Research Article
BibTex RIS Cite

Molecular Dynamics Study of Some Thermal Properties of CuAu and Cu3Au Super Alloys

Year 2021, Volume: 11 Issue: 3, 1939 - 1947, 01.09.2021
https://doi.org/10.21597/jist.822402

Abstract

In this study, the ordered CuAu and Cu3Au intermetallic binary alloy systems were modelled by Parinello-Rahman (PR) Molecular Simulation method. As potential function, Sutton-Chen Embedded Atom Method was used to calculate the interatomic interactions. The variations of potential energy function and the bonded pairs obtained with Honeycutt-Andersen (HA) method were investigated during the heating process for systems. Also, the structural properties of model systems at 300K temperature and liquid phase were analysed by using Radial Distribution Function (RDF). As a result of analysis methods, some physical parameters such as the melting temperatures, lattice parameters and potential energy values were obtained. The results demonstrated that the simulation results were compatible experimental data.

References

  • Artrith N, Kolpak AM, 2015. Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Computational Materials Science, 110: 20-28.
  • Chen G, Wang C, Zhang P, 2016. The non-equilibrium crystallization of Cu3Au with cooling rate near criticality. Computational Materials Science, 112: 80-86.
  • Celik FA, 2014. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions. Physics Letters A, 378(30-31): 2151-2156.
  • Cleri F, Mazzone G, Rosato V, 1993. Order-disorder transition in Cu3Au: a combined molecular-dynamics and cluster-variation-method approach. Physical Review B, 47(21): 14541.
  • Celtek M, Dömekeli U, 2018. Molecular dynamic simulatıon Study of melting Point Of L12-Cu3Au Alloy, Internatıonal Scıentıfıc Conference 16-17 November, Gabrovo.
  • Daw S, Baskes ML, 1984. Embedded-atom method: derivation and application to impuries, surfaces and other defects in metals. Physical Review B, 29: 6443-6453.
  • Dong KJ, Liu RS, Yu AB, Zou RP, Li JY, 2003. Simulation study of the evolution mechanisms of clusters in a large-scale liquid Al system during rapid cooling processes. Journal of Physics: Condensed Matter, 15(6): 743.
  • Garbacz H, Mizera J, Laskowski Z, Gierej M, 2011. Microstructure and mechanical properties of a Pt–Rh alloy. Powder Technology, 208: 488–490.
  • Faruq M, Villesuzanne A, Shao G, 2018. Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties, Journal of Non-Crystalline Solids, 487: 72-86.
  • Fedorov PP, Volkov SN, 2016. Au–Cu phase diagram. Russian Journal of Inorganic Chemistry, 61(6): 772-775.
  • Honeycutt JD, Andersen HC, 1987. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. Journal of Physical Chemistry, 91(19): 4950-4963.
  • Hui L, Feng D, Xiufang B, Guanhhou W, 2002. Molecular dynamics study of icosahedral ordering and defect in the Ni3Al liquid and glasses, Chemical Physics Letters, 354: 466-473.
  • Jian ZY, Chen J, Chang FE, Zeng Z, He T, Jie W, 2010. Simulation of molecular dynamics of silver subcritical nuclei and crystal clusters during solidificatio, Sci China Tech Sci., 53: 3203-3208.
  • Kart HH, Tomak M, Çağin T, 2005. Thermal and mechanical properties of Cu–Au intermetallic alloys. Modelling And Simulation in Materials Science and Engineering, 13(5): 657.
  • Lekka CE, Papanicolaou NI, Evangelakis GA, 2001. Molecular dynamics study of the ordered Cu3Au: I. Vibrational and structural properties of the low indexed surfaces. Surface science, 479(1-3): 287-305.
  • Li QK, Zhang Y, Chu WY, 2002. Molecular dynamics simulation of stress corrosion cracking in Cu3Au. Computational Materials Science, 25(3): 510-518.
  • Lu K, 1996. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science and Engineering, R16: 161-221.
  • Özgen S, 1997. Sayısal hesaplama yöntemlerinin şekil hatırlamalı alaşımlarda difüzyonsuz faz dönüşümlerine uygulanması, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Parrinello M, Rahman A, 1980. Crystal structure and pair potentials: A molecular-dynamics study, Physical Review Letters, 45 (14): 1196.
  • Stukowski A, 2009. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng., 18: 15012.
  • Sutton AP, Chen J, 1990. Long-range Finnis-Sinclair potentials. Philosophical Magazine Letters, 61: 139-146.
  • Tanaka H, 2005. Relatioship among glass-forming ability, fragility, and short-range bond ordering of liquids. Journal Non-Crystalline Solids, 351: 678-690.
  • Yuan, YQ, Zeng XG, Chen HY, Yao AL, Hu YF, 2013. Molecular dynamics simulation on microstructure evolution during solidification of copper nanoparticles. Journal of the Korean Physical Society, 62(11): 1645-1651.

