Research Article
BibTex RIS Cite

İn Vitro Gaz Üretim Tekniği Kullanılarak Yer bademi (Cyperus esculentus) Çeşitlerinin Besin Değerinin Saptanması

Year 2021, Volume: 11 Issue: 2, 1653 - 1663, 01.06.2021
https://doi.org/10.21597/jist.830704

Abstract

Bu çalışmada, farklı yer bademi çeşitlerinin (Sarı şeker, İntrodüksiyon 1, Bal yumru) besin madde değerlerinin ve koçlarda sindirilebilirliklerinin belirlenmesi amaçlanmıştır. Farklı yer bademi çeşitlerinin ortalama gaz üretimi, 96 saatlik inkübasyondan sonra in vitro gaz üretim kinetiği ve in vitro inkübasyon süreleri belirlenmiştir. Yetiştirilen farklı yer bademi çeşitlerinin in vitro gaz üretim tekniği kullanılarak a, b, c, a + b'nin pearson korelasyon katsayıları ve pearson korelasyon katsayıları bulunmuştur. Çalışmada farklı yer bademi çeşitlerinin değişik zamanlardaki ortalama gaz üretimleri sadece 3. saatte önemli bulunmuş; 96 saatlik inkübasyondan sonraki in vitro gaz üretim kinetikleri, çeşitler arasında farklılık yaratmamış; in vitro inkübasyon zamanları ile pearson korelasyon katsayıları arasındaki ilişki önemli tespit edilmiştir. Yer bademi çeşitlerinin ortalama ham proteini (HP) %4.39; kuru maddesi (KM) %94.08; ham yağı (HY) %24.85; ham külü (HK) %2.53; asit deterjanda çözünmeyen lif (ADF) %15.04, nötr deterjanda çözünmeyen lif (NDF) %24.03; lif olmayan karbonhidrat (LOK) %44.20 olarak bulunmuştur. Yer bademi çeşitlerinin ortalama toplam sindirilebilir besin maddesi %72.78; metabolik enerjisi 2.63 Mcal/kg KM, sindirilebilir enerjisi 3.21 Mcal/kg KM ve de net enerji laktasyon değeri 1.66 Mcal/kg KM olarak tespit edilmiştir.

