Research Article
BibTex RIS Cite

Effect of locally isolated phosphate-solubilizing Pseudomonas aeruginosa IBP26 on the growth parameters of chickpea seedling

Year 2021, Volume: 11 Issue: 2, 896 - 905, 01.06.2021
https://doi.org/10.21597/jist.819562

Abstract

This work was conducted to examine the effect of locally isolated phosphate-solubilizing bacteria on the growth parameters of chickpea seedling cultivated in pots containing Ca3(PO4)2 (tricalcium phosphate). Among the isolated strains, the highest phosphate-solubilizing activity in the broth medium was observed for the isolate IBP26. Similarly, in the greenhouse study, the same isolate was determined to cause maximum increases in growth parameters (shoot and root length, total biomass, phosphorus, total sugar, and protein contents) of chickpea plants in the presence of Ca3(PO4)2. The isolate IBP26 was identified as Pseudomonas aeruginosa (GenBank accession number: MW092004). Experiments demonstrated that the application of the bacterium alone in the absence of Ca3(PO4)2 or the application of Ca3(PO4)2 alone in the absence of bacterium did not cause significant change in growth parameters of the chickpea plants, and that the desired increases in the growth parameters of these plants could be achieved by the co-application of bacterium and Ca3(PO4)2.

References

  • Ahemad M, Khan MS, 2010. Phosphate-Solubilizing and Plant-Growth-Promoting Pseudomonas aeruginosa PS1 Improves Greengram Performance in Quizalafop-p-ethyl and Clodinafop Amended Soil. Archives of Environmental Contamination and Toxicology, 58:362-372.
  • Almas Z, Mohammad SK, Munees A, Mohd O, Wani PA, 2009. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In Mohammad, S. K., Almas, Z. and Javed, M. (eds.) Microbial Strategies for Crop Improvement. Springer, Verlag Berlin Heidelberg. pp. 23-49.
  • Amaresan N, Jayakumar V, Kumar K, Thajuddin N, 2019. Biocontrol and plant growth-promoting ability of plant-associated bacteria from tomato (Lycopersicum esculentum) under field condition. Microbial Pathogenesis, 136:103713.
  • Antoun H, Prévost D. 2005. Ecology of plant growthpromoting rhizobacteria. Z. A. Siddiqui (ed.), PGPR: Biocontrol and Biofertilization 1–38.
  • Appanna V, 2007. Efficacy of phosphate solubilizing bacteria isolated from vertisols on growth and yield parameters of sorghum. Research Journal of Microbiology, 2:550-559.
  • Bradford MM, 1976. A rapid and sensitive method for t quantition of microgram quantities of protein utilising the princible of protein-dye binding analitic. Biochemistry, 72:248-254.
  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV, 1995. Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant and Soil 173:29–37. Beneduzi A, Ambrosini A, Passaglia LM, 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35:1044-1051.
  • Buch A, Archana G, Naresh KG, 2008. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Research in Microbiology, 159:653-642.
  • Del Campillo SE, Van der Zee S, Torrent J, 1999. Modelling long term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. European Journal of Soil Science, 50:391–399.
  • Gupta M, Kiran S, Gulati A, Singh B, Tewari R, 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiological Research, 167:358– 363.
  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G, 2008. Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiological Research, 163:234-242.
  • Han HS, Lee KD, 2005. Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Research Journal of Agriculture and Biological Sciences, 1:216–221.
  • Hayat R, Ahmed I, Sheirdil RA, 2012. An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In Crop production for agricultural improvement (pp. 557-579). Springer, Dordrecht.
  • Hii YS, San Chan Y, Lau SW, Michael D, 2020. Isolation and characterisation of phosphate solubilizing microorganisms from peat. Biocatalysis and Agricultural Biotechnology, 26:101643.
  • Jackson ML 1973. Soil Chemical Analysis. Prentice Hall of India Private Limited New Delhi, 38-82.
  • Johri JK, Surange S, Nautiyal CS, 1999. Occurrence of salt, ph, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Current Microbiology, 39:89–93.
  • Kalayu G, 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019:1-7.
  • Kirankumar R, Jagadeesh KS, Krishnaraj PU, Patil MS, 2008. Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka Journal of Agricultural Sciences, 21:309–311.
  • Kumar V, Narula N, 1999. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils 28 :301–305.
  • Kuntyastuti H, Sutrısno S, 2017. Effect of manure, phosphate solubilizing bacteria, and chemical fertilizer application on the growth and yield of soybean. Nusantara Bioscience, 9:126-132.
  • Mamta RP, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R, 2010. Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology 46:222–229.
  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA, 2001. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Canadian Journal of Microbiology, 472:110–117.
  • Mehta S, Nautiyal CS, 2000. An efficient method for qualitative screening of phosphate- solubilizing bacteria. Current Microbiology 43: 51-56.
  • Miller GL, 1959. Use of dinitosalicylic acid reagent for the determination of reducing sugar. Analytical Chemistry 31:426-428.
  • Mohamed, HM, Ibrahim EMA, 2011. Effect of inoculation with Bacillus polymyxa mutants on growth, phosphorous and iron uptake by tomato (Lycopersicon esculentum L.) in calcareous soils. International Journal of Soil Science, 6:176-187.
  • Olanrewaju OS, Glick BR, Babalola OO, 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33:197.
  • Öztekin GB, Tuzel Y, Mehmet E, 2015. Effect of nitrojen fixing bacteria use on plant growth, yield and fruit quality of tomatoes grown in greenhouse conditions. Igdır University Journal of the institute of Science and Technology, 5:21-27.
  • Patel DK, Murawala P, Archana G, Kumar GN, 2011. Repression of mineral phosphate solubilizing phenotype in the presence of weak organic acids in plant growth promoting fluorescent pseudomonads. Bioresource Technology, 102:3055–3061.
  • Patel T, Saraf M, 2017. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. Journal of Plant Interactions, 12:480-487.
  • Peix A, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E, 2001. Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology and Biochemistry, 33:1927–1935.
  • Prasad AA, Babu S, 2017. Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut (Arachis hypogea L.). Anais da Academia Brasileira de Ciências, 89:1027-1040.
  • Rahi MP, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R, 2010. Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 46: 222–229.
  • Rodríguez H, Fraga R, 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17:319–339.
  • Sasser M, 1990a. Technical Note 102. Tracking a Strain Using the Microbial Identification System. MIS, Newark, DE.
  • Sasser M, 1990b. Identification of bacteria through fatty acid analysis. In: Klement, Z., Rudolph, K., Sands, D. (Eds.), Methods in Phytobacteriology. Akademiai Kiado, Budapest, Hungary, pp. 199–204.
  • Sasser M, Wichman MD, 1991. Identification of microorganisms through use of gas chromatography and high-performance liquid chromatography. In: Balows, A., Hausler Jr., W.J., Herrman, K.L., Isenberg, H.D., Shadomy, H.J. (Eds.), Manual of Clinical Microbiology, fifth ed. American Society for Microbiology, Washington, DC.
  • Şahin BU, Dönmez MF, 2020. Effects of different bacteria applications on tomato (Solanum lycopersicum L.) plant growth. Igdır University Journal of the institute of Science and Technology, 10:1507-1517
  • van Loon LC, 2007. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119:243–254.
  • Vessey JK, 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571–586.
  • Vikram A, Hamzehzarghani H, 2008. Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiata L. Wilczek). Research Journal of Microbiology, 3: 62-72.
  • Walpola BC, Yoon MH, 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Research, 6:6600-6605.

