Research Article
BibTex RIS Cite

The Effects of Boron Toxicity and Bacteria (PGPR) Applications on Growth Development and Physiological Properties in Medicinal Sage (Salvia officinalis L.)

Year 2022, Volume: 12 Issue: 2, 1102 - 1113, 01.06.2022
https://doi.org/10.21597/jist.1039238

Abstract

In this study; it was carried out in order to determine the effects on physiological properties such as total flavonol and chlorophyll amounts, leaf area and temperature with the seedling growth parameters of medicinal sage (Salvia Officinalis) plant of different rhizobacteria (Azospirillum lipoferum, Bacillus megaterium and Frateuria aurentia) and boron doses (0 mM, 5 mM, 10 mM and 20 mM) in a fully controlled climate cabinet in 2021. The experiment was set up in factorial order with 4 replications according to the Completely Randomized Plots Trial Design. In the study, it was investigated growth and development parameters such as root and seedling length (cm), root and seedling fresh weight (g), root and seedling dry weight (g) with physiological parameters such as total flavonol and chlorophyll content (dualex value), leaf area (cm2) and temperature (oC). As a result of the research, While the effects of PGPR applications on root length, seedling fresh weight, seedling length, root fresh and dry weight and leaf area were found to be statistically significant, the effects on seedling dry weight, leaf temperature, flavonol and chlorophyll content were found to be statistically insignificant. Significant increases in growth parameters were noted with rhizobacteria applications compared to control. It was determined that the effect of boron doses on other parameters except leaf temperature was significant. In addition, it was determined that there were decreases in growth parameters with increasing boron doses, but increases in total flavonol and chlorophyll content.