CuAu ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması

Year 2021, Volume: 11 Issue: 3, 1939 - 1947, 01.09.2021
https://doi.org/10.21597/jist.822402

Abstract

Bu çalışmada, Parinello-Rahman (PR) Moleküler Dinamik (MD) benzetim (simülasyon) yöntemi kullanılarak CuAu ve Cu3Au düzenli intermetalik ikili alaşım sistemleri modellendi. Atomlar arası etkileşimleri hesaplamak için potansiyel fonksiyonu olarak Sutton-Chen Gömülmüş Atom Metodu (GAM) kullanıldı. Potansiyel enerji fonksiyonunun ve Honeycutt-Andersen (HA) metodu ile elde edilen bağlı çiftlerin ısıtma sürecinde sıcaklıkla değişimleri incelendi. Ayrıca, model sistemlerin 300K sıcaklıkta ve sıvı fazdaki yapısal özellikleri Radyal Dağılım Fonksiyonu (RDF) ile analiz edildi. Yapılan analiz yöntemleri sonucunda, model sistemlerin erime sıcaklıkları, örgü parametreleri ve potansiyel enerji değerleri gibi bazı fiziksel parametreleri elde edildi. Sonuç olarak benzetim yöntemi ile elde edilen sonuçların deneysel veriler ile uyumlu olduğu tespit edildi.