References

  • Achoribo ES, Ong MT, 2017. Tiger nut (Cyperus Esculentus): Source of natural anticancer drug? Brief review of existing literature. Euromediterranean Biomedical Journal, 12(19): 091-094.
  • Aduwamai UH, John UI, Aminu A, Isaac UK, 2018. Influence of different processing methods on proximate and anti-nutritional value of tigernuts (Cyperus esculentus L.). GSC Biological and Pharmaceutical Sciences, 03(03): 029-034.
  • Anonim, 2019a. Tigernuts /Chufas. https://www.tigernuts.com/pdf/tigernuts.profile.pdf
  • Anonim, 2019b. Yerbademi. https://www.tunaproject.com.tr/urunler-321269/tarimsal-urunler/super-foods/detay/417425/yer-bademi--tiger-nuts-.
  • Association of Official Analytical Chemists, AOAC, 1990. Official Method of Analysis. 15th. ed. Washington, DC. USA.
  • Ayaşan T, Ülger İ, Kaliber M, Ergül Ş, İnci H, Mart D, Türkeri M, 2018. Comparison of in vitro gas production, nutritive value, metabolizable energy and organic matter digestibility of some chickpea varieties. Iranian Journal of Applied Animal Science, 8(1):131-136.
  • Ayaşan T, Sucu E, Ülger İ, Hızlı H, Cubukcu P, Özcan BD, 2020. Determination of in vitro rumen digestibility and potential feed value of tiger nut varieties. South African Journal of Animal Science, 50(5): 738-744.
  • Bado S, Bazongo P, Son G, Kyaw MT, Forster BP, Nielen S, Lykke AM, Ouédraogo A, Bassolé IHN, 2015. Physicochemical characteristics and composition of three morphotypes of cyperus esculentus tubers and tuber oils. Journal of Analytical Methods in Chemistry, Article ID 673547, 8 pages http://dx.doi.org/10.1155/2015/673547.
  • Bilgili ME, Çubukcu P, Vurarak Y, 2018. Yerbademinin tarımı ve mekanizasyonunun değerlendirilmesi. Uluslararası Doğu Akdeniz Tarımsal Araştırma Enstitüsü Dergisi, 1(2): 20-33.
  • Bobreneva IV, Baioumy AA, 2018. Effect of using tiger nuts (Cyperus esculentus L.) on nutritional and organoleptic characteristics of beef burger. Bioscience Research, 15(3): 1424-1432.
  • Chen XB, 1994. Neway excel. an excel application programme for processing feed degradability data. User Manual. Int. Feed Resources Unit. Rowrett Research Institute. Scotland (Unpublished).
  • Chinma CE, James S, Imam H, Ocheme OB, Anuonye JC, Yakubu CM, 2011. Physicochemical and sensory properties, and in vitro digestibility of biscuits made from blends of tigernut (Cyperus esculentus) and pigeon pea (Cajanus cajan). Nigerian Journal of Nutritional Sciences, 32(1): 55-62.
  • Emurotu JE, 2017. Comparison of the nutritive value of the yellow and brown varieties of tigernut. IOSR Journal of Applied Chemistry, 10(9): 29-32.
  • Eseceli H, Ayaşan T, Esen VK, Esen S, 2020. Nutrient and mineral contents and in vitro digestibility of kermes oak (Quercus coccifera L.) and mock privet (Phillyrea latifolia L.). Alınteri Zirai Bilimler Dergisi, 35(2): 100-106.
  • Gambo A, Da’u A, 2014. Tigernut (Cyperus esculentus L.): Composition, products, uses and health benefits-A review. Bayero Journal of Pure and Applied Sciences, 7(1): 56-61.
  • Gutierrez N, Boyd JA, 2020. Effects of in vitro digestibility in cannulated steers when supplemented different levels of glycerol. Journal of Animal Science, 98(2): 55-56.
  • He Y, Cone JW, Hendriks WH, Dijkstra J, 2019. Relationships between chemical composition and in vitro gas production parameters of maize leaves and stems. J. Anim. Physiol. Anim. Nutr. 104(1): 12-21.
  • Imo C, Uhegbu FO, Arowora KA, Ezeonu CS, Opara IJ, Nwaogwugwu CJ, Anigbo CJ, 2019. Chemical composition of Cyperus esculentus nut and phoenix dactylifera fruit. African Journal of Biotechnology, 18(19): 408-415.
  • İnce A, Vursavuş KK, Vurarak Y, Çubukcu P, Çevik MY, 2017. Selected engineering properties of tiger nut as a function of moisture content and variety. Turkish Journal of Agriculture Foresty, 41: 263-271.
  • Kamalak A, Atalay AI, Ozkan CO, Kaya K, Tatlıyer A, 2011. Determination of nutritive value of Trigonella kotschi Fenzl hay harvested at three different maturity stages. Kafkas Univ. Vet. Fak. Dergisi, 17: 635-640.
  • Kara K, 2020. Determination of the in vitro digestibility and nutrient content of commercial premium extruded foods with different types of protein content for adult dogs. Veterinarni Medicina, 65(6): 233-249.