References

  • Afzal MJ, Khan MI, Cheema SA, Hussain S, Anwar-ul-Haq M, Ali MH, Naveed M, 2020. Combined application of Bacillussp. MN-54 and phosphorus improved growth and reduced lead uptake by maize in thelead-contaminated soil. Enviromental Science and Pollution Research, 27(35): 44528–44539.
  • Ahmed I, Fujiwara T, 2010. Mechanism of boron tolerance in soil bacteria. Canadian journal of microbiology, 56(1): 22-26.
  • Azarafshan M, Peyvandi M, Abbaspour H, Noormohammadi Z, Majd A, 2020. The effects of UV-B radiation on genetic and biochemical changes of Pelargonium graveolens L’ Her. Physiology and Molecular Biology of Plants, 26(3): 605-616.
  • Bağdat RB, 2006. Tıbbi ve Aromatik Bitkilerin Kullanım Alanları, Tıbbi Adaçayı (salvia officinalis L.) ve Ülkemizde Kekik Adıyla Bilinen Türlerin Yetiştirme Teknikleri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 15(1-2): 19-28.
  • Barrett SCH, Wilken DH, Cole WW, 2000. Heterostyly in the Lamiaceae: The case of Salvia brandegeei. Plant Systematics and Evolution, 223(3): 211–219.
  • Behboudian MH, Pickering AH, Dayan E, 2016. Deficiency diseases, principles. In: second ed. In: Thomas B, Murray BG, Murphy D.J, (Eds.), Encyclopedia of Applied Plant Sciences Vol. 1. Elsevier, pp 219–224, Amsterdam.
  • Camacho-Cristobal JJ, Rexach J, Gonzalez-Fontes A, 2008. Boron in plants: Deficiency and toxicity. Journal of Integrative Plant Biology, 50(10): 1247–1255.
  • Choudhary S, Zehra A, Mukarram M, Wani KI, Naeem M, Khan MMA, Aftab T, 2021. Salicylic acid-mediated alleviation of soil boron toxicity in Mentha arvensis and Cymbopogon flexuosus: Growth, antioxidant responses, essential oil contents and components. Chemosphere, 276: 130153.
  • Czarnes S, Mercier PE, Lemoine DG, Hamzaoui J, Legendre L, 2020. Impact of soil water content maize responses to the plant growth‐promoting rhizobacterium Azospirillum lipoferum CRT1. Journal of Agronomy and Crop Science, 206(5): 505-516.
  • Çelik H, Turan MA, Aşık BB, Öztüfekçi S, Katkat AV, 2019. Effects of soil-applied materials on the dry weight and boron uptake of maize shoots (Zea mays L.) under high boron conditions. Communications in Soil Science and Plant Analysis, 50(7): 811-826.
  • Dahmani MA, Desrut A, Moumen B, Verdon J, Mermouri L, Kacem M, Vriet C, 2020. Unearthing the plant growth-promoting traits of Bacillus megaterium RmBm31 an endophytic bacterium isolated from root nodules of retamamonosperma. Frontiers Plant Sciences, 11: 124.
  • Day S, Çıkılı Y, Aasim M, 2017. Screening of three safflower (Carthamus tinctoriusL.) cultivars under boron stress. Acta Scientiarum Polonorum Hortorum Cultus, 16(5): 109–116. Dinç M, Pinar NM, Dogu S, Yildirimli S, 2009. Micro morphological studies of Lallemantia l. (Lamiaceae) species growing in Turkey. Acta Biologica Cracoviensia Series Botanica, 51(1): 45-54.
  • Dordas C, Chrispeels MJ, Brown PH, 2000. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant physiology, 124(3): 1349-1362.
  • Düzgüneş O, Kesici T, Kavuncu O, Gürbüz F, 1987. Research and Experimental Methods. Statistical Methods-II. Ankara Üniversitesi Ziraat Fakültesi Yayınları No: 1, pp:1021-1295, Ankara-Turkey.
  • El hocine BAK, Bellout Y, Amghar F, 2020. Effect of Cadmıum Stress on The Polyphenol Content Morphologıcal, Physıologıcal, and Anatomıcal Parameters of Common Bean (Phaseolus vulgarıs L.). Applıed Ecology and Envıronmental Research, 18(2): 3757-3774.
  • Esringü A, Turan M, Güneş A, Karaman MR, 2014. Roles of Bacillus megaterium in remediation of boron lead, and cadmium from contaminated soil. Communications in soil science and plant analysis, 45(13): 1741-1759.
  • Fujiyama BS, Silva ARB, SilvaJúnior ML, Cardoso NRP, Fonseca AB, Viana RG, Sampaio LS, 2019. Boron fertilization enhances photosynthesis and water use efficiency in soybean at vegetative growth stage.Journal of Plant Nutrition, 42(19): 2498–2506.
  • García-Sánchez F, Simón-Grao S, Martínez-Nicolás JJ, Alfosea-Simón M, Liu C, Chatzissavvidis C, Pérez-Pérez JG, Cámara-Zapata JM, 2020. Multiple stresses occurring with boron toxicity and deficiency in plants. Journal of Hazardous Materials, 397: 122713.
  • Ghorbanpour M, Hatami M, Kariman K, Abbaszadeh Dahaji P, 2016. Phytochemical variations and enhance defficiency of antioxidant and antimicrobial ingredients in Salvia officinalis as inoculated with different rhizobacteria. Chemistry & biodiversity, 13(3): 319-330.
  • Golkar P, Bakhshi G, Vahabi MR, 2020. Phytochemical, biochemical, and growth changes in responseto salinity in callus cultures of Nigella sativa L. In Vitro Cellular & Developmental Biology-Plant, 56(2): 247-258.
  • Grdiša M, Jug-Dujaković M, Lončarić M, Carović-Stanko K, Ninčević T, Liber Z, Šatović Z, 2015. Dalmatian sage (Salvia officinalis L.): A review of biochemical contents, medical properties and genetic diversity. Agriculturae Conspectus Scientificus, 80(2): 69-78.
  • Han S, Tang N, Jiang H, Yang L, Li Y, Chen L, 2009. CO2 assimilation, photosystemII photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Science, 176(1): 143–153.
  • Hua T, Zhang R, Sun H, Liu C, 2021. Alleviation of boron toxicity in plants: Mechanisms and approaches. Critical Reviews in Environmental Science and Technology, 51(24): 2975-3015. Ibrahim MH, Jaafar HZE, 2011. Photosynthetic capacity photochemical efficiency and chlorophyll content of three varieties of Labisia pumila Benth. exposed to open field and greenhouse growing conditions. Acta Physiologiae Plantarum, 33(6): 2179–2185.