References

  • Artrith N, Kolpak AM, 2015. Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Computational Materials Science, 110: 20-28.
  • Chen G, Wang C, Zhang P, 2016. The non-equilibrium crystallization of Cu3Au with cooling rate near criticality. Computational Materials Science, 112: 80-86.
  • Celik FA, 2014. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions. Physics Letters A, 378(30-31): 2151-2156.
  • Cleri F, Mazzone G, Rosato V, 1993. Order-disorder transition in Cu3Au: a combined molecular-dynamics and cluster-variation-method approach. Physical Review B, 47(21): 14541.
  • Celtek M, Dömekeli U, 2018. Molecular dynamic simulatıon Study of melting Point Of L12-Cu3Au Alloy, Internatıonal Scıentıfıc Conference 16-17 November, Gabrovo.
  • Daw S, Baskes ML, 1984. Embedded-atom method: derivation and application to impuries, surfaces and other defects in metals. Physical Review B, 29: 6443-6453.
  • Dong KJ, Liu RS, Yu AB, Zou RP, Li JY, 2003. Simulation study of the evolution mechanisms of clusters in a large-scale liquid Al system during rapid cooling processes. Journal of Physics: Condensed Matter, 15(6): 743.
  • Garbacz H, Mizera J, Laskowski Z, Gierej M, 2011. Microstructure and mechanical properties of a Pt–Rh alloy. Powder Technology, 208: 488–490.
  • Faruq M, Villesuzanne A, Shao G, 2018. Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties, Journal of Non-Crystalline Solids, 487: 72-86.
  • Fedorov PP, Volkov SN, 2016. Au–Cu phase diagram. Russian Journal of Inorganic Chemistry, 61(6): 772-775.
  • Honeycutt JD, Andersen HC, 1987. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. Journal of Physical Chemistry, 91(19): 4950-4963.
  • Hui L, Feng D, Xiufang B, Guanhhou W, 2002. Molecular dynamics study of icosahedral ordering and defect in the Ni3Al liquid and glasses, Chemical Physics Letters, 354: 466-473.
  • Jian ZY, Chen J, Chang FE, Zeng Z, He T, Jie W, 2010. Simulation of molecular dynamics of silver subcritical nuclei and crystal clusters during solidificatio, Sci China Tech Sci., 53: 3203-3208.
  • Kart HH, Tomak M, Çağin T, 2005. Thermal and mechanical properties of Cu–Au intermetallic alloys. Modelling And Simulation in Materials Science and Engineering, 13(5): 657.
  • Lekka CE, Papanicolaou NI, Evangelakis GA, 2001. Molecular dynamics study of the ordered Cu3Au: I. Vibrational and structural properties of the low indexed surfaces. Surface science, 479(1-3): 287-305.
  • Li QK, Zhang Y, Chu WY, 2002. Molecular dynamics simulation of stress corrosion cracking in Cu3Au. Computational Materials Science, 25(3): 510-518.
  • Lu K, 1996. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science and Engineering, R16: 161-221.
  • Özgen S, 1997. Sayısal hesaplama yöntemlerinin şekil hatırlamalı alaşımlarda difüzyonsuz faz dönüşümlerine uygulanması, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Parrinello M, Rahman A, 1980. Crystal structure and pair potentials: A molecular-dynamics study, Physical Review Letters, 45 (14): 1196.
  • Stukowski A, 2009. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng., 18: 15012.
  • Sutton AP, Chen J, 1990. Long-range Finnis-Sinclair potentials. Philosophical Magazine Letters, 61: 139-146.
  • Tanaka H, 2005. Relatioship among glass-forming ability, fragility, and short-range bond ordering of liquids. Journal Non-Crystalline Solids, 351: 678-690.
  • Yuan, YQ, Zeng XG, Chen HY, Yao AL, Hu YF, 2013. Molecular dynamics simulation on microstructure evolution during solidification of copper nanoparticles. Journal of the Korean Physical Society, 62(11): 1645-1651.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Fatih Ahmet Çelik 0000-0001-7860-5550

Publication Date September 1, 2021
Submission Date November 6, 2020
Acceptance Date March 26, 2021
Published in Issue Year 2021 Volume: 11 Issue: 3

Cite

APA Çelik, F. A. (2021). CuAu ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması. Journal of the Institute of Science and Technology, 11(3), 1939-1947. https://doi.org/10.21597/jist.822402
AMA Çelik FA. CuAu ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması. J. Inst. Sci. and Tech. September 2021;11(3):1939-1947. doi:10.21597/jist.822402
Chicago Çelik, Fatih Ahmet. “CuAu Ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması”. Journal of the Institute of Science and Technology 11, no. 3 (September 2021): 1939-47. https://doi.org/10.21597/jist.822402.
EndNote Çelik FA (September 1, 2021) CuAu ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması. Journal of the Institute of Science and Technology 11 3 1939–1947.
IEEE F. A. Çelik, “CuAu ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması”, J. Inst. Sci. and Tech., vol. 11, no. 3, pp. 1939–1947, 2021, doi: 10.21597/jist.822402.
ISNAD Çelik, Fatih Ahmet. “CuAu Ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması”. Journal of the Institute of Science and Technology 11/3 (September 2021), 1939-1947. https://doi.org/10.21597/jist.822402.
JAMA Çelik FA. CuAu ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması. J. Inst. Sci. and Tech. 2021;11:1939–1947.
MLA Çelik, Fatih Ahmet. “CuAu Ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması”. Journal of the Institute of Science and Technology, vol. 11, no. 3, 2021, pp. 1939-47, doi:10.21597/jist.822402.
Vancouver Çelik FA. CuAu ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması. J. Inst. Sci. and Tech. 2021;11(3):1939-47.