  • Karababa E, Coşkuner Y, Nazlıcan A, 2001. Çufa yumrusunun kimyasal bileşimi ve teknolojik değerlendirilmesi. Gıda, 26(4): 243-246.
  • Kaya E, Canbolat O, Atalay AI, Kurt O, Kamalak A, 2016. Potential nutritive value and methane production of pods, seed and senescent leaves of Gleditsia triacanthos trees. Livestock Research for Rural Development, 28(7): 123.
  • Madaki FM, Kabiru AY, Muhammad HL, Abubakar AN, Bello A, 2018. Comparative nutritional compositions of raw and processed tiger nuts (Cyperus esculentus L.). IJABR, 9(2): 32-40.
  • Maduka N, Ire FS, 2018. Tigernut plant and useful application of tigernut tubers (Cyperus esculentus)- A review. http://www.sdiarticle2.org/prh/CJAST_68/2018/Revised-ms_CJAST_43551_v4.pdf
  • MAFF, 1984. Energy allowances and feeding systems for ruminants. Her Majesty’s Stationary Office London, UK.
  • Menke KH, Steingass H, 1988. Estimation of the energetic feed values obtained from chemical analysis and in vitro gas production using rumen liquid. Anim. Res. Dev. 28: 7-55.
  • Monago CC, Uwakwe AA, 2009. Proximate composition and in vitro anti sickling property of Nigerian Cyperus esculentus (tiger nut sedge). Trees for Life Journal, 1-6.
  • Nazlıcan AN, 2007. Yağ, nişasta ve şeker üretiminde yeni bir alternatif: Yerbademi. Agroskop Tarım Gıda Hayvancılık Dergisi, 1(1): 54-55.
  • Ortis CAN, Roa Vega MG, 2020. Determination of in vitro digestibility of forage species used in ruminant feding. Tropical Animal Health and Production, 52: 3045-3059.
  • Ozcan MM, Gumuscu A, Er F, Arslan D, Ozkalp B, 2010. Chemical and fatty acid composition of cyperus esculentus. Chemistry of Natural Compounds, 46(2): 276-277.
  • Ørskov ER, McDonald I, 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agric. Sci, 92: 499-503.
  • Sidohounde A, Nonviho G, Djenontin ST, Agbangnan P, Paris C, Sohounhloue DCK, 2014. Physico-chemical characterization of vegetable oil and defatted meal from two varieties of cyperus esculentus from Benin. Chemistry Journal, 4(1): 1-7.
  • SPSS Statistical Package for the Social Sciences for Windows, 1999. Spps Inc., Chicago, Illinois, USA.
  • Suleiman MS, Olajide JE, Omale JA, Abbah OC, Ejembi DO, 2018. Proximate composition, mineral and some vitamin contents of tigernut (Cyperus esculentus). Clin. Invest. (Lond.), 8(4): 161-165.
  • Thomas AD, 2014. Physical, chemical and functional properties of tiger nuts (cyperus esculentus) selected from Ghana, Cameroon and UK Market (Spain). University of Plymouth Research Theses, Doctoral Thesis, p:254.
  • Turan A, Soycan Önenç S, 2018. Effect of cumin essential oil usage on fermentation quality, aerobic stability and in vitro digetibility of alfalfa silage, Asian-Australasian Journal of Animal Sciences, 31: 1252-1258.
  • Türel AO, Buğdaycı KE, 2020. Nutrient content and in vitro digestibility of kermes oak (Quercus coccifera L.) growing in the provincial borders of Burdur. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(1): 95-100.
  • Ülger İ, Kaliber M, Büyükkılıç Beyzi S, Konca Y. 2020a. Possible ensiling of pumpkin (Cucurbita pepo) residues. Turkish Journal of Veterinary & Animal Sciences, 44(4): 853-859.
  • Ülger I, Büyükkılıç Beyzi S, Kaliber M, Konca Y. 2020b. Chemical, nutritive, fermentation profile and gas production of citrus pulp silages, alone or combined with maize silage. South African Journal of Animal Science, 50(1): 161-169.
  • Van Soest PJ, Wine RH, 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal of the Association of Official Analytical Chemists, 50: 50-55.
  • Van Soest PJ, Robertson JD, Lewis BA, 1991. Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
  • Weiss WP, Conrad HR, St Pierre NR, 1992. A theoretically-based model for predicting total digestible, nutrient values of forages and concentrates. Animal Feed Science and Technology, 39(1-2): 95-110.
  • Yılmaz Y, 2019. Yerbademi sütü (Horchata) yan ürünlerinin ekmek üretiminde değerlendirilmesi üzerine bir çalışma. Hacettepe Üniversitesi Gıda Mühendisliği Bölümü Yüksek Lisans Tezi, s:140, Ankara.
  • Zommara M, Imaizumi K, 2017. In vitro antioxidant activity of chufa tubers (cyperus esculentus l.) extracts in liposome peroxidation systems. Journal of Sustainable Agricultural Sciences, 43(2): 69-76.

