Research Article
BibTex RIS Cite

İn Vitro Hepatik Oksidatif Hasarda Karvakrolün Etkinliğinin Araştırılması

Year 2022, Volume: 12 Issue: 2, 1034 - 1044, 01.06.2022
https://doi.org/10.21597/jist.1026055

Abstract

Nonalkolik karaciğer yağlanması (NAFLD) karaciğerde, özellikle trigliserit olmak üzere yağ birikimi ile karakterize, yaygın görülen bir hastalıktır. Hastalığın tedavisinde araştırmalar, doğal kaynaklardan elde edilen antioksidan moleküllere yoğunlaşmıştır. Bu bağlamda çalışmamızda, kekiğin etken maddesi karvakrolün in vitro hepatoprotektif etkinliği araştırılmıştır. Araştırmamızda materyal olarak insan hepatosit hücre hattı (HepG2, ATCCHB-8065) kullanılmıştır. Deneme grupları kontrol (K), palmitat eklenen grup (P), karvakrol eklenen grup (C) ve palmitat ile birlikte karvakrol eklenen grup (+C) olarak tasarlanmıştır. Farklı konsantrasyonlarda palmitat (150, 300 ve 450 µM) ve karvakrol (1, 5, 10 ve 50 µM) 24 saat sürelerle hücrelere uygulanarak etkin konsantrasyon tespitleri MTT viyabilite testi ile ortaya konulmuştur. Hücrelerden elde edilen lizatlardan hücre içi glutatyon ve nitrit düzeyi spektrofotometrik olarak analiz edilmiştir. Yine bu örneklerdeki aldoz redüktaz düzeyleri (AR) ELISA metoduyla araştırılmıştır. Çalışmadan elde edilen viyabilite verilerine göre, palmitatın 300 µM konsantrasyonunun kontrole göre % 45 oranında hücre kayıplarına neden olduğu, karvakrolün 5 µM konsantrasyonunun hücrelere uygulanımıyla bu kayıpların % 41 oranında önlendiği tespit edilmiştir. Çalışmada palmitat ve karvakrolün GSH düzeyinde önemli bir değişiklik oluşturmadığı ancak NO düzeylerini anlamlı düzeyde azalttığı tespit edilmiştir. Yine hücre içi AR protein düzeyini palmitat arttırırken, karvakrolün bu artışı % 1.7 oranında önlediği belirlenmiştir. Tüm bu veriler doğrultusunda karvakrolün nonalkolik steatozis gibi yağlanmaya bağlı karaciğer hastalıklarında potansiyel bir etken madde olarak düşünülebileceği kanısına varılmıştır.

