Research Article
BibTex RIS Cite

Bakteriyel Kaynaklı Lipaz Geninin Pichia pastoris’te Klonlanması, Ekspresyonu ve Rekombinant Enzimin Saflaştırılması

Year 2022, Volume: 12 Issue: 4, 2209 - 2222, 01.12.2022
https://doi.org/10.21597/jist.1107276

Abstract

Gıda endüstrisinde enzimler her türlü işleme ve üretim proseslerinde uygulama alanı bulan biyolojik katalizörlerdir. Süt işlemeden meyve suyu üretimine, et işlemeden ekmek üretimine kadar gıda sanayinin çeşitli alanlarında yaygın olarak ihtiyaç duyulan enzimlerden biri lipazlardır. Bu çalışmada, kodon optimize edilmiş Geobacillus stearothermophilus lipaz enzimini kodlayan genin, Pichia pastoris ekspresyon sisteminde güçlü ve indüklenebilir bir promotor olan AOX1 promotoru içeren pPICZA ekspresyon vektörü kullanılarak ekspresyonu yapılmış ve en yüksek lipaz enzimi üretimi gösteren klon belirlenmiştir. Belirlenen klon ile 400 mL indüksiyon besiyerinde 72 saat boyunca üretim gerçekleştirilmiş ve toplanan süpernatant örneğinde enzim aktivitesi, toplam protein ve SDS-PAGE analizi gerçekleştirilmiştir. Rekombinant lipaz enzimi Ni-NTA afinite kromatografisi ile saflaştırılmıştır. Saflaştırma işleminin her aşamasından alınan örneklerde SDS-PAGE analizi yapılmış ve her aşamada elde edilen örneklerde saflaştırma verimi hesaplanmıştır. Saflaştırma işleminden sonra analiz edilen örnekte, en yüksek üretim gösteren klonun 25.02 mg L-1 lipaz üretim seviyesine ulaştığı belirlenmiştir.