Determination of Nutritional Values of Different Tiger nut (Cyperus esculentus) Types by Using In Vitro Gas Production Technique

Year 2021, Volume: 11 Issue: 2, 1653 - 1663, 01.06.2021
https://doi.org/10.21597/jist.830704

Abstract

In this study, it was aimed to determine the nutritive values and digestibility (in ram) of different tiger nut varieties (Sarı şeker, İntrodüksiyon 1, Bal yumru). The average gas production at different times of tiger nut varieties, the in vitro gas production kinetics after 96 hours of incubation and the in vitro incubation times were determined. Pearson correlation coefficients and pearson correlation coefficients of a, b, c, a + b of different tiger nut varieties by using in vitro gas production technique were found. The tiger nut varieties used in the study are Sarı şeker, İntrodüksiyon 1 and Bal yumru. In the study, average gas production of tiger nut varieties at different times was found important only at 3rd hour; in vitro gas production kinetics after 96 hours of incubation did not differ between cultivars; the relationship between in vitro incubation times and pearson correlation coefficients was determined significantly. The average crude protein, dry matter, ether extract, crude ash, neutral detergent fiber (NDF), acid detergent fiber (ADF) and non-fiber carbohydrates (NFC) of the tiger nut varieties were found 4.39; 94.08; 24.85; 2.53; 24.03; 15.04; 44.20%. In this study, average total digestibility nutrients, digestible energy, metabolizable energy and net energy lactation of tiger nut varieties were found as 72.78%, 3.21 Mcal/kg DM, 2.63 Mcal/kg DM and 1.66 Mcal/kg DM.

