. Inst. Sci. and Tech., vol. 11, no. 1, pp. 428–439, 2021, doi: 10.21597/jist.799012.
ISNAD Işık, Erdem - Tuğan, Volkan. “Çiçek Tip Şaşırtma Levhasına Sahip Gövde Borulu Isı Değiştiricinin CFD Analizi”. Journal of the Institute of Science and Technology 11/1 (March 2021), 428-439. https://doi.org/10.21597/jist.799012.
JAMA Işık E, Tuğan V. Çiçek Tip Şaşırtma Levhasına Sahip Gövde Borulu Isı Değiştiricinin CFD Analizi. J. Inst. Sci. and Tech. 2021;11:428–439.
MLA Işık, Erdem and Volkan Tuğan. “Çiçek Tip Şaşırtma Levhasına Sahip Gövde Borulu Isı Değiştiricinin CFD Analizi”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 428-39, doi:10.21597/jist.799012.
Vancouver Işık E, Tuğan V. Çiçek Tip Şaşırtma Levhasına Sahip Gövde Borulu Isı Değiştiricinin CFD Analizi. J. Inst. Sci. and Tech. 2021;11(1):428-39.