  • Khan MI, Afzal MJ, Bashir S, Naveed M, Anum S, Cheema SA, Wakeel A, Sanaullah M, Ali MH, Chen Z, 2021b. Improving nutrient uptake, growth, yield and protein content in chickpea by the co-addition of phosphorus fertilizers, organic manures, and bacillus sp. Mn-54. Agronomy, 11(3): 1-13.
  • Khan MK, Pandey A, Hamurcu M, Avsaroglu ZZ, Ozbek M, Omay AH, Gezgin S, 2021a. Variability in Physiological Traits Reveals Boron Toxicity Tolerance in Aegilops Species. Frontiers in plant science, 12: 1-15.
  • Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F, 2021. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites, 11(7): 457-488.
  • Li M, Zhang X, Yang H, Li X, Cui Z, 2018. Soil Sustainable Utilization Technology: Mechanism of Flavonols in Resistance Process of Heavy Metal. Environmental Science and Pollution Research, 25(26): 26669-26681.
  • Liu D, Jiang W, Zhang L, Li L, 2000. Effects of boron ıons on root growth and cell division of broad bean (V. faba L.). Israel Journal of Plant Sciences, 48(1): 47–51.
  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez- Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E, 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20(2): 207–217.
  • Lordkaew S, Yimyam N, Jamjod S, Rerkasem B, 2019. Evaluating boron efficiency in heat tolerant wheat germplasm. International Journal of Agriculture and Biology, 21(2): 385-390.
  • Malhotra M, Srivastava S, 2006. Targeted engineering of Azospirillum brasilense SM with indoleacetamide pathway for indoleaceticacid over- expression. Can. J. Microbiology, 52(11): 1078–1084.
  • Mehboob N, Hussain M, Minhas WA, Yasir TA, Naveed M, Farooq S, Zuan ATK, 2021. Soil-Applied boron combined with Boron-Tolerant Bacteria (Bacillus sp. MN54) improve root proliferation and nodulation, yield and agronomic grain biofortification of chickpea (Cicer arietinum L.). Sustainability, 13(17): 9811.
  • Melo G, Fonseca JP, Farinha TO, Pinho RJ, Damiao MJ, Grespan R, Cuman RKN, 2012. Anti-inflammatory activity of Salvia officinalis L. Journal of Medicinal Plant Research, 6(35): 4934-4939. Metwally AM, Radi AA, El-Shazoly RM, Hamada AM, 2018. The role of calcium, silicon and salicylicacid treatment in protection of canola plants against boron toxicity stress. Journal of plant research, 131(6): 1015-1028.
  • Miraj S, Kiani S, 2016. A review study of therapeutic effects of Salvia officinalis L. Der Pharmacia Lettre, 8(6): 299-303.
  • Nawaz M, Ishaq S, Ishaq H, Khan N, Iqbal N, Ali S, Alyemeni MN, 2020. Salicylic Acid Improves Boron Toxicity Tolerance by Modulating the Physio-Biochemical Characteristics of Maize (Zea mays L.) at an Early Growth Stage. Agronomy, 10(12): 1-15.
  • Reid RJ, 2013. Boron toxicity and tolerance in crop plants. In Crop improvement under adverse conditions Springer pp. 333-346, New York.
  • Riaz M, Kamran M, El-Esawi MA, Hussain S, Wang X, 2021. Boron-toxicity induced changes in cell Wall components boron forms and antioxidant defense system in rice seedlings. Ecotoxicology and Environmental Safety, 216: 112192.
  • Rostami H, Tabatabaei SJ, ZareNahandi F, 2017. Effects of different boron concentration on the growth and physiological characteristics of two olive cultivars. Journal of Plant Nutrition, 40(17): 2421-2431.
  • Samreen T, Zahir ZA, Naveed M, Asghar M, 2019. Boron tolerant phosphorus solubilizing Bacillus spp. MN-54 improved canola growth in alkaline calcareous soils. International Journal of Agriculture and Biology, 21(3): 538-546.
  • Song B, Hao X, Wang X, Yang S, Dong Y, Ding Y, Zhou J, 2019. Boron stress inhibits beet (Beta vulgaris L.) growth through influencing endogenous hormones and oxidative stress response. Soil Science and Plant Nutrition, 65(4): 346-352.
  • Sulus S, Leblebici S, 2020. The Effect of Boric Acid Application on Ecophysiological Characterıstics of Safflower Varieties (Carthamus tinctorius L.). Fresenius Environmental Bulletin, 29(9): 8177-8185.
  • Tahami MK, Jahan M, Khalilzadeh H, Mehdizadeh M, 2017. Plant growth promoting rhizobacteria in an ecological cropping system: A study on basil (Ocimum basilicum L.) essential oil production. Industrial Crops and Products, 107: 97–104.
  • TÜİK, 2020. Dış Ticaret İstatistikleri. https://data.tuik.gov.tr/Kategori/GetKategori?p=dis-ticaret-104 Erişim Tarihi: 10/11/2021.
  • Walker JB, Sytsma KJ, 2007. Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever. Annals of Botany, 100(2): 375–391.
  • Weisany V, Rahimzadeh S, Sohrabi Y, 2012. Effect of biofertilizers on morphological, physiological characteristic and essential oil content in basil (Ocimum basilicum L.). Iranian Journal of Medicinal and Aromatic Plants Research, 28(1): 73-87.
  • Wianowska D, Maksymiec W, Dawidowicz AL, Tukiendorf A, 2004. The influence of heavy metal stress on the level of some flavonols in the primary leaves of Phaseolus coccineus. Acta physiologiae plantarum, 26(3): 247-254.
  • Wimmer MA, Eichert T, 2013. Mechanisms for boron deficiency- mediated changes in plant water relations. Plant Sciences, 203: 25–32.
  • Yorgancilar M, Babaoglu M, 2005. Investigation of the effect of boron on germination of wheat varieties in vitro and pot conditions. Journal of Selcuk University Faculty of Agriculture. 19(35): 109-114. Zhao DL, Oosterhuis D, Dugger P, Richter D, 2003. Cotton Growth and Physiological Responses to Boron Deficiency. Journal of Plant Nutrition, 26(4): 855–867.
  • Qiu Z, Egidi E, Liu H, Kaur S, Singh BK, 2019. New frontiers in agriculture productivity: Optimised microbial inoculants and insitu microbiome engineering. Biotechnology Advances, 37(6): 1-11.

