Review
BibTex RIS Cite

Biyohidrojen Üretimine Nanopartikül Madde İlavesinin Karanlık Fermantsayon Sürecine Etkisi ve Yaşam Döngü Analizi Yaklaşımı

Year 2022, Volume: 12 Issue: 3, 1426 - 1435, 01.09.2022
https://doi.org/10.21597/jist.984428

Abstract

Atık biyokütlenin değerlendirilmesi, döngüsel biyoekonominin gelişimi için hızla tükenen fosil kökenli yakıtlara alternatif sürdürülebilir enerji üretimi ve çevre dostu atık yönetimi yaklaşımıdır. Alternatif enerji kaynaklarından biri olan biyohidrojen enerjisi; yenilenebilir, sürdürülebilir, ucuz ve temiz enerji kaynağı olması nedeniyle uzun yıllardır popüler konular arasındadır. Biyokütleden karanlık fermantasyon yolu ile hidrojen eldesi ise; verimli ve temiz enerji olması nedeniyle tercih edilen başlıca prosesler arasındadır. Karanlık fermantasyon yolu ile hidrojen üretim verimini artırmak amacıyla sistemlere destek sağlayan nanopartikül ilavesi ile ilgili çalışmalar son yıllarda popüler hale gelmiştir. Bu çalışmada karanlık fermantasyon ile biyohidrojen üretimide nanaomalzeme desteğinin etkisi, ilgili mekanizmaları, kullanılan substratları ve üretim verimliliğini artırmaya yönelik yapılmış bazı çalışmalar incelenmiştir. Ayrıca, biyohidrojen üretim sürecini daha ekonomik, sürdürülebilir ve etkin hale getirmek hem arıtım hem de biyohidrojen üretim tekniklerinin geliştirilmesi için nanopartiküler malzemelerin önemine vurgu yapılmıştır. Seçilen nanomalzemenin üretim performansındaki rolünün yanı sıra ortaya çıkaracağı çevresel etkilerin de yaşam döngü analizi ile değerlendirilmesi sürdürülebilirlik açısından önemli bir husustur.