References

  • Acu E, Kılıç V, Kıvanç M, 2021. Enterococcus durans ile ekstraselüler lipaz üretimi ve karakterizasyonu. Gıda, 46 (2): 474-487.
  • Arık G, Yılmaz Sarıözlü N, 2021. Topraktan izole edilen aktinomisetlerin lipaz aktivitelerinin belirlenmesi. Biyolojik Çeşitlilik ve Koruma, 14(3): 487-492.
  • Arpigny JL, Jaeger KE, 1999. Bacterial Lipolytic Enzymes: Classification and Properties. Journal of Biochemistry, 343: 177 – 183.
  • Aytar M, Bozdoğan B, Başbülbül G, 2021. Aydın ve Denizli’deki sıcak su kaynaklarından izole edilen termofilik bakterilerin lipaz, amilaz ve proteaz aktivitelerinin araştırılması. Avrupa Bilim ve Teknoloji Dergisi, 27: 570-574.
  • Balan A, Ibrahim D, Abdul Rahim R, Ahmad Rashid, FA, 2012. Purification and characterization of a thermostable lipase from Geobacillus thermodenitrificans IBRL-nra. Enzyme Research, 987523.
  • Balcao VM, Malcata FX, 1998. Lipase catalyzed modifcation of milk fat. Biotechnology Advences, 16(2): 309-341.
  • Bharathi D, Rajalakshmi G, 2019. Microbial Lipases: An Overview of Screening, Production and Purification. Biocatalysis and Agricultural Biotechnology, 22, 101368.
  • Carson M, Johnson DH, McDonald H, Brouillette C, Delucas LJ, 2007. His-tag impact on structure. Acta Crystallographica Section D: Structural Biology, 63(Pt 3): 295-301.
  • Chang SW, Lee GC, Shaw JF, 2006.Efficient Production of Active Recombinant Candida rugosa LIP3 lipase in Pichia pastoris and Biochemical Characterization of the Purified Enzyme. Journal of Agricultural and Food Chemistry, 54: 5831-5838.
  • Cho AR, Yoo SK, Kim EJ, 2000. Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiology Letters, 186(2): 235-238.
  • Cregg JM, Tschopp JF, Stillman C, Siegel R, Akong M, Craig WS, Buckholz RG, Madden KR, Kellaris A, Davis GR, Smiley BL, Cruze J, Torregrossa R, Velicelebi G, Thill GP, 1987. High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris. Biotechnology, 5: 479-485.
  • Cregg JM, Madden KR, Barringer KJ, Thill GP, Stillman CA, 1989. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Molecular and Cellular Biology, 9: 1316–1323. Cregg JM, 2007. Pichia Protocols, Methods in Molecular Biology Series, 389, 2nd edition, Humana Press Inc., Totowa, NJ. 1-10.
  • Eggert T, Pouderoyen GV, Pencreac’h G, Douchet I, Verger R, Dijkstra BW, Jaeger KE, 2002. Biochemical Properties and Three–Dimensional Structures of Two Extracellular Lipolytic Enzymes from Bacillus subtilis. Colloids and Surfaces B: Biointerfaces, 26: 37–46.
  • Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Afzal M, Kouser A, Nadeem H, 2018. Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 132: 23-34.
  • Karaoğlan M, Erden-Karaoglan FE, Inan M, 2016. Comparison of ADH3 promoter with commonly used promoters for recombinant protein production in Pichia pastoris. Protein Expression and Purification, 121: 112-117.
  • Karaoğlan M, Erden-Karaoğlan F, 2020. Effect of codon optimization and promoter choice on recombinant endo-polygalacturonase production in Pichia pastoris. Enzyme and Microbial Technology, 139, 109589.
  • Karaoğlan M, Erden-Karaoğlan F, 2021. Extracellular Production and Purification of the β-glucanase in Pichia pastoris Expression System. Erzincan University Journal of Science and Technology, 14 (2): 620-630.
  • Kim MH, Kim HK, Lee JK, Park SY, Oh TK, 2000. Thermostable Lipase of Bacillus stearothermophilus: High-level production, purification, and calcium-dependent Thermostability. Bioscience, Biotechnology and Biochemistry, 64(2): 280-286.
  • Kulkarni N, Gadre RV, 1999. A Novel Alkaline, Thermostable, Protease-free Lipase from Pseudomonas sp. Biotechnology Letters, 21: 897-899.