Tıbbi Adaçayı (Salvia officinalis L.)’ında Bor Toksisitesi ve Rizobakteri (PGPR) Uygulamalarının Fide Gelişimi ve Fizyolojik Özellikleri Üzerine Etkileri

Year 2022, Volume: 12 Issue: 2, 1102 - 1113, 01.06.2022
https://doi.org/10.21597/jist.1039238

Abstract

Bu çalışmada; farklı rizobakteri (Azospirillum lipoferum, Bacillus megaterium ve Frateuria aurentia) ve bor dozlarının (0 mM, 5 mM, 10 mM ve 20 mM) tıbbi adaçayı (Salvia officinalisL.) bitkisinin fide gelişim parametreleri ile toplam flavonol ve klorofil miktarları, yaprak alanı ve sıcaklığı gibi fizyolojik özellikler üzerine etkilerini belirlemek amacıyla tam kontrollü iklim kabininde 2021 yılında yürütülmüştür. Deneme, Tesadüf Parselleri Deneme Deseni’ne göre faktöriyel düzende 4 tekerrürlü olarak kurulmuştur. Araştırmada, kök ve fide uzunluğu (cm), kök ve fide yaş ağırlığı (g), kök ve fide kuru ağırlığı (g) gibi büyüme ve gelişim parametreleri ile toplam flavonol ve klorofil içeriği (dualex değeri), yaprak alanı (cm2) ve sıcaklığı (oC) gibi fizyolojik parametreler incelenmiştir. Araştırma sonucunda; PGPR uygulamalarının kök uzunluğu, fide yaş ağırlığı, fide uzunluğu, kök yaş ve kuru ağırlığı ve yaprak alanı üzerindeki etkisi istatistiksel olarak önemli bulunurken, fide kuru ağırlığı, yaprak sıcaklığı, flavonol ve klorofil miktarı üzerine etkisi istatistiksel olarak önemsiz olmuştur. Rizobakteri uygulamaları ile büyüme parametrelerinde kontrole kıyasla önemli artışların olduğu kaydedilmiştir. Bor dozlarının yaprak sıcaklığı hariç, diğer parametreler üzerindeki etkisinin önemli olduğu tespit edilmiştir. Ayrıca, artan bor dozları ile büyüme parametrelerinde azalmaların olduğu, ancak, toplam flavonol ve klorofil içeriğinde ise artışların olduğu tespit edilmiştir.