Lokal olarak izole edilen fosfat çözücü Pseudomonas aeruginosa IBP26’ nın nohut fidelerinin büyüme parametreleri üzerine etkisi

Year 2021, Volume: 11 Issue: 2, 896 - 905, 01.06.2021
https://doi.org/10.21597/jist.819562

Abstract

Bu çalışma, lokal olarak izole edilmiş fosfat çözücü bakterilerinin, Ca3(PO4)2 (trikalsiyum fosfat) içeren saksılarda yetiştirilen nohut fidelerinin büyüme parametreleri üzerindeki etkisini incelemek için yapılmıştır. İzole edilen suşlar arasında, sıvı kültürde en yüksek fosfat çözündürücü aktivite IBP26 izolatı için gözlenmiştir. Benzer şekilde, sera çalışmasında da, aynı izolatın Ca3(PO4)2 varlığında nohut bitkilerinin büyüme parametrelerinde (sürgün ve kök uzunluğu, biyokütle, fosfor, toplam şeker ve protein içeriği) maksimum artışa neden olduğu belirlenmiştir. IBP26 izolatı Pseudomonas aeruginosa olarak teşhis edilmiştir (GenBank accession number: MW092004). Deneyler, Ca3(PO4)2' nin yokluğunda tek başına bakteri uygulamasının veya bakteri yokluğunda tek başına Ca3(PO4)2 uygulamasının nohut bitkilerinin büyüme parametrelerinde kayda değer değişime neden olmadığını, bu bitkilerinin büyüme parametrelerinde istenilen artışların bakteri ve Ca3(PO4)2' nin birlikte uygulanması sayesinde başarılabileceğini göstermiştir.