  • Mercan Ülkü D, Gidiş M, Bülbül M, 2019. Antep fıstığı (Pistacia vera) tohumundan lipaz enziminin saflaştırılması ve kinetik özelliklerinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 6(3): 588-595.
  • Messaoudi A, Belguith H, Gram I, Hamid JB, 2010. Classification of EC3.2.2.3 Bacterial true lipase using phylogenetic analysis. African Journal of Biotechnology, 9(48): 8243-8247.
  • Minning S, Schmidt-Dannert C, Schmid RD, 1998. Functional expression of Rhizopus oryzae lipase in Pichia pastoris: high-level production and some properties. Journal of Biotechnology, 66(2-3): 147-56. Prathumpai W, Flitter SJ, McIntyre M, Nielsen, J, 2004. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus. Applied Microbiology and Biotechnology, 65: 714-719.
  • Quyen DT, Schmidt-Dannert C, Scmid RD, 2003. High-Level expression of lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase. Protein Expression and Purification 28: 102-110.
  • Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A, 2018. Review: Engineering of thermostable enzymes for industrial applications. APL Bioengineering, 2(1), 011501.
  • Rueda-Lopez S, Martinez-Montano E, Viana MT, 2016. Biochemical characterization and comparison of pancreatic lipases from the Pasific Bluefin Tuna, Thunnus orientalis; Totoaba, Totoaba macdonaldi; and Striped Bass, Morone saxatilis. Journal of the World Aquaculture Society 48(1): 156-165.
  • Sabri S, Rahman RN, Leow TC, Basri M, Salleh AB, 2009. Secretory expression and characterization of a highly Ca2+-activated thermostable L2 lipase. Protein Expression and Purification, 68(2): 161-166.
  • Salihu A, Alam Z. 2014. Thermostable lipases: an overview of production, purification and characterization. Biosciences Biotechnology Research Asia 11(3): 1095-1107.
  • Saisuburamaniyan N, Krithika L, Dileena KP, Sivasubramanian S, Puvanakrishnan R, 2004. Lipase assay in soils by copper soap colorimetry. Analytical Biochemistry, 330: 70-73.
  • Sharma R, Chisti Y, Banerjee UC, 2001. Production, Purification Characterization and Applications of Lipases. Biotechnology Advances, 19: 627-662.
  • Sharma R, Soni S, Vohra R, Gupta L, Gupta J, 2002. Purification and Characterization of a Thermostable Alkaline Lipase from a New Thermophilic Bacillus sp. RSJ-1. Process Biochemisty, 37: 1075-1084.
  • Sharma P, Sharma N, Pathania S, Handa, S, 2017. Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry, Journal of Genetic Engineering and Biotechnology, 15(2): 369-377.
  • Sifour M, Saeed HM, Zaghloul TI, Berekaa MM, Abdel-Fattah YR, 2010. Purification and properties of a lipase from thermophilic Geobacillus stearothermophilus strain-5. International Journal of Biological Chemistry, 4(4):203–212. Sinchaikul S, Sookkheo B, Phutrakul S, Pan FM, 2001. Optimization of a thermostable lipase Bacillus stearothermophilus P1: Overexpression, Purification and Characterization. Protein Expression and Purification, 22: 388-398.
  • Spriestersbach A, Kubicek J, Schäfer F, Block H, Maertens B, 2015. Purification of His-Tagged Proteins. Methods in Enzymology, 559: 1-15.
  • Wu S, Letchworth GJ, 2004. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques, 36: 152-154.
  • Zamost BL, Nielsen HK, Starnes RL, 1991. Thermostable enzymes for industrial applications. Journal of Industrial Microbiology, 8: 71-81.
  • Zhang J, Tian M, Lv P, Luo W, Wang Z, Xu J, Wang Z, 2020. High-efficiency expression of the thermophilic lipase from Geobacillus thermocatenulatus in Escherichia coli and its application in the enzymatic hydrolysis of rapeseed oil. 3 Biotech, 10(12): 523.
  • Zhou WJ, Yang JK, Mao L, Miao LH, 2015. Codon optimization, promoter and expression system selection that achieved high-level production of Yarrowia lipolytica lipase in Pichia pastoris. Enzyme and Microbial Technology, 71: 66-72.