References

  • Afzal MJ, Khan MI, Cheema SA, Hussain S, Anwar-ul-Haq M, Ali MH, Naveed M, 2020. Combined application of Bacillussp. MN-54 and phosphorus improved growth and reduced lead uptake by maize in thelead-contaminated soil. Enviromental Science and Pollution Research, 27(35): 44528–44539.
  • Ahmed I, Fujiwara T, 2010. Mechanism of boron tolerance in soil bacteria. Canadian journal of microbiology, 56(1): 22-26.
  • Azarafshan M, Peyvandi M, Abbaspour H, Noormohammadi Z, Majd A, 2020. The effects of UV-B radiation on genetic and biochemical changes of Pelargonium graveolens L’ Her. Physiology and Molecular Biology of Plants, 26(3): 605-616.
  • Bağdat RB, 2006. Tıbbi ve Aromatik Bitkilerin Kullanım Alanları, Tıbbi Adaçayı (salvia officinalis L.) ve Ülkemizde Kekik Adıyla Bilinen Türlerin Yetiştirme Teknikleri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 15(1-2): 19-28.
  • Barrett SCH, Wilken DH, Cole WW, 2000. Heterostyly in the Lamiaceae: The case of Salvia brandegeei. Plant Systematics and Evolution, 223(3): 211–219.
  • Behboudian MH, Pickering AH, Dayan E, 2016. Deficiency diseases, principles. In: second ed. In: Thomas B, Murray BG, Murphy D.J, (Eds.), Encyclopedia of Applied Plant Sciences Vol. 1. Elsevier, pp 219–224, Amsterdam.
  • Camacho-Cristobal JJ, Rexach J, Gonzalez-Fontes A, 2008. Boron in plants: Deficiency and toxicity. Journal of Integrative Plant Biology, 50(10): 1247–1255.
  • Choudhary S, Zehra A, Mukarram M, Wani KI, Naeem M, Khan MMA, Aftab T, 2021. Salicylic acid-mediated alleviation of soil boron toxicity in Mentha arvensis and Cymbopogon flexuosus: Growth, antioxidant responses, essential oil contents and components. Chemosphere, 276: 130153.
  • Czarnes S, Mercier PE, Lemoine DG, Hamzaoui J, Legendre L, 2020. Impact of soil water content maize responses to the plant growth‐promoting rhizobacterium Azospirillum lipoferum CRT1. Journal of Agronomy and Crop Science, 206(5): 505-516.
  • Çelik H, Turan MA, Aşık BB, Öztüfekçi S, Katkat AV, 2019. Effects of soil-applied materials on the dry weight and boron uptake of maize shoots (Zea mays L.) under high boron conditions. Communications in Soil Science and Plant Analysis, 50(7): 811-826.
  • Dahmani MA, Desrut A, Moumen B, Verdon J, Mermouri L, Kacem M, Vriet C, 2020. Unearthing the plant growth-promoting traits of Bacillus megaterium RmBm31 an endophytic bacterium isolated from root nodules of retamamonosperma. Frontiers Plant Sciences, 11: 124.
  • Day S, Çıkılı Y, Aasim M, 2017. Screening of three safflower (Carthamus tinctoriusL.) cultivars under boron stress. Acta Scientiarum Polonorum Hortorum Cultus, 16(5): 109–116. Dinç M, Pinar NM, Dogu S, Yildirimli S, 2009. Micro morphological studies of Lallemantia l. (Lamiaceae) species growing in Turkey. Acta Biologica Cracoviensia Series Botanica, 51(1): 45-54.
  • Dordas C, Chrispeels MJ, Brown PH, 2000. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant physiology, 124(3): 1349-1362.
  • Düzgüneş O, Kesici T, Kavuncu O, Gürbüz F, 1987. Research and Experimental Methods. Statistical Methods-II. Ankara Üniversitesi Ziraat Fakültesi Yayınları No: 1, pp:1021-1295, Ankara-Turkey.
  • El hocine BAK, Bellout Y, Amghar F, 2020. Effect of Cadmıum Stress on The Polyphenol Content Morphologıcal, Physıologıcal, and Anatomıcal Parameters of Common Bean (Phaseolus vulgarıs L.). Applıed Ecology and Envıronmental Research, 18(2): 3757-3774.
  • Esringü A, Turan M, Güneş A, Karaman MR, 2014. Roles of Bacillus megaterium in remediation of boron lead, and cadmium from contaminated soil. Communications in soil science and plant analysis, 45(13): 1741-1759.
