Research Article
BibTex RIS Cite

Adaptive Responses and Ultrastructural Findings of Onobrychis germanicopolitana Hub.-Mor. & Simon (Fabaceae) Growing Naturally at Gypsum Habitats

Year 2021, Volume: 11 Issue: 4, 2573 - 2586, 15.12.2021
https://doi.org/10.21597/jist.987282

Abstract

Onobrychis germanicopolitana Hub.-Mor. & Simon is a perennial plant endemic to gypsum areas in Çankırı, Turkey. Scanning electron microcopy (SEM) observations on vegetative and reproductive organs of O. germanicopolitana presented detailed information of ultrastructural properties, illustrating adaptations to specific conditions of gypsum habitats. The ultrastructural study of the leaves revealed them to be amphistomatic, with more stomata than the upper surface, to have densely surface hairs, and the palisade parenchyma (~110 µm) covers more area than sponge parenchyma (~60 µm). The secondary structure was sighted in the transverse sections of stem and cambium was clearly distinguish. The root showed the presence of large vascular cylinder surrounded by a cortex and periderm. Hair density at the base of the calyx is quite high and the outer surface of the calyx epidermis consists of hexagonal cells. The outer surface of the vexillum has cuticular lines in the form of indentations and protrusions. In addition to other adaptive features, the hairs abundantly found on leaves, stems and fruits had papillary protrusions. The ultrastructural properties of O. germanicopolitana, were given for the first time in this study revealing detailed descriptive ultrastructures that as a source of information and reference.

Thanks

I wish to thank Prof. Dr. Zekiye Suludere (Gazi University, Faculty of Science, Department of Biology) for her invaluable support in the process of picturing my study materials with scanning electron microscope (SEM) and Prof. Dr. Donovan Bailey (New Mexico State University, Department of Biology), who revised the grammer of this article.