References

  • Abuajah CI, Ogbonna AC, Osuji CM, 2015. Functional Components and Medicinal Properties of Food: A Review. J. Food Sci. Technol., 52: 2522–2529.
  • Aristatile B, Al‐Numair KS, Al‐Assaf AH, Pugalendi KV, 2011. Pharmacological Effect of Carvacrol on D‐Galactosamine Induced Mitochondrial Enzymes and DNA Damage by Single Cell Gel Electrophoresis. Journal of Natural Medicines, 65(3–4): 568–577.
  • Assy N, Kaita K, Mymin D, Levy C, Rosser B, Minuk G, 2000. Fatty Infiltration of Liver in Hyperlipidemic Patients. Dig Dis Sci, 45: 1929–1934.
  • Bakır M, Geyikoglu F, Colak S, et al., 2016. The Carvacrol Ameliorates Acute Pancreatitis-Induced Liver Injury via Antioxidant Response. Cytotechnology, 68: 1131–1146.
  • Brown KE, Broadhurst KA, Mathahs MM, et al, 2005. Immunodetection of Aldose Reductase in Normal and Diseased Human Liver. Histol Histopathol, 20: 429 436.
  • Can Baser K, 2008. Biological and Pharmacological Activities of Carvacrol and Carvacrol Bearing Essential Oils. CPD, 14: 3106–3119.
  • Chalasani N, Younossi Z, Lavine JE, et al, 2012. The Diagnosis and Management of Non-Alcoholic Fatty Liver Disease: Practice Guideline by The American Association for The Study of Liver Diseases, American College of Gastroenterology, and The American Gastroenterological Association. Hepatology, 55(6): 2005–2023.
  • Chen T, Shi D, Chen J, Yang Y, Qiu M, Wang W, Qiu L, 2015. Inhibition of Aldose Reductase Ameliorates Diet-Induced Nonalcoholic Steatohepatitis in Mice via Modulating The Phosphorylation of Hepatic Peroxisome Proliferator-Activated Receptor α. Mol Med Rep, 11(1): 303-8.
  • Chenet AL, Duarte AR, de Almeida FJS, Andrade CMB, de Oliveira MR, 2019. Carvacrol Depends on Heme Oxygenase-1 (HO-1) to Exert Antioxidant, Anti-İnflammatory, and Mitochondria Related Protection in The Human Neuroblastoma SH-SY5Y Cell Line Exposed to Hydrogen Peroxide. Neurochem Res, 44(4): 884-896.
  • Cortas NK, Wakid NW, 1990. Determination of Inorganic Nitrate in Serum and Urine by A Kinetic Cadmium-Reduction Method. Clin Chem, 36(8 Pt 1):1440-3.
  • Cusi K, 2009. Nonalcoholic Fatty Liver Disease in Type 2 Diabetes Mellitus. Current Opinion in Endocrinology. Diabetes and Obesity, 16(2): 141–149.
  • De Santana Souza MT, Teixeira DF, de Oliveira JP, Oliveira AS, Quintans-Júnior LJ, Correa CB, Camargo EA, 2017. Protective Effect of Carvacrol on Acetic Acid-Induced Colitis. Biomed Pharmacother. 96: 313-319.
  • Donati G, Stagni B, Piscaglia F, Venturoli N, Morselli-Labate AM, Rasciti L, et al., 2004. Increased Prevalence of Fatty Liver in Arterial Hypertensive Patients with Normal Liver Enzymes: Role of Insulin Resistance. Gut, 53: 1020–1023.
  • Du WX, Olsen CW, Avena‐Bustillos RJ, McHugh TH, Levin CE, Friedman M, 2008. Antibacterial Activity Against E.Coli O157:H7, Physical Properties, and Storage Stability of Novel Carvacrol‐Containing Edible Tomato Films. Journal of Food Science, 73(7) : M378–M383.
  • Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, et al., 2006. Long-Term Follow-Up of Patients with NAFLD and Elevated Liver Enzymes. Hepatology, 44: 865–873.
  • Fan K, Li X, Cao Y, Qi H, Li L, Zhang Q, Sun H, 2015. Carvacrol Inhibits Proliferation and Induces Apoptosis in Human Colon Cancer Cells. Anticancer Drugs, 26(8): 813-23.
  • Gonzalez-Paredes FJ, Hernandez Mesa G, Morales Arraez D et al., 2016. Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease. PLoS One, 11(5): e0156650.
  • Guimarães AG, Oliveira GF, Melo MS, Cavalcanti SC, Antoniolli AR, Bonjardim LR, Quintans‐Júnior L.J, 2010. Bioassay‐Guided Evaluation of Antioxidant and Antinociceptive Activities of Carvacrol. Basic & Clinical Pharmacology & Toxicology, 107(6): 949–957.
  • Hong JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K, et al., 2008. Nitric Oxide Function and Signalling in Plant Disease Resistance. J. Exp. Bot., 59: 147–154.
  • Hussein J, El-Banna M, Mahmoud KF, et al., 2017. The Therapeutic Effect of Nano-Encapsulated and Nano-Emulsion Forms of Carvacrol on Experimental Liver Fibrosis. Biomed Pharmacother., 90: 880–887.
  • Iwakiri Y, Grisham M, Shah V, 2008. Vascular Biology and Pathobiology of The Liver: Report of A Single-Topic Symposium. Hepatology, 47(5): 1754–1763.