  • Fujiyama BS, Silva ARB, SilvaJúnior ML, Cardoso NRP, Fonseca AB, Viana RG, Sampaio LS, 2019. Boron fertilization enhances photosynthesis and water use efficiency in soybean at vegetative growth stage.Journal of Plant Nutrition, 42(19): 2498–2506.
  • García-Sánchez F, Simón-Grao S, Martínez-Nicolás JJ, Alfosea-Simón M, Liu C, Chatzissavvidis C, Pérez-Pérez JG, Cámara-Zapata JM, 2020. Multiple stresses occurring with boron toxicity and deficiency in plants. Journal of Hazardous Materials, 397: 122713.
  • Ghorbanpour M, Hatami M, Kariman K, Abbaszadeh Dahaji P, 2016. Phytochemical variations and enhance defficiency of antioxidant and antimicrobial ingredients in Salvia officinalis as inoculated with different rhizobacteria. Chemistry & biodiversity, 13(3): 319-330.
  • Golkar P, Bakhshi G, Vahabi MR, 2020. Phytochemical, biochemical, and growth changes in responseto salinity in callus cultures of Nigella sativa L. In Vitro Cellular & Developmental Biology-Plant, 56(2): 247-258.
  • Grdiša M, Jug-Dujaković M, Lončarić M, Carović-Stanko K, Ninčević T, Liber Z, Šatović Z, 2015. Dalmatian sage (Salvia officinalis L.): A review of biochemical contents, medical properties and genetic diversity. Agriculturae Conspectus Scientificus, 80(2): 69-78.
  • Han S, Tang N, Jiang H, Yang L, Li Y, Chen L, 2009. CO2 assimilation, photosystemII photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Science, 176(1): 143–153.
  • Hua T, Zhang R, Sun H, Liu C, 2021. Alleviation of boron toxicity in plants: Mechanisms and approaches. Critical Reviews in Environmental Science and Technology, 51(24): 2975-3015. Ibrahim MH, Jaafar HZE, 2011. Photosynthetic capacity photochemical efficiency and chlorophyll content of three varieties of Labisia pumila Benth. exposed to open field and greenhouse growing conditions. Acta Physiologiae Plantarum, 33(6): 2179–2185.
  • Khan MI, Afzal MJ, Bashir S, Naveed M, Anum S, Cheema SA, Wakeel A, Sanaullah M, Ali MH, Chen Z, 2021b. Improving nutrient uptake, growth, yield and protein content in chickpea by the co-addition of phosphorus fertilizers, organic manures, and bacillus sp. Mn-54. Agronomy, 11(3): 1-13.
  • Khan MK, Pandey A, Hamurcu M, Avsaroglu ZZ, Ozbek M, Omay AH, Gezgin S, 2021a. Variability in Physiological Traits Reveals Boron Toxicity Tolerance in Aegilops Species. Frontiers in plant science, 12: 1-15.
  • Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F, 2021. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites, 11(7): 457-488.
  • Li M, Zhang X, Yang H, Li X, Cui Z, 2018. Soil Sustainable Utilization Technology: Mechanism of Flavonols in Resistance Process of Heavy Metal. Environmental Science and Pollution Research, 25(26): 26669-26681.
  • Liu D, Jiang W, Zhang L, Li L, 2000. Effects of boron ıons on root growth and cell division of broad bean (V. faba L.). Israel Journal of Plant Sciences, 48(1): 47–51.
  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez- Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E, 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20(2): 207–217.
  • Lordkaew S, Yimyam N, Jamjod S, Rerkasem B, 2019. Evaluating boron efficiency in heat tolerant wheat germplasm. International Journal of Agriculture and Biology, 21(2): 385-390.
  • Malhotra M, Srivastava S, 2006. Targeted engineering of Azospirillum brasilense SM with indoleacetamide pathway for indoleaceticacid over- expression. Can. J. Microbiology, 52(11): 1078–1084.
  • Mehboob N, Hussain M, Minhas WA, Yasir TA, Naveed M, Farooq S, Zuan ATK, 2021. Soil-Applied boron combined with Boron-Tolerant Bacteria (Bacillus sp. MN54) improve root proliferation and nodulation, yield and agronomic grain biofortification of chickpea (Cicer arietinum L.). Sustainability, 13(17): 9811.