References

  • Abd El-Maboud M, Abd Elba OH, 2020. Adaptive responses of Limoniastrum monopetalum (L.) Boiss. growing naturally at different habitats. Plant Physiology Reports, 25(2): 325-334.
  • Abusaief HMAA, Boasoul SH, 2021. A taxonomic study of twelve wild forage species of Fabaceae. Heliyon, 7(2): e06077.
  • Akhtar N, Hayat MQ, Hafiz IA, Abbasi NA, Malik SI, Habib U, Hussain A, Potter D, 2021. Comparative palynology and taxonomic implication of Jasminum L. (Oleaceae) species from Pakistan on the bases of scanning electron microscopy. Microscopy Research and Technique, 1-12.
  • Akman Y, 2010. Climate and Bioclimate. Palme Publication. Ankara.
  • Alimi A, Adeleke R, Moteetee A, 2021. Soil environmental factors shape the rhizosphere arbuscular mycorrhizal fungal communities in South African indigenous legumes (Fabaceae). Biodiversitas Journal of Biological Diversity, 22(5).
  • Anonymous, 2021a. https://bolge9.tarimorman.gov.tr/Menu/162/Cankirinin-Biyocesitliligi. (Date of Access: 22 May 2021).
  • Azani N, Babineau M, Bailey C, Banks, H, Barbosa AR, Pinto RB, ... & Zimmerman E, 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon, 66: 44-77.
  • Bacchetta G, Brullo S, Chiapella LF, Velari TC, Fenu G, Del Galdo GG, 2020. Taxonomic remarks on Genista salzmannii group (Fabaceae) in Sardinia and Corsica. Phytotaxa, 449(1): 31-51.
  • Beyschlag J, Zotz G, 2017. Heteroblasty in epiphytic bromeliads: functional implications for species in understorey and exposed growing sites. Annals of Botany, 120: 681-692.
  • Chavarria MR, Wherley B, Jessup R, Chandra A, 2020. Leaf anatomical responses and chemical composition of warm-season turfgrasses to increasing salinity. Current Plant Biology, 22: 100147.
  • Davis PH, 1965-1985. Flora of Turkey and the East Aegean Islands, Vol. I-IX. Edinburgh University Press. Edinburgh.
  • Davis PH, Mill RR, Tan K, 1988. Flora of Turkey and the East Aegean Islands (Suppl. 1) Vol. X, pp. 129-131, Edinburgh University Press, Edinburg.
  • Ekim T, Koyuncu M, Vural M, Duman H, Aytaç Z, Adıgüzel N, 2000. Red Data Book of Turkish Plants (Pteridophyta and Spermatophyta), p. 246, Turkish Association for the Conservation of Nature and Van Centennial University, Ankara.
  • Emberger L, 1930. The vegetation of the Mediterranean region. An effort for the classification of plant communities. Revue Génerale de Botanique, 42: 641-662.
  • Etcheverry AV, Alemán MM, Fleming TF, 2008. Flower morphology, pollination biology and mating system of the complex flower of Vigna caracalla (Fabaceae: Papilionoideae). Annals of Botany, 102(3): 305-316.
  • FAO (Food and Agriculture Organization of the United Nations), 2021. www.fao.org. (Date of access: 23 May 2021).
  • Gorb E, Voigt D, Eigenbrode SD, Gorb S, 2008. Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage. Arthropod-Plant Interactions, 2(4): 247-259.
  • Guerrero M, Medaglia-Mata A, Villalta-Romero F, Alvarado-Marchena L, Rocha OJ, 2021. Relationship between flooding regimes, time of year, and seed coat characteristics and coloration within fruits of the annual monocarpic plant Sesbania emerus (Fabaceae). International Journal of Plant Sciences, 182(4): 295-308.
  • Gul S, Ahmad M, Zafar M, Bahadur S, Celep F, Sultana S, Begum N, Hanif U, Zaman W, Shuaib M, Ayaz A, 2019. Taxonomic significance of foliar epidermal morphology in Lamiaceae from Pakistan. Microscopy Research and Technique, 82(9): 1507-1528.
  • Güner A, Aslan S, Ekim T, Vural M, Babaç MT, 2012. Türkiye Bitkileri Listesi (Damarlı Bitkiler). Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını, İstanbul.
  • Han X, Zhou Y, Ni X, Chu S, Cheng ME, Tan L, Zha L, Peng H, 2021. Programmed cell death during the formation of rhytidome and interxylary cork in roots of Astragalus membranaceus (Leguminosae). Microscopy Research and Technique, 84(7):1400-1413.
  • Hu HH, Liu B, Liang Y, Ye JF, Saqib S, Meng Z, Lu LM, Chen ZD, 2020. An updated Chinese vascular plant tree of life: Phylogenetic diversity hotspots revisited. Journal of Systematics and Evolution, 58(5): 663-672.
  • İnan E, İpek G, İpek A, 2012. Endemic medicinal plants of Çankırı. Turkish Journal of Scientific Reviews, 5(2): 38-40.
  • Jahromi NSM, Jonoubi P, Majd A, Dehghani M, 2019. Investigating the anatomy of the halophyte Salsola crassa and the impact of industrial wastewater on its vegetative and generative structures. Turkish Journal of Botany, 43(6):785-797.
  • Kashyap S, Sahu CK, Verma RK, Chaudhary LB, 2021. Taxonomic application of macro and micro morphological characters of seeds in Astragalus L. (Galegeae, Fabaceae) in India. Phytotaxa, 502(2): 191-207.
  • Khan S, Jan G, Ahmad M, Gul, Zafar M, Mangi JUD, Bibi H, Sultana S, Usma A, Majeed S, 2021. Morpho‐palynological assessment of some species of family Asteraceae and Lamiaceae of District Bannu, Pakistan on the bases of light microscope & scanning electron microscopy. Microscopy Research and Technique, 84(6): 1220-1232.
  • Khan SA, Khan B, 2020. Anatomy, micromorphology, and physiochemical analysis of Rhus succedanea var. himalaica root. Microscopy Research and Technique, 83(4): 424-435.
  • Kim KW, 2018. Peltate trichomes on biogenic silvery leaves of Elaeagnus umbellata. Microscopy Research and Technique, 81(7): 789-795.
  • Kochanovski FJ, Paulino JV, Teixeira SP, Tozzi, AMGDA, Mansano VDF, 2018. Floral development of Hymenaea verrucosa: an ontogenetic approach to the unusual flower of Fabaceae subfamily Detarioideae. Botanical Journal of the Linnean Society, 187(1): 46-58.
  • Latifi A, Akan H, 2020. Harran Üniversitesi Herbaryum (HARRAN)’undaki Fabaceae Familyasının Taksonları. Turkish Journal of Bioscience and Collections, 4(2): 64-104.
  • Leshcheniuk O, Chipilyak T, 2020. Morpho-anatomical adaptation of the leaves of certain Veronica species to arid conditions. Plant Introduction, (87/88): 47-53.
  • Loidi J, 2018. Plant eco-morphological traits as adaptations to environmental conditions: some comparisons between different biomes across the world. In A.M. Greller, K. Fujiwara, & F. Pedrotti (Eds.), Geographical Changes in Vegetation and Plant Functional Types, pp. 59-71, Springer, Switzerland.