Supporting Institution

Tübitak

Project Number

119Y145

Thanks

Yazarlar finansal desteğinden ötürü Tübitak'a teşekkürü borç bilirler

References

  • Abe, J. O., Popoola, A. P. I., Ajenifuja, E., Popoola, O. M. 2019. Hydrogen energy, economy and storage: review and recommendation. International journal of hydrogen energy, 44(29), 15072-15086.
  • Akhbari, A., Onn, C. C., Ibrahim, S. 2021. Analysis of biohydrogen production from palm oil mill effluent using a pilot-scale up-flow anaerobic sludge blanket fixed-film reactor in life cycle perspective. International Journal of Hydrogen Energy, (xxxx).
  • Arreola-Vargas, J., Razo-Flores, E., Celis, L. B., Alatriste-Mondragón, F. 2015. Sequential hydrolysis of oat straw and hydrogen production from hydrolysates: Role of hydrolysates constituents. International Journal of Hydrogen Energy, 40(34), 10756–10765.
  • Book Reviews The Hitch Hiker ’ s Guide to LCA An orientation in LCA methodology and application. 2006, 11(3), 86899.
  • Cao, L., Yu, I. K. M., Xiong, X., Tsang, D. C. W., Zhang, S., Clark, J. H., … Ok, Y. S. 2020. Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 186, 109547.
  • Chen, S., Qu, D., Xiao, X., Miao, X. 2020. Biohydrogen production with lipid-extracted Dunaliella biomass and a new strain of hyper-thermophilic archaeon Thermococcus eurythermalis A501. International Journal of Hydrogen Energy, 45(23), 12721–12730.
  • Cieciura-Włoch, W., Borowski, S., Domański, J. 2021. Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by nitrogen and phosphorus supplementation. Bioresource Technology, 340, 125622.
  • Dehhaghi, M., Tabatabaei, M., Aghbashlo, M., Kazemi Shariat Panahi, H., Nizami, A. S. 2019. A state-of-the-art review on the application of nanomaterials for enhancing biogas production. Journal of Environmental Management, 251, 109597.
  • Dinesh, G. K., Chauhan, R., Chakma, S. 2018, Eylül 1. Influence and strategies for enhanced biohydrogen production from food waste. Renewable and Sustainable Energy Reviews. Elsevier Ltd.
  • Dinesh Kumar, M., Kaliappan, S., Gopikumar, S., Zhen, G., Rajesh Banu, J. 2019. Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel, 253, 833–839.
  • Ding, L., Cheng, J., Xia, A., Jacob, A., Voelklein, M., Murphy, J. D. 2016. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass. Bioresource Technology, 218, 224–231.
  • Ediger, V. Ş., Kentel, E. 1999. Renewable energy potential as an alternative to fossil fuels in Turkey. Energy Conversion and Management, 40(7), 743–755.
  • Eker, S., Sarp, M. 2017. Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations. International Journal of Hydrogen Energy, 42(4), 2562–2568.
  • Engliman, N. S., Abdul, P. M., Wu, S. Y., Jahim, J. M. 2017. Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation. International Journal of Hydrogen Energy, 42(45), 27482–27493.
  • Gadhe, A., Sonawane, S. S., Varma, M. N. 2015. Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. International Journal of Hydrogen Energy, 40(13), 4502–4511.
  • Ghimire, A., Trably, E., Frunzo, L., Pirozzi, F., Lens, P. N. L., Esposito, G., Escudié, R. 2018. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresource Technology, 248, 180–186.
  • Gonzales, R. R., Kumar, G., Sivagurunathan, P., Kim, S. H. 2017. Enhancement of hydrogen production by optimization of pH adjustment and separation conditions following dilute acid pretreatment of lignocellulosic biomass. International Journal of Hydrogen Energy, 42(45), 27502–27511.
  • Hay, J. X. W., Wu, T. Y., Juan, J. C., Md. Jahim, J. 2013. Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels, Bioproducts and Biorefining, 7(3), 334–352.
  • Jamali, N. S., Md Jahim, J., Wan Isahak, W. N. R. 2016. Biofilm formation on granular activated carbon in xylose and glucose mixture for thermophilic biohydrogen production. International Journal of Hydrogen Energy, 41(46), 21617–21627.
  • Karaosmanoglu Gorgeç, F., Karapinar, I. 2019. Production of biohydrogen from waste wheat in continuously operated UPBR: The effect of influent substrate concentration. International Journal of Hydrogen Energy, 44(32), 17323–17333.
  • Kim, D. H., Yoon, J. J., Kim, S. H., Park, J. H. 2021. Effect of conductive material for overcoming inhibitory conditions derived from red algae-based substrate on biohydrogen production. Fuel, 285, 119059.
  • Kirli, B., Karapinar, I. 2018. The effect of HRT on biohydrogen production from acid hydrolyzed waste wheat in a continuously operated packed bed reactor. International Journal of Hydrogen Energy, 43(23), 10678–10685. Kuang, Y., Zhao, J., Gao, Y., Lu, C., Luo, S., Sun, Y., Zhang, D. 2020. Enhanced hydrogen production from food waste dark fermentation by potassium ferrate pretreatment. Environmental Science and Pollution Research, 27(15), 18145–18156.