  • Jarukamjorn K, Jearapong N, Pimson C, Chatuphonprasert WA, 2016. High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases The Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice. Scientifica (Cairo), 2016:5029414.
  • Jukic M, Politeo O, Maksimovic M, Milos M, Milos M, 2007. In Vitro Acetylcholin Esterase Inhibitory Properties of Thymol, Carvacrol and Their Derivatives Thymoquinone and Thymohydroquinone. Phytother Res, 21(3):259-61.
  • Khan I, Bhardwaj M, Shukla S, Min SH, Choi DK, Bajpai VK, Huh YS, Kang SC, 2019. Carvacrol Inhibits Cytochrome P450 and Protects Against Binge Alcohol-Induced Liver Toxicity. Food Chem Toxicol, 131: 110582.
  • Kotronen A, Yki-Jarvinen H, 2008. Fatty Liver: A Novel Component of The Metabolic Syndrome. Arterioscler Thromb Vasc Biol, 28: 27–38.
  • Lima Mda S, Quintans-Júnior LJ, de Santana WA, MartinsKaneto C, PereiraSoares MB, Villarreal CF, 2013. Anti-Inflammatory Effects of Carvacrol: Evidence For a Key Role of Interleukin-10. Eur J Pharmacol, 699(1-3): 112-7.
  • Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, et al., 2001. Nonalcoholic Fatty Liver Disease: A Feature of The Metabolic Syndrome. Diabetes, 50: 1844–1850.
  • Markus HB, Raducha M, Harris H, 1983. Tissue Distribution of Mammalian Aldose Reductase and Related Enzymes. Biochemical Medicine, 29(1): 31–45.
  • Mates JM, Perez-Gomez C, De Castro IN, 1999. Antioxidant Enzymes and Human Diseases. Clin. Biochem., 32: 595-603.
  • Mohebbati R, Paseban M, Soukhtanloo M, Jalili-Nik M, Shafei MN, Yazdi AJ, Rad AK, 2018. Effects of Standardized Zataria Multiflora Extract and Its Major Ingredient, Carvacrol, on Adriamycin-Induced Hepatotoxicity in Rat. Biomed J, 41(6): 340-347.
  • Mohseni R, Karimi J, Tavilani H, Khodadadi I, Hashemnia M, 2019. Carvacrol Ameliorates The Progression of Liver Fibrosis Through Targeting of Hippo and TGF-β Signaling Pathways in Carbon Tetrachloride (CCl4) Induced Liver Fibrosis in Rats. Immunopharmacol Immunotoxicol, 41(1):163-171.
  • Papachristou F, Chatzaki E, Petrou A, et al, 2013. Time Course Changes of Anti- and Pro-Apoptotic Proteins in Apigenin-Induced Genotoxicity. Chin Med 8: 9.
  • Qiu L, Cai C, Zhao X, Fang Y, Tang W, Guo C, 2017. Inhibition of Aldose Reductase Ameliorates Ethanol Induced Steatosis in Hepg2 Cells. Mol Med Rep, 15(5): 2732-2736.
  • Qiu L, Lin J, Xu F, Gao Y, Zhang C, Liu Y, Luo Y and Yang JY, 2012. Inhibition of Aldose Reductase Activates Hepatic Peroxisome Proliferator Activated Receptor Α and Ameliorates Hepatosteatosis in Diabetic Db/Db Mice. Exp Diabetes Res, 2012: 789730.
  • Qiu L, Lin J, Ying M, Chen W, Yang J, Deng T, Chen J, Shi D, Yang JY, 2013. Aldose Reductase is Involved in The Development of Murine Diet-Induced Nonalcoholic Steatohepatitis. PLoS One. 8(9):e73591.
  • Sedlak J, Lindsay RH, 1968. Estimation of Total, Protein-Bound, and Nonprotein Sulfhydryl Groups in Tissue with Ellman's Reagent. Anal Biochem, 25(1):192-205.
  • Spahis S, Delvin E, Borys JM, Levy E, 2017. Oxidative Stress As a Critical Factor in Nonalcoholic Fatty Liver Disease Pathogenesis. Antioxid Redox Signal., 26(10):519-541.
  • Suntres ZE, Coccimiglio J, Alipour M, 2015. The Bioactivity and Toxicological Actions of Carvacrol. Crit Rev Food Sci Nutr, 55(3): 304-18.
  • Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, et al., 2007. Prevalence of Nonalcoholic Fatty Liver Disease and Its Association with Cardiovascular Disease Among Type 2 Diabetic Patients. Diabetes Care,30: 1212–1218.
  • Xu J, Zhang J, Cai S, Dong J, Yang JY, Chen Z, 2009. Metabonomics Studies of Intact Hepatic and Renal Cortical Tissues from Diabetic Db/Db Mice Using High-Resolution Magic-Angle Spinning 1H NMR Spectroscopy. Analytical and Bioanalytical Chemistry, 393(6-7): 1657–1668.
  • Yesilova Z, Yaman H, Oktenli C, Ozcan A, Uygun A, Cakir E et al., 2005. Systemic Markers of Lipid Peroxidation and Antioxidants in Patients with Nonalcoholic Fatty Liver Disease. Am J Gastroenterol, 100:850-5.
  • Yin QH, Yan FX, Zu XY, Wu YH, Wu XP, Liao MC, Deng SW, Yin LL, Zhuang YZ, 2012. Antiproliferative and Proapoptotic Effect of Carvacrol on Human Hepatocellular Carcinoma Cell Line HepG-2. Cytotechnology, 64(1): 43-51.