  • Majeed S, Zafar, Ahmad M, Kilic, Sultana S, Raza J, Yaseen G, Gul H, Lubna SM, Jabeen M, 2020. Pollen morphological investigations of family Cactaceae and its taxonomic implication by light microscopy and scanning electron microscopy. Microscopy Research and Technique, 83(7): 767-777.
  • Mani M, Rasangam L, Selvam P, Shekhawat MS, 2021. Micro‐morpho‐anatomical mechanisms involve in epiphytic adaptation of micropropagated plants of Vanda tessellata (Roxb.) Hook. ex G. Don. Microscopy Research and Technique, 84(4): 712-722.
  • Moghiseh E, Heidari A, 2012. Polygenetic saline gypsiferous soils of the Bam region, Southeast Iran. Journal of Soil Science and Plant Nutrition 12(4): 729-746.
  • Nazir A, Rafique F, Ahmed K, Khan SA, Khan N, Akbar M, Zafar M, 2021. Evaluation of heavy metals effects on morpho‐anatomical alterations of wheat (Triticum aestivum L.) seedlings. Microscopy Research and Technique, 84(11):2517-2529.
  • Noor MJ, Ahmad M, 2021. Scanning electron imaging of mellitophilous and allergenic pollen grain of arid and northern irrigated agroecological zones of Pakistan. Microscopy Research and Technique, 84(8):1834-1861.
  • Özcan AU, Aytaş İ, 2019. Temporal landscape change in biodiversity hotspot and geological heritage karst landscapes: Çankırı gypsum hills case. Yuzuncu Yil University Journal of Agricultural Sciences, 29(4): 618-627.
  • Özdeniz E, Bölükbașı A, Kurt L, Özbey BG, 2016. Ecology of gypsophile plants. Journal of Soil Science and Plant Nutrition, 4(2): 57-62.
  • Rabizadeh F, 2020a. The first anatomical, morphological, and ecological study of the endemic Iranian Moltkia gypsacea from the Boraginaceae family. Journal of Advanced Pharmacy Education & Research, 10(S1): 170-181.
  • Rabizadeh F, 2020b. Ecological, anatomical, morphological, and micro-morphological characteristics of Gypsophila mucronifolia (Caryophylaceae) endemic to gypsic soils of Semnan, Iran. Applied Biology, 33(2): 46-61.
  • Rabizadeh F, Zare-Maivan H, Kazempour S, 2019. Ecological-anatomical comparative adaptability of two gypsophylic Astragalus species of gypsum soils. Nova Biologica Reperta, 6(2): 241-253.
  • Rather SA, Wei Y, Wang J, Zhao L, Chang Z, 2021. Comparative study of floral developments and its systematic importance in the genus Astragalus L. and Oxytropis DC. (Fabaceae, Leguminosae: Papilionoideae). Biologia, 76(3): 865-888.
  • Reiss AG, Gavrieli I, Rosenberg YO, Reznik IJ, Luttge A, Emmanuel S, Ganor JN, 2021. Gypsum precipitation under saline conditions: thermodynamics, kinetics, morphology, and size distribution. Minerals, 11(2): 141.
  • Rivera P, Villaseñor JL, Terrazas T, 2017. Meso-or xeromorphic? Foliar characters of Asteraceae in a xeric scrub of Mexico. Botanical Studies, 58(1): 1-16.
  • Rosa AC, Ferraro A, da Silva RH, Pott VJ, Victório CP, Arruda RDCDO, 2021. Leaf anatomy of two medicinal Croton species: Contribution to plant recognition. Microscopy Research and Technique, 1-11.
  • Sadia H, Zafar M, Ahmad M, Khan MP, Yaseen G, Ali MI, Sultana S, Kilic O, Şahan Z, Alam N, Abbas Q, Ghani A, Naz S, 2020. Foliar epidermal anatomy of some selected wild edible fruits of Pakistan using light microscopy and scanning electron microscopy. Microscopy Research and Technique, 83(3): 259-267.
  • Shah SN, Celik A, Ahmad M, Ullah F, Zaman W, Zafar M, Malik K, Rashid N, Iqbal M, Sohail A, Bahadur S, 2019. Leaf epidermal micromorphology and its implications in systematics of certain taxa of the fern family Pteridaceae from northern Pakistan. Microscopy Research and Technique, 82(3): 317-332.
  • Shaheen S, Fateh R, Younis S, Harun N, Jaffer M, Hussain K, Ashfaq M, Siddique R, Mukhtar H, Khan F, 2020. Light and scanning electron microscopic characterization of thirty endemic Fabaceae species of district Lahore, Pakistan. Microscopy Research and Technique, 83(12): 1507-1529.
  • Silva ALE, de Lima Terceiro LE, de Lima MF, Costa‐Silva R, Dos Santos EA, Agra MDF, 2020. Leaf and stem micromorphology of Byrsonima sericea DC. by light and scanning electron microscopy. Microscopy Research and Technique, 83(3): 287-296.
  • Soares EL, Landi LADC, Gasparino EC, 2021. Additions to the knowledge of the pollen morphology of some Fabaceae from Cerrado forest patches of Brazil. Palynology, 45(2): 269-281.
  • Sönmez İ, Celik M, 2017. Recent bloedite from İshaklı Lake, Çankırı-Çorum Basin, Turkey: A mineralogical and hydrogeochemical investigation. Carbonates and Evaporites, 32(3): 295-313.
  • Talebi SM, Azizi N, Yadegari P, Matsyura A, 2020. Analysis of pollen morphological characteristics in Iranian Onobrychis Miller (Fabaceae) taxa. Brazilian Journal of Botany, 43(3): 609-632.
  • Tekin M, Yılmaz G, 2015. Comparative root and stem anatomy of four rare Onobrychis Mill. (Fabaceae) Taxa Endemic in Turkey. Notulae Scientia Biologicae, 7(3): 308-312.
  • Terashima I, Araya T, Miyazawa SI, Sone K, Yano S, 2005. Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise. Annals of Botany, 95(3): 507-519.
  • Thornthwaite CW, 1948. An approach toward a rational classification of climate. Geographical Review, 38(1): 55-94.
  • TR North Anatolian Development Agency, 2021. www.kuzka.gov.tr. (Date of access date: 11 April 2021) TSMS (Turkish State Meteorology Services), 2020. Meteorological archive, 1930-2020. Ankara.
  • Yiotis C, Manetas Y, Psaras GK, 2006. Leaf and green stem anatomy of the droughtdeciduous Mediterranean shrub Calicotome villosa (Poiret) Link. (Leguminosae). Flora-Morphology, Distribution, Functional Ecology of Plants, 201(2): 102-107.
  • Zareh M, Faried A, Farghaly N, 2017. Micromorphological studies on the genus Lotus L. (Fabaceae: Loteae) from Egypt. Turkish Journal of Botany, 41(3), 273-288.
  • Zarre S, 2003. Hair micromorphology and its phylogenetic application in thorny species of Astragalus (Fabaceae). Botanical Journal of the Linnean Society, 143(3): 323-330.
  • Zhu X, Wang L, Yang R, Han Y, Hao J, Liu C, Fan S, 2019. Effects of exogenous putrescine on the ultrastructure of and calcium ion flow rate in lettuce leaf epidermal cells under drought stress. Horticulture, Environment and Biotechnology, 60(4): 479-490.