  • Kumar, G., Mathimani, T., Rene, E. R., Pugazhendhi, A. 2019, Mayıs 21. Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. International Journal of Hydrogen Energy. Elsevier Ltd.
  • Ladole, M. R., Mevada, J. S., Pandit, A. B. 2017. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresource Technology, 239, 117–126.
  • Levin, D. B., Chahine, R. 2010. Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy, 35(10), 4962–4969.
  • Levin, D. B., Pitt, L., Love, M. 2004. Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173–185.
  • Lin, R., Cheng, J., Ding, L., Song, W., Liu, M., Zhou, J., Cen, K. 2016. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresource Technology, 207, 213–219.
  • Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. J., Ulgiati, S. 2018. Life cycle assessment and water footprint of hydrogen production methods: From conventional to emerging technologies. Environments - MDPI, 5(2), 1–19.
  • Mishra, P., Thakur, S., Mahapatra, D. M., Wahid, Z. A., Liu, H., Singh, L. 2018. Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent – A novel approach. International Journal of Hydrogen Energy, 43(5), 2666–2676.
  • Nasr, M., Tawfik, A., Ookawara, S., Suzuki, M., Kumari, S., Bux, F. 2015. Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. Journal of Industrial and Engineering Chemistry, 21, 500–506.
  • Panwar, N. L., Kaushik, S. C., Kothari, S. 2011, Nisan 1. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews. Pergamon.
  • Patel, S. K. S., Gupta, R. K., Das, D., Lee, J. K., Kalia, V. C. 2021. Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. Journal of Cleaner Production, 287, 125037.
  • Rabelo, C. A. B. S., Soares, L. A., Sakamoto, I. K., Silva, E. L., Varesche, M. B. A. 2018. Optimization of hydrogen and organic acids productions with autochthonous and allochthonous bacteria from sugarcane bagasse in batch reactors. Journal of Environmental Management, 223, 952–963.
  • Ren, H. Y., Kong, F., Zhao, L., Ren, N. Q., Ma, J., Nan, J., Liu, B. F. 2019. Enhanced co-production of biohydrogen and algal lipids from agricultural biomass residues in long-term operation. Bioresource Technology, 289, 121774.
  • Romagnoli, F., Blumberga, D., Pilicka, I. 2011. Life cycle assessment of biohydrogen production in photosynthetic processes. International Journal of Hydrogen Energy, 36(13), 7866–7871.
  • Roy, S., Kumar, K., Ghosh, S., Das, D. 2014. Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166.
  • Shanmugam, S., Hari, A., Pandey, A., Mathimani, T., Felix, L. O., Pugazhendhi, A. 2020, Haziran 15. Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel. Elsevier Ltd.
  • Soares, J. F., Confortin, T. C., Todero, I., Mayer, F. D., Mazutti, M. A. 2020, Ocak 1. Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renewable and Sustainable Energy Reviews. Elsevier Ltd.
  • Srivastava, N., Srivastava, M., Mishra, P. K., Kausar, M. A., Saeed, M., Gupta, V. K., … Ramteke, P. W. 2020, Temmuz 1. Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresource Technology. Elsevier Ltd.
  • Uddin, M. N., Techato, K., Taweekun, J., Rahman, M. M., Rasul, M. G., Mahlia, T. M. I., Ashrafur, S. M. 2018. An overview of recent developments in biomass pyrolysis technologies. Energies.
  • Valente, A., Iribarren, D., Dufour, J. 2017. Life cycle assessment of hydrogen energy systems: a review of methodological choices. International Journal of Life Cycle Assessment, 22(3), 346–363.
  • Yang, G., Wang, J. 2018. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. Bioresource Technology, 266, 413–420.
  • Yasin, N. H. M., Mumtaz, T., Hassan, M. A., Abd Rahman, N. 2013. Food waste and food processing waste for biohydrogen production: A review. Journal of Environmental Management, 130, 375–385.
  • Yun, Y. M., Lee, M. K., Im, S. W., Marone, A., Trably, E., Shin, S. R., … Kim, D. H. 2018, Ocak 1. Biohydrogen production from food waste: Current status, limitations, and future perspectives. Bioresource Technology. Elsevier Ltd.
  • Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T. 2013. The anaerobic co-digestion of food waste and cattle manure. Bioresource Technology, 129, 170–176.
  • Zhang, J., Fan, C., Zang, L. 2017. Improvement of hydrogen production from glucose by ferrous iron and biochar. Bioresource Technology, 245, 98–105.
  • Zhao, W., Zhang, J., Zhang, H., Yang, M., Zang, L. 2020. Comparison of mesophilic and thermophilic biohydrogen production amended by nickel-doped magnetic carbon. Journal of Cleaner Production, 270, 122730.