Cloning and Expression of the Bacterial Lipase Gene in Pichia pastoris and Purification of the Recombinant Enzyme

Year 2022, Volume: 12 Issue: 4, 2209 - 2222, 01.12.2022
https://doi.org/10.21597/jist.1107276

Abstract

In the food industry, enzymes are biological catalysts that find application area in all kinds of processing and production processes. Lipases are one of the enzymes that are widely needed in various fields of the food industry, from milk processing to fruit juice production, from meat processing to bread production. In this study, the gene encoding codon optimized Geobacillus stearothermophilus lipase was expressed using the pPICZA expression vector containing the AOX1 promoter, which is a strong and inducible promoter in the Pichia pastoris expression system, and the clone exhibiting the highest lipase enzyme production was determined. Production was carried out with the determined clone in 400 mL induction medium for 72 hours and the enzyme activity, total protein and SDS-PAGE analyzes were performed in the collected supernatant sample. The recombinant lipase enzyme was purified by Ni-NTA affinity chromatography. SDS-PAGE analysis was performed on the samples taken from each step of the purification process and the purification efficiency was calculated in the samples obtained at each step. In the sample analyzed after purification, it was determined that the clone with the highest production reached the lipase production level of 25.02 mg L-1.

References

  • Acu E, Kılıç V, Kıvanç M, 2021. Enterococcus durans ile ekstraselüler lipaz üretimi ve karakterizasyonu. Gıda, 46 (2): 474-487.
  • Arık G, Yılmaz Sarıözlü N, 2021. Topraktan izole edilen aktinomisetlerin lipaz aktivitelerinin belirlenmesi. Biyolojik Çeşitlilik ve Koruma, 14(3): 487-492.
  • Arpigny JL, Jaeger KE, 1999. Bacterial Lipolytic Enzymes: Classification and Properties. Journal of Biochemistry, 343: 177 – 183.
  • Aytar M, Bozdoğan B, Başbülbül G, 2021. Aydın ve Denizli’deki sıcak su kaynaklarından izole edilen termofilik bakterilerin lipaz, amilaz ve proteaz aktivitelerinin araştırılması. Avrupa Bilim ve Teknoloji Dergisi, 27: 570-574.
  • Balan A, Ibrahim D, Abdul Rahim R, Ahmad Rashid, FA, 2012. Purification and characterization of a thermostable lipase from Geobacillus thermodenitrificans IBRL-nra. Enzyme Research, 987523.
  • Balcao VM, Malcata FX, 1998. Lipase catalyzed modifcation of milk fat. Biotechnology Advences, 16(2): 309-341.
  • Bharathi D, Rajalakshmi G, 2019. Microbial Lipases: An Overview of Screening, Production and Purification. Biocatalysis and Agricultural Biotechnology, 22, 101368.
  • Carson M, Johnson DH, McDonald H, Brouillette C, Delucas LJ, 2007. His-tag impact on structure. Acta Crystallographica Section D: Structural Biology, 63(Pt 3): 295-301.
  • Chang SW, Lee GC, Shaw JF, 2006.Efficient Production of Active Recombinant Candida rugosa LIP3 lipase in Pichia pastoris and Biochemical Characterization of the Purified Enzyme. Journal of Agricultural and Food Chemistry, 54: 5831-5838.
  • Cho AR, Yoo SK, Kim EJ, 2000. Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiology Letters, 186(2): 235-238.
  • Cregg JM, Tschopp JF, Stillman C, Siegel R, Akong M, Craig WS, Buckholz RG, Madden KR, Kellaris A, Davis GR, Smiley BL, Cruze J, Torregrossa R, Velicelebi G, Thill GP, 1987. High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris. Biotechnology, 5: 479-485.
  • Cregg JM, Madden KR, Barringer KJ, Thill GP, Stillman CA, 1989. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Molecular and Cellular Biology, 9: 1316–1323. Cregg JM, 2007. Pichia Protocols, Methods in Molecular Biology Series, 389, 2nd edition, Humana Press Inc., Totowa, NJ. 1-10.
  • Eggert T, Pouderoyen GV, Pencreac’h G, Douchet I, Verger R, Dijkstra BW, Jaeger KE, 2002. Biochemical Properties and Three–Dimensional Structures of Two Extracellular Lipolytic Enzymes from Bacillus subtilis. Colloids and Surfaces B: Biointerfaces, 26: 37–46.
  • Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Afzal M, Kouser A, Nadeem H, 2018. Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 132: 23-34.
  • Karaoğlan M, Erden-Karaoglan FE, Inan M, 2016. Comparison of ADH3 promoter with commonly used promoters for recombinant protein production in Pichia pastoris. Protein Expression and Purification, 121: 112-117.
  • Karaoğlan M, Erden-Karaoğlan F, 2020. Effect of codon optimization and promoter choice on recombinant endo-polygalacturonase production in Pichia pastoris. Enzyme and Microbial Technology, 139, 109589.