References

  • Achoribo ES, Ong MT, 2017. Tiger nut (Cyperus Esculentus): Source of natural anticancer drug? Brief review of existing literature. Euromediterranean Biomedical Journal, 12(19): 091-094.
  • Aduwamai UH, John UI, Aminu A, Isaac UK, 2018. Influence of different processing methods on proximate and anti-nutritional value of tigernuts (Cyperus esculentus L.). GSC Biological and Pharmaceutical Sciences, 03(03): 029-034.
  • Anonim, 2019a. Tigernuts /Chufas. https://www.tigernuts.com/pdf/tigernuts.profile.pdf
  • Anonim, 2019b. Yerbademi. https://www.tunaproject.com.tr/urunler-321269/tarimsal-urunler/super-foods/detay/417425/yer-bademi--tiger-nuts-.
  • Association of Official Analytical Chemists, AOAC, 1990. Official Method of Analysis. 15th. ed. Washington, DC. USA.
  • Ayaşan T, Ülger İ, Kaliber M, Ergül Ş, İnci H, Mart D, Türkeri M, 2018. Comparison of in vitro gas production, nutritive value, metabolizable energy and organic matter digestibility of some chickpea varieties. Iranian Journal of Applied Animal Science, 8(1):131-136.
  • Ayaşan T, Sucu E, Ülger İ, Hızlı H, Cubukcu P, Özcan BD, 2020. Determination of in vitro rumen digestibility and potential feed value of tiger nut varieties. South African Journal of Animal Science, 50(5): 738-744.
  • Bado S, Bazongo P, Son G, Kyaw MT, Forster BP, Nielen S, Lykke AM, Ouédraogo A, Bassolé IHN, 2015. Physicochemical characteristics and composition of three morphotypes of cyperus esculentus tubers and tuber oils. Journal of Analytical Methods in Chemistry, Article ID 673547, 8 pages http://dx.doi.org/10.1155/2015/673547.
  • Bilgili ME, Çubukcu P, Vurarak Y, 2018. Yerbademinin tarımı ve mekanizasyonunun değerlendirilmesi. Uluslararası Doğu Akdeniz Tarımsal Araştırma Enstitüsü Dergisi, 1(2): 20-33.
  • Bobreneva IV, Baioumy AA, 2018. Effect of using tiger nuts (Cyperus esculentus L.) on nutritional and organoleptic characteristics of beef burger. Bioscience Research, 15(3): 1424-1432.
  • Chen XB, 1994. Neway excel. an excel application programme for processing feed degradability data. User Manual. Int. Feed Resources Unit. Rowrett Research Institute. Scotland (Unpublished).
  • Chinma CE, James S, Imam H, Ocheme OB, Anuonye JC, Yakubu CM, 2011. Physicochemical and sensory properties, and in vitro digestibility of biscuits made from blends of tigernut (Cyperus esculentus) and pigeon pea (Cajanus cajan). Nigerian Journal of Nutritional Sciences, 32(1): 55-62.
  • Emurotu JE, 2017. Comparison of the nutritive value of the yellow and brown varieties of tigernut. IOSR Journal of Applied Chemistry, 10(9): 29-32.
  • Eseceli H, Ayaşan T, Esen VK, Esen S, 2020. Nutrient and mineral contents and in vitro digestibility of kermes oak (Quercus coccifera L.) and mock privet (Phillyrea latifolia L.). Alınteri Zirai Bilimler Dergisi, 35(2): 100-106.
  • Gambo A, Da’u A, 2014. Tigernut (Cyperus esculentus L.): Composition, products, uses and health benefits-A review. Bayero Journal of Pure and Applied Sciences, 7(1): 56-61.
  • Gutierrez N, Boyd JA, 2020. Effects of in vitro digestibility in cannulated steers when supplemented different levels of glycerol. Journal of Animal Science, 98(2): 55-56.
  • He Y, Cone JW, Hendriks WH, Dijkstra J, 2019. Relationships between chemical composition and in vitro gas production parameters of maize leaves and stems. J. Anim. Physiol. Anim. Nutr. 104(1): 12-21.
  • Imo C, Uhegbu FO, Arowora KA, Ezeonu CS, Opara IJ, Nwaogwugwu CJ, Anigbo CJ, 2019. Chemical composition of Cyperus esculentus nut and phoenix dactylifera fruit. African Journal of Biotechnology, 18(19): 408-415.
  • İnce A, Vursavuş KK, Vurarak Y, Çubukcu P, Çevik MY, 2017. Selected engineering properties of tiger nut as a function of moisture content and variety. Turkish Journal of Agriculture Foresty, 41: 263-271.
  • Kamalak A, Atalay AI, Ozkan CO, Kaya K, Tatlıyer A, 2011. Determination of nutritive value of Trigonella kotschi Fenzl hay harvested at three different maturity stages. Kafkas Univ. Vet. Fak. Dergisi, 17: 635-640.
  • Kara K, 2020. Determination of the in vitro digestibility and nutrient content of commercial premium extruded foods with different types of protein content for adult dogs. Veterinarni Medicina, 65(6): 233-249.