Effect of Nanoparticle Addition to Biohydrogen Production via Dark Fermentation Process and Life Cycle Analysis Approach

Year 2022, Volume: 12 Issue: 3, 1426 - 1435, 01.09.2022
https://doi.org/10.21597/jist.984428

Abstract

Biomass utilization to produce renewable energy is an environmentally friendly waste management approach and also contribute circular bioeconomy against depleted fossil fuels sources. Biohydrogen energyas an alternative energy source have been researched for many years because it is a renewable, sustainable, cheap and clean energy source Biohydrogen production from biomass by dark fermentationis one of the main processes preferred because it is efficient and clean energy. Studies on the addition of nanoparticles that support systems in order to increase the hydrogen production efficiency through dark fermentation have been get the attention of researchers in recent years. In this study, the effect of nanomaterial support in biohydrogen production by dark fermentation, related mechanisms, substrates used and efficiency evaluation were examined. In particular, the importance of nanoparticle materials used for both purification and the development of biohydrogen production techniques was emphasized. In addition to the role of the selected nanomaterial in the production performance, the environmental effects that it will reveal are also discussed in terms of the necessity of evaluating with life cycle analysis.

Project Number

119Y145

References

  • Abe, J. O., Popoola, A. P. I., Ajenifuja, E., Popoola, O. M. 2019. Hydrogen energy, economy and storage: review and recommendation. International journal of hydrogen energy, 44(29), 15072-15086.
  • Akhbari, A., Onn, C. C., Ibrahim, S. 2021. Analysis of biohydrogen production from palm oil mill effluent using a pilot-scale up-flow anaerobic sludge blanket fixed-film reactor in life cycle perspective. International Journal of Hydrogen Energy, (xxxx).
  • Arreola-Vargas, J., Razo-Flores, E., Celis, L. B., Alatriste-Mondragón, F. 2015. Sequential hydrolysis of oat straw and hydrogen production from hydrolysates: Role of hydrolysates constituents. International Journal of Hydrogen Energy, 40(34), 10756–10765.
  • Book Reviews The Hitch Hiker ’ s Guide to LCA An orientation in LCA methodology and application. 2006, 11(3), 86899.
  • Cao, L., Yu, I. K. M., Xiong, X., Tsang, D. C. W., Zhang, S., Clark, J. H., … Ok, Y. S. 2020. Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 186, 109547.
  • Chen, S., Qu, D., Xiao, X., Miao, X. 2020. Biohydrogen production with lipid-extracted Dunaliella biomass and a new strain of hyper-thermophilic archaeon Thermococcus eurythermalis A501. International Journal of Hydrogen Energy, 45(23), 12721–12730.
  • Cieciura-Włoch, W., Borowski, S., Domański, J. 2021. Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by nitrogen and phosphorus supplementation. Bioresource Technology, 340, 125622.
  • Dehhaghi, M., Tabatabaei, M., Aghbashlo, M., Kazemi Shariat Panahi, H., Nizami, A. S. 2019. A state-of-the-art review on the application of nanomaterials for enhancing biogas production. Journal of Environmental Management, 251, 109597.
  • Dinesh, G. K., Chauhan, R., Chakma, S. 2018, Eylül 1. Influence and strategies for enhanced biohydrogen production from food waste. Renewable and Sustainable Energy Reviews. Elsevier Ltd.
  • Dinesh Kumar, M., Kaliappan, S., Gopikumar, S., Zhen, G., Rajesh Banu, J. 2019. Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel, 253, 833–839.