Jipsli Habitatlarda Doğal Olarak Yetişen Onobrychis germanicopolitana Hub.-Mor. & Simon (Fabaceae)’nın Ultrayapısal Bulguları ve Uyarlanabilir Yanıtları

Year 2021, Volume: 11 Issue: 4, 2573 - 2586, 15.12.2021
https://doi.org/10.21597/jist.987282

Abstract

Onobrychis germanicopolitana Hub.-Mor. & Simon, Çankırı’da jipsli alanlara endemik çok yıllık bir bitkidir. O. germanicopolitana’nın vejetatif ve generatif organları üzerindeki taramalı elektron mikroskobu (SEM) gözlemleri, bitkinin jipsli habitatların belirli koşullarına adaptasyonlarını gösteren ultrayapısal özellikler hakkında ayrıntılı bilgiler sunmuştur. Yaprakların ultrayapısal çalışması, üst yüzeyde daha fazla stoma varlığı ile amfistomatik olduklarını, yoğun yüzey tüylerine sahip olduklarını ve palizat parankimasının (~110 µm) sünger parankimasından (~60 µm) daha geniş olduğunu ortaya çıkarmıştır. Gövdenin enine kesitlerinde sekonder yapı görülmüş ve kambiyum açıkça ayırt edilmiştir. Kök, bir korteks ve periderm ile çevrili büyük vasküler silindirin varlığını göstermiştir. Kaliksin tabanındaki tüy yoğunluğu oldukça fazladır ve kaliks epidermisinin dış yüzeyi altıgen hücrelerden oluşmuştur. Veksillumun dış yüzeyi girinti ve çıkıntı şeklinde kutikular çizgilere sahiptir. Diğer adaptasyon özelliklerine ek olarak, yaprak, gövde ve meyvelerde bol miktarda bulunan tüyler papiller çıkıntılara sahiptir. O. germanicopolitana’nın detaylı betimsel ultrayapısal özellikleri ilk kez bu çalışmada bilgi ve referans kaynağı olarak verilmiştir.