  • Karababa E, Coşkuner Y, Nazlıcan A, 2001. Çufa yumrusunun kimyasal bileşimi ve teknolojik değerlendirilmesi. Gıda, 26(4): 243-246.
  • Kaya E, Canbolat O, Atalay AI, Kurt O, Kamalak A, 2016. Potential nutritive value and methane production of pods, seed and senescent leaves of Gleditsia triacanthos trees. Livestock Research for Rural Development, 28(7): 123.
  • Madaki FM, Kabiru AY, Muhammad HL, Abubakar AN, Bello A, 2018. Comparative nutritional compositions of raw and processed tiger nuts (Cyperus esculentus L.). IJABR, 9(2): 32-40.
  • Maduka N, Ire FS, 2018. Tigernut plant and useful application of tigernut tubers (Cyperus esculentus)- A review. http://www.sdiarticle2.org/prh/CJAST_68/2018/Revised-ms_CJAST_43551_v4.pdf
  • MAFF, 1984. Energy allowances and feeding systems for ruminants. Her Majesty’s Stationary Office London, UK.
  • Menke KH, Steingass H, 1988. Estimation of the energetic feed values obtained from chemical analysis and in vitro gas production using rumen liquid. Anim. Res. Dev. 28: 7-55.
  • Monago CC, Uwakwe AA, 2009. Proximate composition and in vitro anti sickling property of Nigerian Cyperus esculentus (tiger nut sedge). Trees for Life Journal, 1-6.
  • Nazlıcan AN, 2007. Yağ, nişasta ve şeker üretiminde yeni bir alternatif: Yerbademi. Agroskop Tarım Gıda Hayvancılık Dergisi, 1(1): 54-55.
  • Ortis CAN, Roa Vega MG, 2020. Determination of in vitro digestibility of forage species used in ruminant feding. Tropical Animal Health and Production, 52: 3045-3059.
  • Ozcan MM, Gumuscu A, Er F, Arslan D, Ozkalp B, 2010. Chemical and fatty acid composition of cyperus esculentus. Chemistry of Natural Compounds, 46(2): 276-277.
  • Ørskov ER, McDonald I, 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agric. Sci, 92: 499-503.
  • Sidohounde A, Nonviho G, Djenontin ST, Agbangnan P, Paris C, Sohounhloue DCK, 2014. Physico-chemical characterization of vegetable oil and defatted meal from two varieties of cyperus esculentus from Benin. Chemistry Journal, 4(1): 1-7.
  • SPSS Statistical Package for the Social Sciences for Windows, 1999. Spps Inc., Chicago, Illinois, USA.
  • Suleiman MS, Olajide JE, Omale JA, Abbah OC, Ejembi DO, 2018. Proximate composition, mineral and some vitamin contents of tigernut (Cyperus esculentus). Clin. Invest. (Lond.), 8(4): 161-165.
  • Thomas AD, 2014. Physical, chemical and functional properties of tiger nuts (cyperus esculentus) selected from Ghana, Cameroon and UK Market (Spain). University of Plymouth Research Theses, Doctoral Thesis, p:254.
  • Turan A, Soycan Önenç S, 2018. Effect of cumin essential oil usage on fermentation quality, aerobic stability and in vitro digetibility of alfalfa silage, Asian-Australasian Journal of Animal Sciences, 31: 1252-1258.
  • Türel AO, Buğdaycı KE, 2020. Nutrient content and in vitro digestibility of kermes oak (Quercus coccifera L.) growing in the provincial borders of Burdur. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(1): 95-100.
  • Ülger İ, Kaliber M, Büyükkılıç Beyzi S, Konca Y. 2020a. Possible ensiling of pumpkin (Cucurbita pepo) residues. Turkish Journal of Veterinary & Animal Sciences, 44(4): 853-859.
  • Ülger I, Büyükkılıç Beyzi S, Kaliber M, Konca Y. 2020b. Chemical, nutritive, fermentation profile and gas production of citrus pulp silages, alone or combined with maize silage. South African Journal of Animal Science, 50(1): 161-169.
  • Van Soest PJ, Wine RH, 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal of the Association of Official Analytical Chemists, 50: 50-55.
  • Van Soest PJ, Robertson JD, Lewis BA, 1991. Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
  • Weiss WP, Conrad HR, St Pierre NR, 1992. A theoretically-based model for predicting total digestible, nutrient values of forages and concentrates. Animal Feed Science and Technology, 39(1-2): 95-110.
  • Yılmaz Y, 2019. Yerbademi sütü (Horchata) yan ürünlerinin ekmek üretiminde değerlendirilmesi üzerine bir çalışma. Hacettepe Üniversitesi Gıda Mühendisliği Bölümü Yüksek Lisans Tezi, s:140, Ankara.
  • Zommara M, Imaizumi K, 2017. In vitro antioxidant activity of chufa tubers (cyperus esculentus l.) extracts in liposome peroxidation systems. Journal of Sustainable Agricultural Sciences, 43(2): 69-76.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Zootechny (Other)
Journal Section Zootekni / Animal Science
Authors