  • Ding, L., Cheng, J., Xia, A., Jacob, A., Voelklein, M., Murphy, J. D. 2016. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass. Bioresource Technology, 218, 224–231.
  • Ediger, V. Ş., Kentel, E. 1999. Renewable energy potential as an alternative to fossil fuels in Turkey. Energy Conversion and Management, 40(7), 743–755.
  • Eker, S., Sarp, M. 2017. Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations. International Journal of Hydrogen Energy, 42(4), 2562–2568.
  • Engliman, N. S., Abdul, P. M., Wu, S. Y., Jahim, J. M. 2017. Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation. International Journal of Hydrogen Energy, 42(45), 27482–27493.
  • Gadhe, A., Sonawane, S. S., Varma, M. N. 2015. Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. International Journal of Hydrogen Energy, 40(13), 4502–4511.
  • Ghimire, A., Trably, E., Frunzo, L., Pirozzi, F., Lens, P. N. L., Esposito, G., Escudié, R. 2018. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresource Technology, 248, 180–186.
  • Gonzales, R. R., Kumar, G., Sivagurunathan, P., Kim, S. H. 2017. Enhancement of hydrogen production by optimization of pH adjustment and separation conditions following dilute acid pretreatment of lignocellulosic biomass. International Journal of Hydrogen Energy, 42(45), 27502–27511.
  • Hay, J. X. W., Wu, T. Y., Juan, J. C., Md. Jahim, J. 2013. Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels, Bioproducts and Biorefining, 7(3), 334–352.
  • Jamali, N. S., Md Jahim, J., Wan Isahak, W. N. R. 2016. Biofilm formation on granular activated carbon in xylose and glucose mixture for thermophilic biohydrogen production. International Journal of Hydrogen Energy, 41(46), 21617–21627.
  • Karaosmanoglu Gorgeç, F., Karapinar, I. 2019. Production of biohydrogen from waste wheat in continuously operated UPBR: The effect of influent substrate concentration. International Journal of Hydrogen Energy, 44(32), 17323–17333.
  • Kim, D. H., Yoon, J. J., Kim, S. H., Park, J. H. 2021. Effect of conductive material for overcoming inhibitory conditions derived from red algae-based substrate on biohydrogen production. Fuel, 285, 119059.
  • Kirli, B., Karapinar, I. 2018. The effect of HRT on biohydrogen production from acid hydrolyzed waste wheat in a continuously operated packed bed reactor. International Journal of Hydrogen Energy, 43(23), 10678–10685. Kuang, Y., Zhao, J., Gao, Y., Lu, C., Luo, S., Sun, Y., Zhang, D. 2020. Enhanced hydrogen production from food waste dark fermentation by potassium ferrate pretreatment. Environmental Science and Pollution Research, 27(15), 18145–18156.
  • Kumar, G., Mathimani, T., Rene, E. R., Pugazhendhi, A. 2019, Mayıs 21. Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. International Journal of Hydrogen Energy. Elsevier Ltd.
  • Ladole, M. R., Mevada, J. S., Pandit, A. B. 2017. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresource Technology, 239, 117–126.
  • Levin, D. B., Chahine, R. 2010. Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy, 35(10), 4962–4969.
  • Levin, D. B., Pitt, L., Love, M. 2004. Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173–185.
  • Lin, R., Cheng, J., Ding, L., Song, W., Liu, M., Zhou, J., Cen, K. 2016. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresource Technology, 207, 213–219.
  • Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. J., Ulgiati, S. 2018. Life cycle assessment and water footprint of hydrogen production methods: From conventional to emerging technologies. Environments - MDPI, 5(2), 1–19.