References

  • Abd El-Maboud M, Abd Elba OH, 2020. Adaptive responses of Limoniastrum monopetalum (L.) Boiss. growing naturally at different habitats. Plant Physiology Reports, 25(2): 325-334.
  • Abusaief HMAA, Boasoul SH, 2021. A taxonomic study of twelve wild forage species of Fabaceae. Heliyon, 7(2): e06077.
  • Akhtar N, Hayat MQ, Hafiz IA, Abbasi NA, Malik SI, Habib U, Hussain A, Potter D, 2021. Comparative palynology and taxonomic implication of Jasminum L. (Oleaceae) species from Pakistan on the bases of scanning electron microscopy. Microscopy Research and Technique, 1-12.
  • Akman Y, 2010. Climate and Bioclimate. Palme Publication. Ankara.
  • Alimi A, Adeleke R, Moteetee A, 2021. Soil environmental factors shape the rhizosphere arbuscular mycorrhizal fungal communities in South African indigenous legumes (Fabaceae). Biodiversitas Journal of Biological Diversity, 22(5).
  • Anonymous, 2021a. https://bolge9.tarimorman.gov.tr/Menu/162/Cankirinin-Biyocesitliligi. (Date of Access: 22 May 2021).
  • Azani N, Babineau M, Bailey C, Banks, H, Barbosa AR, Pinto RB, ... & Zimmerman E, 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon, 66: 44-77.
  • Bacchetta G, Brullo S, Chiapella LF, Velari TC, Fenu G, Del Galdo GG, 2020. Taxonomic remarks on Genista salzmannii group (Fabaceae) in Sardinia and Corsica. Phytotaxa, 449(1): 31-51.
  • Beyschlag J, Zotz G, 2017. Heteroblasty in epiphytic bromeliads: functional implications for species in understorey and exposed growing sites. Annals of Botany, 120: 681-692.
  • Chavarria MR, Wherley B, Jessup R, Chandra A, 2020. Leaf anatomical responses and chemical composition of warm-season turfgrasses to increasing salinity. Current Plant Biology, 22: 100147.
  • Davis PH, 1965-1985. Flora of Turkey and the East Aegean Islands, Vol. I-IX. Edinburgh University Press. Edinburgh.
  • Davis PH, Mill RR, Tan K, 1988. Flora of Turkey and the East Aegean Islands (Suppl. 1) Vol. X, pp. 129-131, Edinburgh University Press, Edinburg.
  • Ekim T, Koyuncu M, Vural M, Duman H, Aytaç Z, Adıgüzel N, 2000. Red Data Book of Turkish Plants (Pteridophyta and Spermatophyta), p. 246, Turkish Association for the Conservation of Nature and Van Centennial University, Ankara.
  • Emberger L, 1930. The vegetation of the Mediterranean region. An effort for the classification of plant communities. Revue Génerale de Botanique, 42: 641-662.
  • Etcheverry AV, Alemán MM, Fleming TF, 2008. Flower morphology, pollination biology and mating system of the complex flower of Vigna caracalla (Fabaceae: Papilionoideae). Annals of Botany, 102(3): 305-316.
  • FAO (Food and Agriculture Organization of the United Nations), 2021. www.fao.org. (Date of access: 23 May 2021).
  • Gorb E, Voigt D, Eigenbrode SD, Gorb S, 2008. Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage. Arthropod-Plant Interactions, 2(4): 247-259.
  • Guerrero M, Medaglia-Mata A, Villalta-Romero F, Alvarado-Marchena L, Rocha OJ, 2021. Relationship between flooding regimes, time of year, and seed coat characteristics and coloration within fruits of the annual monocarpic plant Sesbania emerus (Fabaceae). International Journal of Plant Sciences, 182(4): 295-308.
  • Gul S, Ahmad M, Zafar M, Bahadur S, Celep F, Sultana S, Begum N, Hanif U, Zaman W, Shuaib M, Ayaz A, 2019. Taxonomic significance of foliar epidermal morphology in Lamiaceae from Pakistan. Microscopy Research and Technique, 82(9): 1507-1528.
  • Güner A, Aslan S, Ekim T, Vural M, Babaç MT, 2012. Türkiye Bitkileri Listesi (Damarlı Bitkiler). Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını, İstanbul.
  • Han X, Zhou Y, Ni X, Chu S, Cheng ME, Tan L, Zha L, Peng H, 2021. Programmed cell death during the formation of rhytidome and interxylary cork in roots of Astragalus membranaceus (Leguminosae). Microscopy Research and Technique, 84(7):1400-1413.
  • Hu HH, Liu B, Liang Y, Ye JF, Saqib S, Meng Z, Lu LM, Chen ZD, 2020. An updated Chinese vascular plant tree of life: Phylogenetic diversity hotspots revisited. Journal of Systematics and Evolution, 58(5): 663-672.
  • İnan E, İpek G, İpek A, 2012. Endemic medicinal plants of Çankırı. Turkish Journal of Scientific Reviews, 5(2): 38-40.