Tugay Ayaşan 0000-0001-7397-6483

Ekin Sucu 0000-0003-1470-2751

İsmail Ulger 0000-0002-9400-6459

Hakan İnci 0000-0002-9791-0435

Hatice Hızlı 0000-0002-5451-1397

Sevda İnan 0000-0001-8138-5851

Publication Date June 1, 2021
Submission Date November 24, 2020
Acceptance Date December 26, 2020
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Ayaşan, T., Sucu, E., Ulger, İ., İnci, H., et al. (2021). İn Vitro Gaz Üretim Tekniği Kullanılarak Yer bademi (Cyperus esculentus) Çeşitlerinin Besin Değerinin Saptanması. Journal of the Institute of Science and Technology, 11(2), 1653-1663. https://doi.org/10.21597/jist.830704
AMA Ayaşan T, Sucu E, Ulger İ, İnci H, Hızlı H, İnan S. İn Vitro Gaz Üretim Tekniği Kullanılarak Yer bademi (Cyperus esculentus) Çeşitlerinin Besin Değerinin Saptanması. J. Inst. Sci. and Tech. June 2021;11(2):1653-1663. doi:10.21597/jist.830704
Chicago Ayaşan, Tugay, Ekin Sucu, İsmail Ulger, Hakan İnci, Hatice Hızlı, and Sevda İnan. “İn Vitro Gaz Üretim Tekniği Kullanılarak Yer Bademi (Cyperus Esculentus) Çeşitlerinin Besin Değerinin Saptanması”. Journal of the Institute of Science and Technology 11, no. 2 (June 2021): 1653-63. https://doi.org/10.21597/jist.830704.
EndNote Ayaşan T, Sucu E, Ulger İ, İnci H, Hızlı H, İnan S (June 1, 2021) İn Vitro Gaz Üretim Tekniği Kullanılarak Yer bademi (Cyperus esculentus) Çeşitlerinin Besin Değerinin Saptanması. Journal of the Institute of Science and Technology 11 2 1653–1663.
IEEE T. Ayaşan, E. Sucu, İ. Ulger, H. İnci, H. Hızlı, and S. İnan, “İn Vitro Gaz Üretim Tekniği Kullanılarak Yer bademi (Cyperus esculentus) Çeşitlerinin Besin Değerinin Saptanması”, J. Inst. Sci. and Tech., vol. 11, no. 2, pp. 1653–1663, 2021, doi: 10.21597/jist.830704.
ISNAD Ayaşan, Tugay et al. “İn Vitro Gaz Üretim Tekniği Kullanılarak Yer Bademi (Cyperus Esculentus) Çeşitlerinin Besin Değerinin Saptanması”. Journal of the Institute of Science and Technology 11/2 (June 2021), 1653-1663. https://doi.org/10.21597/jist.830704.
JAMA Ayaşan T, Sucu E, Ulger İ, İnci H, Hızlı H, İnan S. İn Vitro Gaz Üretim Tekniği Kullanılarak Yer bademi (Cyperus esculentus) Çeşitlerinin Besin Değerinin Saptanması. J. Inst. Sci. and Tech. 2021;11:1653–1663.
MLA Ayaşan, Tugay et al. “İn Vitro Gaz Üretim Tekniği Kullanılarak Yer Bademi (Cyperus Esculentus) Çeşitlerinin Besin Değerinin Saptanması”. Journal of the Institute of Science and Technology, vol. 11, no. 2, 2021, pp. 1653-6, doi:10.21597/jist.830704.
Vancouver Ayaşan T, Sucu E, Ulger İ, İnci H, Hızlı H, İnan S. İn Vitro Gaz Üretim Tekniği Kullanılarak Yer bademi (Cyperus esculentus) Çeşitlerinin Besin Değerinin Saptanması. J. Inst. Sci. and Tech. 2021;11(2):1653-6.