Investigation of the Efficacy of Carvacrol in In Vitro Hepatic Oxidative Damage

Year 2022, Volume: 12 Issue: 2, 1034 - 1044, 01.06.2022
https://doi.org/10.21597/jist.1026055

Abstract

Non-alcoholic fatty liver disease (NAFLD); is a common disease characterized by accumulation of fat in the liver, especially triglycerides. Research in the treatment of the disease has focused on antioxidant molecules derived from natural sources. In this context, hepatoprotective effect of carvacrol has been tried to be demonstrated by in vitro experiments. Human hepatocyte cell line (HepG2, ATCCHB-8065) was used in the study. Experimental groups were designed as control (K), palmitate added group (P), carvacrol added group (C) and palmitate and carvacrol added group (+ C). Different concentrations of palmitate (150, 300 and 450 µM) and carvacrol (1, 5, 10 and 50 µM) were applied to the cells for 24 hours and effective concentration determinations were determined by MTT viability test. Intracellular glutathione and nitrite levels were analyzed spectrophotometrically from lysates obtained from cells. Besides, aldose reductase levels (AR) in these samples were investigated by ELISA method. According to the viability data obtained from the study, it was found that 300 µM concentration of palmitate caused 45% cell losses compared to the control, and 5 µM concentration of carvacrol prevented 41% of these cell losses. In this study, palmitate and carvacrol did not produce a significant change in GSH levels but it significantly reduced NO levels. In addition, palmitate increased intracellular AR protein level, while carvacrol inhibited this increase by 1.7%. According to all these data, it was concluded that carvacrol can be considered as a potential active agent in fatty liver diseases such as nonalcoholic fatty liver disease.