References

  • Ahemad M, Khan MS, 2010. Phosphate-Solubilizing and Plant-Growth-Promoting Pseudomonas aeruginosa PS1 Improves Greengram Performance in Quizalafop-p-ethyl and Clodinafop Amended Soil. Archives of Environmental Contamination and Toxicology, 58:362-372.
  • Almas Z, Mohammad SK, Munees A, Mohd O, Wani PA, 2009. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In Mohammad, S. K., Almas, Z. and Javed, M. (eds.) Microbial Strategies for Crop Improvement. Springer, Verlag Berlin Heidelberg. pp. 23-49.
  • Amaresan N, Jayakumar V, Kumar K, Thajuddin N, 2019. Biocontrol and plant growth-promoting ability of plant-associated bacteria from tomato (Lycopersicum esculentum) under field condition. Microbial Pathogenesis, 136:103713.
  • Antoun H, Prévost D. 2005. Ecology of plant growthpromoting rhizobacteria. Z. A. Siddiqui (ed.), PGPR: Biocontrol and Biofertilization 1–38.
  • Appanna V, 2007. Efficacy of phosphate solubilizing bacteria isolated from vertisols on growth and yield parameters of sorghum. Research Journal of Microbiology, 2:550-559.
  • Bradford MM, 1976. A rapid and sensitive method for t quantition of microgram quantities of protein utilising the princible of protein-dye binding analitic. Biochemistry, 72:248-254.
  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV, 1995. Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant and Soil 173:29–37. Beneduzi A, Ambrosini A, Passaglia LM, 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35:1044-1051.
  • Buch A, Archana G, Naresh KG, 2008. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Research in Microbiology, 159:653-642.
  • Del Campillo SE, Van der Zee S, Torrent J, 1999. Modelling long term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. European Journal of Soil Science, 50:391–399.
  • Gupta M, Kiran S, Gulati A, Singh B, Tewari R, 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiological Research, 167:358– 363.
  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G, 2008. Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiological Research, 163:234-242.
  • Han HS, Lee KD, 2005. Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Research Journal of Agriculture and Biological Sciences, 1:216–221.
  • Hayat R, Ahmed I, Sheirdil RA, 2012. An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In Crop production for agricultural improvement (pp. 557-579). Springer, Dordrecht.
  • Hii YS, San Chan Y, Lau SW, Michael D, 2020. Isolation and characterisation of phosphate solubilizing microorganisms from peat. Biocatalysis and Agricultural Biotechnology, 26:101643.
  • Jackson ML 1973. Soil Chemical Analysis. Prentice Hall of India Private Limited New Delhi, 38-82.
  • Johri JK, Surange S, Nautiyal CS, 1999. Occurrence of salt, ph, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Current Microbiology, 39:89–93.
  • Kalayu G, 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019:1-7.
  • Kirankumar R, Jagadeesh KS, Krishnaraj PU, Patil MS, 2008. Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka Journal of Agricultural Sciences, 21:309–311.
  • Kumar V, Narula N, 1999. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils 28 :301–305.
  • Kuntyastuti H, Sutrısno S, 2017. Effect of manure, phosphate solubilizing bacteria, and chemical fertilizer application on the growth and yield of soybean. Nusantara Bioscience, 9:126-132.
  • Mamta RP, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R, 2010. Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology 46:222–229.
  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA, 2001. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Canadian Journal of Microbiology, 472:110–117.
  • Mehta S, Nautiyal CS, 2000. An efficient method for qualitative screening of phosphate- solubilizing bacteria. Current Microbiology 43: 51-56.
  • Miller GL, 1959. Use of dinitosalicylic acid reagent for the determination of reducing sugar. Analytical Chemistry 31:426-428.
  • Mohamed, HM, Ibrahim EMA, 2011. Effect of inoculation with Bacillus polymyxa mutants on growth, phosphorous and iron uptake by tomato (Lycopersicon esculentum L.) in calcareous soils. International Journal of Soil Science, 6:176-187.
  • Olanrewaju OS, Glick BR, Babalola OO, 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33:197.
  • Öztekin GB, Tuzel Y, Mehmet E, 2015. Effect of nitrojen fixing bacteria use on plant growth, yield and fruit quality of tomatoes grown in greenhouse conditions. Igdır University Journal of the institute of Science and Technology, 5:21-27.
  • Patel DK, Murawala P, Archana G, Kumar GN, 2011. Repression of mineral phosphate solubilizing phenotype in the presence of weak organic acids in plant growth promoting fluorescent pseudomonads. Bioresource Technology, 102:3055–3061.
  • Patel T, Saraf M, 2017. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. Journal of Plant Interactions, 12:480-487.
  • Peix A, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E, 2001. Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology and Biochemistry, 33:1927–1935.
  • Prasad AA, Babu S, 2017. Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut (Arachis hypogea L.). Anais da Academia Brasileira de Ciências, 89:1027-1040.
  • Rahi MP, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R, 2010. Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 46: 222–229.
  • Rodríguez H, Fraga R, 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17:319–339.
  • Sasser M, 1990a. Technical Note 102. Tracking a Strain Using the Microbial Identification System. MIS, Newark, DE.
  • Sasser M, 1990b. Identification of bacteria through fatty acid analysis. In: Klement, Z., Rudolph, K., Sands, D. (Eds.), Methods in Phytobacteriology. Akademiai Kiado, Budapest, Hungary, pp. 199–204.
  • Sasser M, Wichman MD, 1991. Identification of microorganisms through use of gas chromatography and high-performance liquid chromatography. In: Balows, A., Hausler Jr., W.J., Herrman, K.L., Isenberg, H.D., Shadomy, H.J. (Eds.), Manual of Clinical Microbiology, fifth ed. American Society for Microbiology, Washington, DC.
  • Şahin BU, Dönmez MF, 2020. Effects of different bacteria applications on tomato (Solanum lycopersicum L.) plant growth. Igdır University Journal of the institute of Science and Technology, 10:1507-1517
  • van Loon LC, 2007. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119:243–254.
  • Vessey JK, 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571–586.
  • Vikram A, Hamzehzarghani H, 2008. Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiata L. Wilczek). Research Journal of Microbiology, 3: 62-72.
  • Walpola BC, Yoon MH, 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Research, 6:6600-6605.
There are 41 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Biyoloji / Biology
Authors