  • Jahromi NSM, Jonoubi P, Majd A, Dehghani M, 2019. Investigating the anatomy of the halophyte Salsola crassa and the impact of industrial wastewater on its vegetative and generative structures. Turkish Journal of Botany, 43(6):785-797.
  • Kashyap S, Sahu CK, Verma RK, Chaudhary LB, 2021. Taxonomic application of macro and micro morphological characters of seeds in Astragalus L. (Galegeae, Fabaceae) in India. Phytotaxa, 502(2): 191-207.
  • Khan S, Jan G, Ahmad M, Gul, Zafar M, Mangi JUD, Bibi H, Sultana S, Usma A, Majeed S, 2021. Morpho‐palynological assessment of some species of family Asteraceae and Lamiaceae of District Bannu, Pakistan on the bases of light microscope & scanning electron microscopy. Microscopy Research and Technique, 84(6): 1220-1232.
  • Khan SA, Khan B, 2020. Anatomy, micromorphology, and physiochemical analysis of Rhus succedanea var. himalaica root. Microscopy Research and Technique, 83(4): 424-435.
  • Kim KW, 2018. Peltate trichomes on biogenic silvery leaves of Elaeagnus umbellata. Microscopy Research and Technique, 81(7): 789-795.
  • Kochanovski FJ, Paulino JV, Teixeira SP, Tozzi, AMGDA, Mansano VDF, 2018. Floral development of Hymenaea verrucosa: an ontogenetic approach to the unusual flower of Fabaceae subfamily Detarioideae. Botanical Journal of the Linnean Society, 187(1): 46-58.
  • Latifi A, Akan H, 2020. Harran Üniversitesi Herbaryum (HARRAN)’undaki Fabaceae Familyasının Taksonları. Turkish Journal of Bioscience and Collections, 4(2): 64-104.
  • Leshcheniuk O, Chipilyak T, 2020. Morpho-anatomical adaptation of the leaves of certain Veronica species to arid conditions. Plant Introduction, (87/88): 47-53.
  • Loidi J, 2018. Plant eco-morphological traits as adaptations to environmental conditions: some comparisons between different biomes across the world. In A.M. Greller, K. Fujiwara, & F. Pedrotti (Eds.), Geographical Changes in Vegetation and Plant Functional Types, pp. 59-71, Springer, Switzerland.
  • Majeed S, Zafar, Ahmad M, Kilic, Sultana S, Raza J, Yaseen G, Gul H, Lubna SM, Jabeen M, 2020. Pollen morphological investigations of family Cactaceae and its taxonomic implication by light microscopy and scanning electron microscopy. Microscopy Research and Technique, 83(7): 767-777.
  • Mani M, Rasangam L, Selvam P, Shekhawat MS, 2021. Micro‐morpho‐anatomical mechanisms involve in epiphytic adaptation of micropropagated plants of Vanda tessellata (Roxb.) Hook. ex G. Don. Microscopy Research and Technique, 84(4): 712-722.
  • Moghiseh E, Heidari A, 2012. Polygenetic saline gypsiferous soils of the Bam region, Southeast Iran. Journal of Soil Science and Plant Nutrition 12(4): 729-746.
  • Nazir A, Rafique F, Ahmed K, Khan SA, Khan N, Akbar M, Zafar M, 2021. Evaluation of heavy metals effects on morpho‐anatomical alterations of wheat (Triticum aestivum L.) seedlings. Microscopy Research and Technique, 84(11):2517-2529.
  • Noor MJ, Ahmad M, 2021. Scanning electron imaging of mellitophilous and allergenic pollen grain of arid and northern irrigated agroecological zones of Pakistan. Microscopy Research and Technique, 84(8):1834-1861.
  • Özcan AU, Aytaş İ, 2019. Temporal landscape change in biodiversity hotspot and geological heritage karst landscapes: Çankırı gypsum hills case. Yuzuncu Yil University Journal of Agricultural Sciences, 29(4): 618-627.
  • Özdeniz E, Bölükbașı A, Kurt L, Özbey BG, 2016. Ecology of gypsophile plants. Journal of Soil Science and Plant Nutrition, 4(2): 57-62.
  • Rabizadeh F, 2020a. The first anatomical, morphological, and ecological study of the endemic Iranian Moltkia gypsacea from the Boraginaceae family. Journal of Advanced Pharmacy Education & Research, 10(S1): 170-181.
  • Rabizadeh F, 2020b. Ecological, anatomical, morphological, and micro-morphological characteristics of Gypsophila mucronifolia (Caryophylaceae) endemic to gypsic soils of Semnan, Iran. Applied Biology, 33(2): 46-61.
  • Rabizadeh F, Zare-Maivan H, Kazempour S, 2019. Ecological-anatomical comparative adaptability of two gypsophylic Astragalus species of gypsum soils. Nova Biologica Reperta, 6(2): 241-253.