References

  • Abuajah CI, Ogbonna AC, Osuji CM, 2015. Functional Components and Medicinal Properties of Food: A Review. J. Food Sci. Technol., 52: 2522–2529.
  • Aristatile B, Al‐Numair KS, Al‐Assaf AH, Pugalendi KV, 2011. Pharmacological Effect of Carvacrol on D‐Galactosamine Induced Mitochondrial Enzymes and DNA Damage by Single Cell Gel Electrophoresis. Journal of Natural Medicines, 65(3–4): 568–577.
  • Assy N, Kaita K, Mymin D, Levy C, Rosser B, Minuk G, 2000. Fatty Infiltration of Liver in Hyperlipidemic Patients. Dig Dis Sci, 45: 1929–1934.
  • Bakır M, Geyikoglu F, Colak S, et al., 2016. The Carvacrol Ameliorates Acute Pancreatitis-Induced Liver Injury via Antioxidant Response. Cytotechnology, 68: 1131–1146.
  • Brown KE, Broadhurst KA, Mathahs MM, et al, 2005. Immunodetection of Aldose Reductase in Normal and Diseased Human Liver. Histol Histopathol, 20: 429 436.
  • Can Baser K, 2008. Biological and Pharmacological Activities of Carvacrol and Carvacrol Bearing Essential Oils. CPD, 14: 3106–3119.
  • Chalasani N, Younossi Z, Lavine JE, et al, 2012. The Diagnosis and Management of Non-Alcoholic Fatty Liver Disease: Practice Guideline by The American Association for The Study of Liver Diseases, American College of Gastroenterology, and The American Gastroenterological Association. Hepatology, 55(6): 2005–2023.
  • Chen T, Shi D, Chen J, Yang Y, Qiu M, Wang W, Qiu L, 2015. Inhibition of Aldose Reductase Ameliorates Diet-Induced Nonalcoholic Steatohepatitis in Mice via Modulating The Phosphorylation of Hepatic Peroxisome Proliferator-Activated Receptor α. Mol Med Rep, 11(1): 303-8.
  • Chenet AL, Duarte AR, de Almeida FJS, Andrade CMB, de Oliveira MR, 2019. Carvacrol Depends on Heme Oxygenase-1 (HO-1) to Exert Antioxidant, Anti-İnflammatory, and Mitochondria Related Protection in The Human Neuroblastoma SH-SY5Y Cell Line Exposed to Hydrogen Peroxide. Neurochem Res, 44(4): 884-896.
  • Cortas NK, Wakid NW, 1990. Determination of Inorganic Nitrate in Serum and Urine by A Kinetic Cadmium-Reduction Method. Clin Chem, 36(8 Pt 1):1440-3.
  • Cusi K, 2009. Nonalcoholic Fatty Liver Disease in Type 2 Diabetes Mellitus. Current Opinion in Endocrinology. Diabetes and Obesity, 16(2): 141–149.
  • De Santana Souza MT, Teixeira DF, de Oliveira JP, Oliveira AS, Quintans-Júnior LJ, Correa CB, Camargo EA, 2017. Protective Effect of Carvacrol on Acetic Acid-Induced Colitis. Biomed Pharmacother. 96: 313-319.
  • Donati G, Stagni B, Piscaglia F, Venturoli N, Morselli-Labate AM, Rasciti L, et al., 2004. Increased Prevalence of Fatty Liver in Arterial Hypertensive Patients with Normal Liver Enzymes: Role of Insulin Resistance. Gut, 53: 1020–1023.
  • Du WX, Olsen CW, Avena‐Bustillos RJ, McHugh TH, Levin CE, Friedman M, 2008. Antibacterial Activity Against E.Coli O157:H7, Physical Properties, and Storage Stability of Novel Carvacrol‐Containing Edible Tomato Films. Journal of Food Science, 73(7) : M378–M383.
  • Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, et al., 2006. Long-Term Follow-Up of Patients with NAFLD and Elevated Liver Enzymes. Hepatology, 44: 865–873.
  • Fan K, Li X, Cao Y, Qi H, Li L, Zhang Q, Sun H, 2015. Carvacrol Inhibits Proliferation and Induces Apoptosis in Human Colon Cancer Cells. Anticancer Drugs, 26(8): 813-23.
  • Gonzalez-Paredes FJ, Hernandez Mesa G, Morales Arraez D et al., 2016. Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease. PLoS One, 11(5): e0156650.
  • Guimarães AG, Oliveira GF, Melo MS, Cavalcanti SC, Antoniolli AR, Bonjardim LR, Quintans‐Júnior L.J, 2010. Bioassay‐Guided Evaluation of Antioxidant and Antinociceptive Activities of Carvacrol. Basic & Clinical Pharmacology & Toxicology, 107(6): 949–957.
  • Hong JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K, et al., 2008. Nitric Oxide Function and Signalling in Plant Disease Resistance. J. Exp. Bot., 59: 147–154.
  • Hussein J, El-Banna M, Mahmoud KF, et al., 2017. The Therapeutic Effect of Nano-Encapsulated and Nano-Emulsion Forms of Carvacrol on Experimental Liver Fibrosis. Biomed Pharmacother., 90: 880–887.
  • Iwakiri Y, Grisham M, Shah V, 2008. Vascular Biology and Pathobiology of The Liver: Report of A Single-Topic Symposium. Hepatology, 47(5): 1754–1763.