  • Karaoğlan M, Erden-Karaoğlan F, 2021. Extracellular Production and Purification of the β-glucanase in Pichia pastoris Expression System. Erzincan University Journal of Science and Technology, 14 (2): 620-630.
  • Kim MH, Kim HK, Lee JK, Park SY, Oh TK, 2000. Thermostable Lipase of Bacillus stearothermophilus: High-level production, purification, and calcium-dependent Thermostability. Bioscience, Biotechnology and Biochemistry, 64(2): 280-286.
  • Kulkarni N, Gadre RV, 1999. A Novel Alkaline, Thermostable, Protease-free Lipase from Pseudomonas sp. Biotechnology Letters, 21: 897-899.
  • Mercan Ülkü D, Gidiş M, Bülbül M, 2019. Antep fıstığı (Pistacia vera) tohumundan lipaz enziminin saflaştırılması ve kinetik özelliklerinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 6(3): 588-595.
  • Messaoudi A, Belguith H, Gram I, Hamid JB, 2010. Classification of EC3.2.2.3 Bacterial true lipase using phylogenetic analysis. African Journal of Biotechnology, 9(48): 8243-8247.
  • Minning S, Schmidt-Dannert C, Schmid RD, 1998. Functional expression of Rhizopus oryzae lipase in Pichia pastoris: high-level production and some properties. Journal of Biotechnology, 66(2-3): 147-56. Prathumpai W, Flitter SJ, McIntyre M, Nielsen, J, 2004. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus. Applied Microbiology and Biotechnology, 65: 714-719.
  • Quyen DT, Schmidt-Dannert C, Scmid RD, 2003. High-Level expression of lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase. Protein Expression and Purification 28: 102-110.
  • Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A, 2018. Review: Engineering of thermostable enzymes for industrial applications. APL Bioengineering, 2(1), 011501.
  • Rueda-Lopez S, Martinez-Montano E, Viana MT, 2016. Biochemical characterization and comparison of pancreatic lipases from the Pasific Bluefin Tuna, Thunnus orientalis; Totoaba, Totoaba macdonaldi; and Striped Bass, Morone saxatilis. Journal of the World Aquaculture Society 48(1): 156-165.
  • Sabri S, Rahman RN, Leow TC, Basri M, Salleh AB, 2009. Secretory expression and characterization of a highly Ca2+-activated thermostable L2 lipase. Protein Expression and Purification, 68(2): 161-166.
  • Salihu A, Alam Z. 2014. Thermostable lipases: an overview of production, purification and characterization. Biosciences Biotechnology Research Asia 11(3): 1095-1107.
  • Saisuburamaniyan N, Krithika L, Dileena KP, Sivasubramanian S, Puvanakrishnan R, 2004. Lipase assay in soils by copper soap colorimetry. Analytical Biochemistry, 330: 70-73.
  • Sharma R, Chisti Y, Banerjee UC, 2001. Production, Purification Characterization and Applications of Lipases. Biotechnology Advances, 19: 627-662.
  • Sharma R, Soni S, Vohra R, Gupta L, Gupta J, 2002. Purification and Characterization of a Thermostable Alkaline Lipase from a New Thermophilic Bacillus sp. RSJ-1. Process Biochemisty, 37: 1075-1084.
  • Sharma P, Sharma N, Pathania S, Handa, S, 2017. Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry, Journal of Genetic Engineering and Biotechnology, 15(2): 369-377.
  • Sifour M, Saeed HM, Zaghloul TI, Berekaa MM, Abdel-Fattah YR, 2010. Purification and properties of a lipase from thermophilic Geobacillus stearothermophilus strain-5. International Journal of Biological Chemistry, 4(4):203–212. Sinchaikul S, Sookkheo B, Phutrakul S, Pan FM, 2001. Optimization of a thermostable lipase Bacillus stearothermophilus P1: Overexpression, Purification and Characterization. Protein Expression and Purification, 22: 388-398.
  • Spriestersbach A, Kubicek J, Schäfer F, Block H, Maertens B, 2015. Purification of His-Tagged Proteins. Methods in Enzymology, 559: 1-15.
  • Wu S, Letchworth GJ, 2004. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques, 36: 152-154.
  • Zamost BL, Nielsen HK, Starnes RL, 1991. Thermostable enzymes for industrial applications. Journal of Industrial Microbiology, 8: 71-81.
  • Zhang J, Tian M, Lv P, Luo W, Wang Z, Xu J, Wang Z, 2020. High-efficiency expression of the thermophilic lipase from Geobacillus thermocatenulatus in Escherichia coli and its application in the enzymatic hydrolysis of rapeseed oil. 3 Biotech, 10(12): 523.
  • Zhou WJ, Yang JK, Mao L, Miao LH, 2015. Codon optimization, promoter and expression system selection that achieved high-level production of Yarrowia lipolytica lipase in Pichia pastoris. Enzyme and Microbial Technology, 71: 66-72.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Gıda Mühendisliği / Food Engineering
Authors