  • Melo G, Fonseca JP, Farinha TO, Pinho RJ, Damiao MJ, Grespan R, Cuman RKN, 2012. Anti-inflammatory activity of Salvia officinalis L. Journal of Medicinal Plant Research, 6(35): 4934-4939. Metwally AM, Radi AA, El-Shazoly RM, Hamada AM, 2018. The role of calcium, silicon and salicylicacid treatment in protection of canola plants against boron toxicity stress. Journal of plant research, 131(6): 1015-1028.
  • Miraj S, Kiani S, 2016. A review study of therapeutic effects of Salvia officinalis L. Der Pharmacia Lettre, 8(6): 299-303.
  • Nawaz M, Ishaq S, Ishaq H, Khan N, Iqbal N, Ali S, Alyemeni MN, 2020. Salicylic Acid Improves Boron Toxicity Tolerance by Modulating the Physio-Biochemical Characteristics of Maize (Zea mays L.) at an Early Growth Stage. Agronomy, 10(12): 1-15.
  • Reid RJ, 2013. Boron toxicity and tolerance in crop plants. In Crop improvement under adverse conditions Springer pp. 333-346, New York.
  • Riaz M, Kamran M, El-Esawi MA, Hussain S, Wang X, 2021. Boron-toxicity induced changes in cell Wall components boron forms and antioxidant defense system in rice seedlings. Ecotoxicology and Environmental Safety, 216: 112192.
  • Rostami H, Tabatabaei SJ, ZareNahandi F, 2017. Effects of different boron concentration on the growth and physiological characteristics of two olive cultivars. Journal of Plant Nutrition, 40(17): 2421-2431.
  • Samreen T, Zahir ZA, Naveed M, Asghar M, 2019. Boron tolerant phosphorus solubilizing Bacillus spp. MN-54 improved canola growth in alkaline calcareous soils. International Journal of Agriculture and Biology, 21(3): 538-546.
  • Song B, Hao X, Wang X, Yang S, Dong Y, Ding Y, Zhou J, 2019. Boron stress inhibits beet (Beta vulgaris L.) growth through influencing endogenous hormones and oxidative stress response. Soil Science and Plant Nutrition, 65(4): 346-352.
  • Sulus S, Leblebici S, 2020. The Effect of Boric Acid Application on Ecophysiological Characterıstics of Safflower Varieties (Carthamus tinctorius L.). Fresenius Environmental Bulletin, 29(9): 8177-8185.
  • Tahami MK, Jahan M, Khalilzadeh H, Mehdizadeh M, 2017. Plant growth promoting rhizobacteria in an ecological cropping system: A study on basil (Ocimum basilicum L.) essential oil production. Industrial Crops and Products, 107: 97–104.
  • TÜİK, 2020. Dış Ticaret İstatistikleri. https://data.tuik.gov.tr/Kategori/GetKategori?p=dis-ticaret-104 Erişim Tarihi: 10/11/2021.
  • Walker JB, Sytsma KJ, 2007. Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever. Annals of Botany, 100(2): 375–391.
  • Weisany V, Rahimzadeh S, Sohrabi Y, 2012. Effect of biofertilizers on morphological, physiological characteristic and essential oil content in basil (Ocimum basilicum L.). Iranian Journal of Medicinal and Aromatic Plants Research, 28(1): 73-87.
  • Wianowska D, Maksymiec W, Dawidowicz AL, Tukiendorf A, 2004. The influence of heavy metal stress on the level of some flavonols in the primary leaves of Phaseolus coccineus. Acta physiologiae plantarum, 26(3): 247-254.
  • Wimmer MA, Eichert T, 2013. Mechanisms for boron deficiency- mediated changes in plant water relations. Plant Sciences, 203: 25–32.
  • Yorgancilar M, Babaoglu M, 2005. Investigation of the effect of boron on germination of wheat varieties in vitro and pot conditions. Journal of Selcuk University Faculty of Agriculture. 19(35): 109-114. Zhao DL, Oosterhuis D, Dugger P, Richter D, 2003. Cotton Growth and Physiological Responses to Boron Deficiency. Journal of Plant Nutrition, 26(4): 855–867.
  • Qiu Z, Egidi E, Liu H, Kaur S, Singh BK, 2019. New frontiers in agriculture productivity: Optimised microbial inoculants and insitu microbiome engineering. Biotechnology Advances, 37(6): 1-11.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Tarla Bitkileri / Field Crops
Authors