  • Jarukamjorn K, Jearapong N, Pimson C, Chatuphonprasert WA, 2016. High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases The Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice. Scientifica (Cairo), 2016:5029414.
  • Jukic M, Politeo O, Maksimovic M, Milos M, Milos M, 2007. In Vitro Acetylcholin Esterase Inhibitory Properties of Thymol, Carvacrol and Their Derivatives Thymoquinone and Thymohydroquinone. Phytother Res, 21(3):259-61.
  • Khan I, Bhardwaj M, Shukla S, Min SH, Choi DK, Bajpai VK, Huh YS, Kang SC, 2019. Carvacrol Inhibits Cytochrome P450 and Protects Against Binge Alcohol-Induced Liver Toxicity. Food Chem Toxicol, 131: 110582.
  • Kotronen A, Yki-Jarvinen H, 2008. Fatty Liver: A Novel Component of The Metabolic Syndrome. Arterioscler Thromb Vasc Biol, 28: 27–38.
  • Lima Mda S, Quintans-Júnior LJ, de Santana WA, MartinsKaneto C, PereiraSoares MB, Villarreal CF, 2013. Anti-Inflammatory Effects of Carvacrol: Evidence For a Key Role of Interleukin-10. Eur J Pharmacol, 699(1-3): 112-7.
  • Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, et al., 2001. Nonalcoholic Fatty Liver Disease: A Feature of The Metabolic Syndrome. Diabetes, 50: 1844–1850.
  • Markus HB, Raducha M, Harris H, 1983. Tissue Distribution of Mammalian Aldose Reductase and Related Enzymes. Biochemical Medicine, 29(1): 31–45.
  • Mates JM, Perez-Gomez C, De Castro IN, 1999. Antioxidant Enzymes and Human Diseases. Clin. Biochem., 32: 595-603.
  • Mohebbati R, Paseban M, Soukhtanloo M, Jalili-Nik M, Shafei MN, Yazdi AJ, Rad AK, 2018. Effects of Standardized Zataria Multiflora Extract and Its Major Ingredient, Carvacrol, on Adriamycin-Induced Hepatotoxicity in Rat. Biomed J, 41(6): 340-347.
  • Mohseni R, Karimi J, Tavilani H, Khodadadi I, Hashemnia M, 2019. Carvacrol Ameliorates The Progression of Liver Fibrosis Through Targeting of Hippo and TGF-β Signaling Pathways in Carbon Tetrachloride (CCl4) Induced Liver Fibrosis in Rats. Immunopharmacol Immunotoxicol, 41(1):163-171.
  • Papachristou F, Chatzaki E, Petrou A, et al, 2013. Time Course Changes of Anti- and Pro-Apoptotic Proteins in Apigenin-Induced Genotoxicity. Chin Med 8: 9.
  • Qiu L, Cai C, Zhao X, Fang Y, Tang W, Guo C, 2017. Inhibition of Aldose Reductase Ameliorates Ethanol Induced Steatosis in Hepg2 Cells. Mol Med Rep, 15(5): 2732-2736.
  • Qiu L, Lin J, Xu F, Gao Y, Zhang C, Liu Y, Luo Y and Yang JY, 2012. Inhibition of Aldose Reductase Activates Hepatic Peroxisome Proliferator Activated Receptor Α and Ameliorates Hepatosteatosis in Diabetic Db/Db Mice. Exp Diabetes Res, 2012: 789730.
  • Qiu L, Lin J, Ying M, Chen W, Yang J, Deng T, Chen J, Shi D, Yang JY, 2013. Aldose Reductase is Involved in The Development of Murine Diet-Induced Nonalcoholic Steatohepatitis. PLoS One. 8(9):e73591.
  • Sedlak J, Lindsay RH, 1968. Estimation of Total, Protein-Bound, and Nonprotein Sulfhydryl Groups in Tissue with Ellman's Reagent. Anal Biochem, 25(1):192-205.
  • Spahis S, Delvin E, Borys JM, Levy E, 2017. Oxidative Stress As a Critical Factor in Nonalcoholic Fatty Liver Disease Pathogenesis. Antioxid Redox Signal., 26(10):519-541.
  • Suntres ZE, Coccimiglio J, Alipour M, 2015. The Bioactivity and Toxicological Actions of Carvacrol. Crit Rev Food Sci Nutr, 55(3): 304-18.
  • Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, et al., 2007. Prevalence of Nonalcoholic Fatty Liver Disease and Its Association with Cardiovascular Disease Among Type 2 Diabetic Patients. Diabetes Care,30: 1212–1218.
  • Xu J, Zhang J, Cai S, Dong J, Yang JY, Chen Z, 2009. Metabonomics Studies of Intact Hepatic and Renal Cortical Tissues from Diabetic Db/Db Mice Using High-Resolution Magic-Angle Spinning 1H NMR Spectroscopy. Analytical and Bioanalytical Chemistry, 393(6-7): 1657–1668.
  • Yesilova Z, Yaman H, Oktenli C, Ozcan A, Uygun A, Cakir E et al., 2005. Systemic Markers of Lipid Peroxidation and Antioxidants in Patients with Nonalcoholic Fatty Liver Disease. Am J Gastroenterol, 100:850-5.
  • Yin QH, Yan FX, Zu XY, Wu YH, Wu XP, Liao MC, Deng SW, Yin LL, Zhuang YZ, 2012. Antiproliferative and Proapoptotic Effect of Carvacrol on Human Hepatocellular Carcinoma Cell Line HepG-2. Cytotechnology, 64(1): 43-51.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Moleküler Biyoloji ve Genetik / Moleculer Biology and Genetic
Authors