  • Mishra, P., Thakur, S., Mahapatra, D. M., Wahid, Z. A., Liu, H., Singh, L. 2018. Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent – A novel approach. International Journal of Hydrogen Energy, 43(5), 2666–2676.
  • Nasr, M., Tawfik, A., Ookawara, S., Suzuki, M., Kumari, S., Bux, F. 2015. Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. Journal of Industrial and Engineering Chemistry, 21, 500–506.
  • Panwar, N. L., Kaushik, S. C., Kothari, S. 2011, Nisan 1. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews. Pergamon.
  • Patel, S. K. S., Gupta, R. K., Das, D., Lee, J. K., Kalia, V. C. 2021. Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. Journal of Cleaner Production, 287, 125037.
  • Rabelo, C. A. B. S., Soares, L. A., Sakamoto, I. K., Silva, E. L., Varesche, M. B. A. 2018. Optimization of hydrogen and organic acids productions with autochthonous and allochthonous bacteria from sugarcane bagasse in batch reactors. Journal of Environmental Management, 223, 952–963.
  • Ren, H. Y., Kong, F., Zhao, L., Ren, N. Q., Ma, J., Nan, J., Liu, B. F. 2019. Enhanced co-production of biohydrogen and algal lipids from agricultural biomass residues in long-term operation. Bioresource Technology, 289, 121774.
  • Romagnoli, F., Blumberga, D., Pilicka, I. 2011. Life cycle assessment of biohydrogen production in photosynthetic processes. International Journal of Hydrogen Energy, 36(13), 7866–7871.
  • Roy, S., Kumar, K., Ghosh, S., Das, D. 2014. Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166.
  • Shanmugam, S., Hari, A., Pandey, A., Mathimani, T., Felix, L. O., Pugazhendhi, A. 2020, Haziran 15. Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel. Elsevier Ltd.
  • Soares, J. F., Confortin, T. C., Todero, I., Mayer, F. D., Mazutti, M. A. 2020, Ocak 1. Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renewable and Sustainable Energy Reviews. Elsevier Ltd.
  • Srivastava, N., Srivastava, M., Mishra, P. K., Kausar, M. A., Saeed, M., Gupta, V. K., … Ramteke, P. W. 2020, Temmuz 1. Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresource Technology. Elsevier Ltd.
  • Uddin, M. N., Techato, K., Taweekun, J., Rahman, M. M., Rasul, M. G., Mahlia, T. M. I., Ashrafur, S. M. 2018. An overview of recent developments in biomass pyrolysis technologies. Energies.
  • Valente, A., Iribarren, D., Dufour, J. 2017. Life cycle assessment of hydrogen energy systems: a review of methodological choices. International Journal of Life Cycle Assessment, 22(3), 346–363.
  • Yang, G., Wang, J. 2018. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. Bioresource Technology, 266, 413–420.
  • Yasin, N. H. M., Mumtaz, T., Hassan, M. A., Abd Rahman, N. 2013. Food waste and food processing waste for biohydrogen production: A review. Journal of Environmental Management, 130, 375–385.
  • Yun, Y. M., Lee, M. K., Im, S. W., Marone, A., Trably, E., Shin, S. R., … Kim, D. H. 2018, Ocak 1. Biohydrogen production from food waste: Current status, limitations, and future perspectives. Bioresource Technology. Elsevier Ltd.
  • Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T. 2013. The anaerobic co-digestion of food waste and cattle manure. Bioresource Technology, 129, 170–176.
  • Zhang, J., Fan, C., Zang, L. 2017. Improvement of hydrogen production from glucose by ferrous iron and biochar. Bioresource Technology, 245, 98–105.
  • Zhao, W., Zhang, J., Zhang, H., Yang, M., Zang, L. 2020. Comparison of mesophilic and thermophilic biohydrogen production amended by nickel-doped magnetic carbon. Journal of Cleaner Production, 270, 122730.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Çevre Mühendisliği / Environment Engineering
Authors