Muhammed Emin Cogender This is me 0000-0003-1108-1240

Nazlı Pınar Arslan 0000-0002-3951-4418

Mehmet Nuri Aydoğan 0000-0001-7518-4746

Publication Date June 1, 2021
Submission Date November 1, 2020
Acceptance Date January 17, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Cogender, M. E., Arslan, N. P., & Aydoğan, M. N. (2021). Effect of locally isolated phosphate-solubilizing Pseudomonas aeruginosa IBP26 on the growth parameters of chickpea seedling. Journal of the Institute of Science and Technology, 11(2), 896-905. https://doi.org/10.21597/jist.819562
AMA Cogender ME, Arslan NP, Aydoğan MN. Effect of locally isolated phosphate-solubilizing Pseudomonas aeruginosa IBP26 on the growth parameters of chickpea seedling. J. Inst. Sci. and Tech. June 2021;11(2):896-905. doi:10.21597/jist.819562
Chicago Cogender, Muhammed Emin, Nazlı Pınar Arslan, and Mehmet Nuri Aydoğan. “Effect of Locally Isolated Phosphate-Solubilizing Pseudomonas Aeruginosa IBP26 on the Growth Parameters of Chickpea Seedling”. Journal of the Institute of Science and Technology 11, no. 2 (June 2021): 896-905. https://doi.org/10.21597/jist.819562.
EndNote Cogender ME, Arslan NP, Aydoğan MN (June 1, 2021) Effect of locally isolated phosphate-solubilizing Pseudomonas aeruginosa IBP26 on the growth parameters of chickpea seedling. Journal of the Institute of Science and Technology 11 2 896–905.
IEEE M. E. Cogender, N. P. Arslan, and M. N. Aydoğan, “Effect of locally isolated phosphate-solubilizing Pseudomonas aeruginosa IBP26 on the growth parameters of chickpea seedling”, J. Inst. Sci. and Tech., vol. 11, no. 2, pp. 896–905, 2021, doi: 10.21597/jist.819562.
ISNAD Cogender, Muhammed Emin et al. “Effect of Locally Isolated Phosphate-Solubilizing Pseudomonas Aeruginosa IBP26 on the Growth Parameters of Chickpea Seedling”. Journal of the Institute of Science and Technology 11/2 (June 2021), 896-905. https://doi.org/10.21597/jist.819562.
JAMA Cogender ME, Arslan NP, Aydoğan MN. Effect of locally isolated phosphate-solubilizing Pseudomonas aeruginosa IBP26 on the growth parameters of chickpea seedling. J. Inst. Sci. and Tech. 2021;11:896–905.
MLA Cogender, Muhammed Emin et al. “Effect of Locally Isolated Phosphate-Solubilizing Pseudomonas Aeruginosa IBP26 on the Growth Parameters of Chickpea Seedling”. Journal of the Institute of Science and Technology, vol. 11, no. 2, 2021, pp. 896-05, doi:10.21597/jist.819562.
Vancouver Cogender ME, Arslan NP, Aydoğan MN. Effect of locally isolated phosphate-solubilizing Pseudomonas aeruginosa IBP26 on the growth parameters of chickpea seedling. J. Inst. Sci. and Tech. 2021;11(2):896-905.