Meryem Nur Atabay Dingil This is me 0000-0001-7940-3213

Mehmet Mustafa İşgör 0000-0002-1729-4717

Early Pub Date May 31, 2022
Publication Date June 1, 2022
Submission Date November 19, 2021
Acceptance Date February 8, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

APA Atabay Dingil, M. N., & İşgör, M. M. (2022). İn Vitro Hepatik Oksidatif Hasarda Karvakrolün Etkinliğinin Araştırılması. Journal of the Institute of Science and Technology, 12(2), 1034-1044. https://doi.org/10.21597/jist.1026055
AMA Atabay Dingil MN, İşgör MM. İn Vitro Hepatik Oksidatif Hasarda Karvakrolün Etkinliğinin Araştırılması. J. Inst. Sci. and Tech. June 2022;12(2):1034-1044. doi:10.21597/jist.1026055
Chicago Atabay Dingil, Meryem Nur, and Mehmet Mustafa İşgör. “İn Vitro Hepatik Oksidatif Hasarda Karvakrolün Etkinliğinin Araştırılması”. Journal of the Institute of Science and Technology 12, no. 2 (June 2022): 1034-44. https://doi.org/10.21597/jist.1026055.
EndNote Atabay Dingil MN, İşgör MM (June 1, 2022) İn Vitro Hepatik Oksidatif Hasarda Karvakrolün Etkinliğinin Araştırılması. Journal of the Institute of Science and Technology 12 2 1034–1044.
IEEE M. N. Atabay Dingil and M. M. İşgör, “İn Vitro Hepatik Oksidatif Hasarda Karvakrolün Etkinliğinin Araştırılması”, J. Inst. Sci. and Tech., vol. 12, no. 2, pp. 1034–1044, 2022, doi: 10.21597/jist.1026055.
ISNAD Atabay Dingil, Meryem Nur - İşgör, Mehmet Mustafa. “İn Vitro Hepatik Oksidatif Hasarda Karvakrolün Etkinliğinin Araştırılması”. Journal of the Institute of Science and Technology 12/2 (June 2022), 1034-1044. https://doi.org/10.21597/jist.1026055.
JAMA Atabay Dingil MN, İşgör MM. İn Vitro Hepatik Oksidatif Hasarda Karvakrolün Etkinliğinin Araştırılması. J. Inst. Sci. and Tech. 2022;12:1034–1044.
MLA Atabay Dingil, Meryem Nur and Mehmet Mustafa İşgör. “İn Vitro Hepatik Oksidatif Hasarda Karvakrolün Etkinliğinin Araştırılması”. Journal of the Institute of Science and Technology, vol. 12, no. 2, 2022, pp. 1034-4, doi:10.21597/jist.1026055.
Vancouver Atabay Dingil MN, İşgör MM. İn Vitro Hepatik Oksidatif Hasarda Karvakrolün Etkinliğinin Araştırılması. J. Inst. Sci. and Tech. 2022;12(2):1034-4.