Fidan Erden Karaoğlan 0000-0002-7062-1844

Mert Karaoglan 0000-0002-8280-3282

Early Pub Date November 25, 2022
Publication Date December 1, 2022
Submission Date April 24, 2022
Acceptance Date August 23, 2022
Published in Issue Year 2022 Volume: 12 Issue: 4

Cite

APA Erden Karaoğlan, F., & Karaoglan, M. (2022). Bakteriyel Kaynaklı Lipaz Geninin Pichia pastoris’te Klonlanması, Ekspresyonu ve Rekombinant Enzimin Saflaştırılması. Journal of the Institute of Science and Technology, 12(4), 2209-2222. https://doi.org/10.21597/jist.1107276
AMA Erden Karaoğlan F, Karaoglan M. Bakteriyel Kaynaklı Lipaz Geninin Pichia pastoris’te Klonlanması, Ekspresyonu ve Rekombinant Enzimin Saflaştırılması. J. Inst. Sci. and Tech. December 2022;12(4):2209-2222. doi:10.21597/jist.1107276
Chicago Erden Karaoğlan, Fidan, and Mert Karaoglan. “Bakteriyel Kaynaklı Lipaz Geninin Pichia pastoris’te Klonlanması, Ekspresyonu Ve Rekombinant Enzimin Saflaştırılması”. Journal of the Institute of Science and Technology 12, no. 4 (December 2022): 2209-22. https://doi.org/10.21597/jist.1107276.
EndNote Erden Karaoğlan F, Karaoglan M (December 1, 2022) Bakteriyel Kaynaklı Lipaz Geninin Pichia pastoris’te Klonlanması, Ekspresyonu ve Rekombinant Enzimin Saflaştırılması. Journal of the Institute of Science and Technology 12 4 2209–2222.
IEEE F. Erden Karaoğlan and M. Karaoglan, “Bakteriyel Kaynaklı Lipaz Geninin Pichia pastoris’te Klonlanması, Ekspresyonu ve Rekombinant Enzimin Saflaştırılması”, J. Inst. Sci. and Tech., vol. 12, no. 4, pp. 2209–2222, 2022, doi: 10.21597/jist.1107276.
ISNAD Erden Karaoğlan, Fidan - Karaoglan, Mert. “Bakteriyel Kaynaklı Lipaz Geninin Pichia pastoris’te Klonlanması, Ekspresyonu Ve Rekombinant Enzimin Saflaştırılması”. Journal of the Institute of Science and Technology 12/4 (December 2022), 2209-2222. https://doi.org/10.21597/jist.1107276.
JAMA Erden Karaoğlan F, Karaoglan M. Bakteriyel Kaynaklı Lipaz Geninin Pichia pastoris’te Klonlanması, Ekspresyonu ve Rekombinant Enzimin Saflaştırılması. J. Inst. Sci. and Tech. 2022;12:2209–2222.
MLA Erden Karaoğlan, Fidan and Mert Karaoglan. “Bakteriyel Kaynaklı Lipaz Geninin Pichia pastoris’te Klonlanması, Ekspresyonu Ve Rekombinant Enzimin Saflaştırılması”. Journal of the Institute of Science and Technology, vol. 12, no. 4, 2022, pp. 2209-22, doi:10.21597/jist.1107276.
Vancouver Erden Karaoğlan F, Karaoglan M. Bakteriyel Kaynaklı Lipaz Geninin Pichia pastoris’te Klonlanması, Ekspresyonu ve Rekombinant Enzimin Saflaştırılması. J. Inst. Sci. and Tech. 2022;12(4):2209-22.