  • Rather SA, Wei Y, Wang J, Zhao L, Chang Z, 2021. Comparative study of floral developments and its systematic importance in the genus Astragalus L. and Oxytropis DC. (Fabaceae, Leguminosae: Papilionoideae). Biologia, 76(3): 865-888.
  • Reiss AG, Gavrieli I, Rosenberg YO, Reznik IJ, Luttge A, Emmanuel S, Ganor JN, 2021. Gypsum precipitation under saline conditions: thermodynamics, kinetics, morphology, and size distribution. Minerals, 11(2): 141.
  • Rivera P, Villaseñor JL, Terrazas T, 2017. Meso-or xeromorphic? Foliar characters of Asteraceae in a xeric scrub of Mexico. Botanical Studies, 58(1): 1-16.
  • Rosa AC, Ferraro A, da Silva RH, Pott VJ, Victório CP, Arruda RDCDO, 2021. Leaf anatomy of two medicinal Croton species: Contribution to plant recognition. Microscopy Research and Technique, 1-11.
  • Sadia H, Zafar M, Ahmad M, Khan MP, Yaseen G, Ali MI, Sultana S, Kilic O, Şahan Z, Alam N, Abbas Q, Ghani A, Naz S, 2020. Foliar epidermal anatomy of some selected wild edible fruits of Pakistan using light microscopy and scanning electron microscopy. Microscopy Research and Technique, 83(3): 259-267.
  • Shah SN, Celik A, Ahmad M, Ullah F, Zaman W, Zafar M, Malik K, Rashid N, Iqbal M, Sohail A, Bahadur S, 2019. Leaf epidermal micromorphology and its implications in systematics of certain taxa of the fern family Pteridaceae from northern Pakistan. Microscopy Research and Technique, 82(3): 317-332.
  • Shaheen S, Fateh R, Younis S, Harun N, Jaffer M, Hussain K, Ashfaq M, Siddique R, Mukhtar H, Khan F, 2020. Light and scanning electron microscopic characterization of thirty endemic Fabaceae species of district Lahore, Pakistan. Microscopy Research and Technique, 83(12): 1507-1529.
  • Silva ALE, de Lima Terceiro LE, de Lima MF, Costa‐Silva R, Dos Santos EA, Agra MDF, 2020. Leaf and stem micromorphology of Byrsonima sericea DC. by light and scanning electron microscopy. Microscopy Research and Technique, 83(3): 287-296.
  • Soares EL, Landi LADC, Gasparino EC, 2021. Additions to the knowledge of the pollen morphology of some Fabaceae from Cerrado forest patches of Brazil. Palynology, 45(2): 269-281.
  • Sönmez İ, Celik M, 2017. Recent bloedite from İshaklı Lake, Çankırı-Çorum Basin, Turkey: A mineralogical and hydrogeochemical investigation. Carbonates and Evaporites, 32(3): 295-313.
  • Talebi SM, Azizi N, Yadegari P, Matsyura A, 2020. Analysis of pollen morphological characteristics in Iranian Onobrychis Miller (Fabaceae) taxa. Brazilian Journal of Botany, 43(3): 609-632.
  • Tekin M, Yılmaz G, 2015. Comparative root and stem anatomy of four rare Onobrychis Mill. (Fabaceae) Taxa Endemic in Turkey. Notulae Scientia Biologicae, 7(3): 308-312.
  • Terashima I, Araya T, Miyazawa SI, Sone K, Yano S, 2005. Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise. Annals of Botany, 95(3): 507-519.
  • Thornthwaite CW, 1948. An approach toward a rational classification of climate. Geographical Review, 38(1): 55-94.
  • TR North Anatolian Development Agency, 2021. www.kuzka.gov.tr. (Date of access date: 11 April 2021) TSMS (Turkish State Meteorology Services), 2020. Meteorological archive, 1930-2020. Ankara.
  • Yiotis C, Manetas Y, Psaras GK, 2006. Leaf and green stem anatomy of the droughtdeciduous Mediterranean shrub Calicotome villosa (Poiret) Link. (Leguminosae). Flora-Morphology, Distribution, Functional Ecology of Plants, 201(2): 102-107.
  • Zareh M, Faried A, Farghaly N, 2017. Micromorphological studies on the genus Lotus L. (Fabaceae: Loteae) from Egypt. Turkish Journal of Botany, 41(3), 273-288.
  • Zarre S, 2003. Hair micromorphology and its phylogenetic application in thorny species of Astragalus (Fabaceae). Botanical Journal of the Linnean Society, 143(3): 323-330.
  • Zhu X, Wang L, Yang R, Han Y, Hao J, Liu C, Fan S, 2019. Effects of exogenous putrescine on the ultrastructure of and calcium ion flow rate in lettuce leaf epidermal cells under drought stress. Horticulture, Environment and Biotechnology, 60(4): 479-490.
There are 61 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Biyoloji / Biology
Authors