Hamdi Muratçobanoğlu 0000-0002-4720-8090

Fatma Muratçobanoğlu This is me 0000-0002-5157-8174

Sevgi Demirel 0000-0002-5329-591X

Project Number 119Y145
Early Pub Date August 26, 2022
Publication Date September 1, 2022
Submission Date August 19, 2021
Acceptance Date June 7, 2022
Published in Issue Year 2022 Volume: 12 Issue: 3

Cite

APA Muratçobanoğlu, H., Muratçobanoğlu, F., & Demirel, S. (2022). Biyohidrojen Üretimine Nanopartikül Madde İlavesinin Karanlık Fermantsayon Sürecine Etkisi ve Yaşam Döngü Analizi Yaklaşımı. Journal of the Institute of Science and Technology, 12(3), 1426-1435. https://doi.org/10.21597/jist.984428
AMA Muratçobanoğlu H, Muratçobanoğlu F, Demirel S. Biyohidrojen Üretimine Nanopartikül Madde İlavesinin Karanlık Fermantsayon Sürecine Etkisi ve Yaşam Döngü Analizi Yaklaşımı. J. Inst. Sci. and Tech. September 2022;12(3):1426-1435. doi:10.21597/jist.984428
Chicago Muratçobanoğlu, Hamdi, Fatma Muratçobanoğlu, and Sevgi Demirel. “Biyohidrojen Üretimine Nanopartikül Madde İlavesinin Karanlık Fermantsayon Sürecine Etkisi Ve Yaşam Döngü Analizi Yaklaşımı”. Journal of the Institute of Science and Technology 12, no. 3 (September 2022): 1426-35. https://doi.org/10.21597/jist.984428.
EndNote Muratçobanoğlu H, Muratçobanoğlu F, Demirel S (September 1, 2022) Biyohidrojen Üretimine Nanopartikül Madde İlavesinin Karanlık Fermantsayon Sürecine Etkisi ve Yaşam Döngü Analizi Yaklaşımı. Journal of the Institute of Science and Technology 12 3 1426–1435.
IEEE H. Muratçobanoğlu, F. Muratçobanoğlu, and S. Demirel, “Biyohidrojen Üretimine Nanopartikül Madde İlavesinin Karanlık Fermantsayon Sürecine Etkisi ve Yaşam Döngü Analizi Yaklaşımı”, J. Inst. Sci. and Tech., vol. 12, no. 3, pp. 1426–1435, 2022, doi: 10.21597/jist.984428.
ISNAD Muratçobanoğlu, Hamdi et al. “Biyohidrojen Üretimine Nanopartikül Madde İlavesinin Karanlık Fermantsayon Sürecine Etkisi Ve Yaşam Döngü Analizi Yaklaşımı”. Journal of the Institute of Science and Technology 12/3 (September 2022), 1426-1435. https://doi.org/10.21597/jist.984428.
JAMA Muratçobanoğlu H, Muratçobanoğlu F, Demirel S. Biyohidrojen Üretimine Nanopartikül Madde İlavesinin Karanlık Fermantsayon Sürecine Etkisi ve Yaşam Döngü Analizi Yaklaşımı. J. Inst. Sci. and Tech. 2022;12:1426–1435.
MLA Muratçobanoğlu, Hamdi et al. “Biyohidrojen Üretimine Nanopartikül Madde İlavesinin Karanlık Fermantsayon Sürecine Etkisi Ve Yaşam Döngü Analizi Yaklaşımı”. Journal of the Institute of Science and Technology, vol. 12, no. 3, 2022, pp. 1426-35, doi:10.21597/jist.984428.
Vancouver Muratçobanoğlu H, Muratçobanoğlu F, Demirel S. Biyohidrojen Üretimine Nanopartikül Madde İlavesinin Karanlık Fermantsayon Sürecine Etkisi ve Yaşam Döngü Analizi Yaklaşımı. J. Inst. Sci. and Tech. 2022;12(3):1426-35.