Muhammed Said Yolci 0000-0002-5304-7342

Rüveyde Tunçtürk 0000-0002-3759-8232

Murat Tunçtürk 0000-0002-7995-0599

Early Pub Date May 31, 2022
Publication Date June 1, 2022
Submission Date December 21, 2021
Acceptance Date March 24, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

APA Yolci, M. S., Tunçtürk, R., & Tunçtürk, M. (2022). Tıbbi Adaçayı (Salvia officinalis L.)’ında Bor Toksisitesi ve Rizobakteri (PGPR) Uygulamalarının Fide Gelişimi ve Fizyolojik Özellikleri Üzerine Etkileri. Journal of the Institute of Science and Technology, 12(2), 1102-1113. https://doi.org/10.21597/jist.1039238
AMA Yolci MS, Tunçtürk R, Tunçtürk M. Tıbbi Adaçayı (Salvia officinalis L.)’ında Bor Toksisitesi ve Rizobakteri (PGPR) Uygulamalarının Fide Gelişimi ve Fizyolojik Özellikleri Üzerine Etkileri. J. Inst. Sci. and Tech. June 2022;12(2):1102-1113. doi:10.21597/jist.1039238
Chicago Yolci, Muhammed Said, Rüveyde Tunçtürk, and Murat Tunçtürk. “Tıbbi Adaçayı (Salvia Officinalis L.)’ında Bor Toksisitesi Ve Rizobakteri (PGPR) Uygulamalarının Fide Gelişimi Ve Fizyolojik Özellikleri Üzerine Etkileri”. Journal of the Institute of Science and Technology 12, no. 2 (June 2022): 1102-13. https://doi.org/10.21597/jist.1039238.
EndNote Yolci MS, Tunçtürk R, Tunçtürk M (June 1, 2022) Tıbbi Adaçayı (Salvia officinalis L.)’ında Bor Toksisitesi ve Rizobakteri (PGPR) Uygulamalarının Fide Gelişimi ve Fizyolojik Özellikleri Üzerine Etkileri. Journal of the Institute of Science and Technology 12 2 1102–1113.
IEEE M. S. Yolci, R. Tunçtürk, and M. Tunçtürk, “Tıbbi Adaçayı (Salvia officinalis L.)’ında Bor Toksisitesi ve Rizobakteri (PGPR) Uygulamalarının Fide Gelişimi ve Fizyolojik Özellikleri Üzerine Etkileri”, J. Inst. Sci. and Tech., vol. 12, no. 2, pp. 1102–1113, 2022, doi: 10.21597/jist.1039238.
ISNAD Yolci, Muhammed Said et al. “Tıbbi Adaçayı (Salvia Officinalis L.)’ında Bor Toksisitesi Ve Rizobakteri (PGPR) Uygulamalarının Fide Gelişimi Ve Fizyolojik Özellikleri Üzerine Etkileri”. Journal of the Institute of Science and Technology 12/2 (June 2022), 1102-1113. https://doi.org/10.21597/jist.1039238.
JAMA Yolci MS, Tunçtürk R, Tunçtürk M. Tıbbi Adaçayı (Salvia officinalis L.)’ında Bor Toksisitesi ve Rizobakteri (PGPR) Uygulamalarının Fide Gelişimi ve Fizyolojik Özellikleri Üzerine Etkileri. J. Inst. Sci. and Tech. 2022;12:1102–1113.
MLA Yolci, Muhammed Said et al. “Tıbbi Adaçayı (Salvia Officinalis L.)’ında Bor Toksisitesi Ve Rizobakteri (PGPR) Uygulamalarının Fide Gelişimi Ve Fizyolojik Özellikleri Üzerine Etkileri”. Journal of the Institute of Science and Technology, vol. 12, no. 2, 2022, pp. 1102-13, doi:10.21597/jist.1039238.
Vancouver Yolci MS, Tunçtürk R, Tunçtürk M. Tıbbi Adaçayı (Salvia officinalis L.)’ında Bor Toksisitesi ve Rizobakteri (PGPR) Uygulamalarının Fide Gelişimi ve Fizyolojik Özellikleri Üzerine Etkileri. J. Inst. Sci. and Tech. 2022;12(2):1102-13.