Ayşenur Kayabaş 0000-0003-3555-4399

Publication Date December 15, 2021
Submission Date August 26, 2021
Acceptance Date September 10, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Kayabaş, A. (2021). Adaptive Responses and Ultrastructural Findings of Onobrychis germanicopolitana Hub.-Mor. & Simon (Fabaceae) Growing Naturally at Gypsum Habitats. Journal of the Institute of Science and Technology, 11(4), 2573-2586. https://doi.org/10.21597/jist.987282
AMA Kayabaş A. Adaptive Responses and Ultrastructural Findings of Onobrychis germanicopolitana Hub.-Mor. & Simon (Fabaceae) Growing Naturally at Gypsum Habitats. J. Inst. Sci. and Tech. December 2021;11(4):2573-2586. doi:10.21597/jist.987282
Chicago Kayabaş, Ayşenur. “Adaptive Responses and Ultrastructural Findings of Onobrychis Germanicopolitana Hub.-Mor. & Simon (Fabaceae) Growing Naturally at Gypsum Habitats”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2573-86. https://doi.org/10.21597/jist.987282.
EndNote Kayabaş A (December 1, 2021) Adaptive Responses and Ultrastructural Findings of Onobrychis germanicopolitana Hub.-Mor. & Simon (Fabaceae) Growing Naturally at Gypsum Habitats. Journal of the Institute of Science and Technology 11 4 2573–2586.
IEEE A. Kayabaş, “Adaptive Responses and Ultrastructural Findings of Onobrychis germanicopolitana Hub.-Mor. & Simon (Fabaceae) Growing Naturally at Gypsum Habitats”, J. Inst. Sci. and Tech., vol. 11, no. 4, pp. 2573–2586, 2021, doi: 10.21597/jist.987282.
ISNAD Kayabaş, Ayşenur. “Adaptive Responses and Ultrastructural Findings of Onobrychis Germanicopolitana Hub.-Mor. & Simon (Fabaceae) Growing Naturally at Gypsum Habitats”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2573-2586. https://doi.org/10.21597/jist.987282.
JAMA Kayabaş A. Adaptive Responses and Ultrastructural Findings of Onobrychis germanicopolitana Hub.-Mor. & Simon (Fabaceae) Growing Naturally at Gypsum Habitats. J. Inst. Sci. and Tech. 2021;11:2573–2586.
MLA Kayabaş, Ayşenur. “Adaptive Responses and Ultrastructural Findings of Onobrychis Germanicopolitana Hub.-Mor. & Simon (Fabaceae) Growing Naturally at Gypsum Habitats”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2573-86, doi:10.21597/jist.987282.
Vancouver Kayabaş A. Adaptive Responses and Ultrastructural Findings of Onobrychis germanicopolitana Hub.-Mor. & Simon (Fabaceae) Growing Naturally at Gypsum Habitats. J. Inst. Sci. and Tech. 2021;11(4):2573-86.