Research Article
BibTex RIS Cite

Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions

Year 2022, Volume: 12 Issue: 4, 2140 - 2152, 01.12.2022
https://doi.org/10.21597/jist.1118721

Abstract

Methylammonium lead iodide (MAPbI3) (CH3NH3PbI3) has great potential for several fields, especially for photovoltaic applications. Unfortunately, MAPbI3 can seriously suffer from degradation. Hence, the degradation problem limits the photovoltaic and other potential applications of this material. In order to produce a stable photovoltaic material, the degradation mechanism and electronic defect profile of MAPbI3 should be understood carefully, especially regarding its conductivity. In this study, electronic defect changes due to stress factors were evaluated. MAPbI3 films were deposited using thermal chemical vapor deposition (Thermal CVD) and spin coating techniques. Morphological differences due to deposition temperatures were defined by using scanning electron microscopy (SEM). Elemental analysis and structural analysis were conducted by energy-dispersive X-ray spectroscopy (EDS) and X- ray diffraction (XRD), respectively. Deposited MAPbI3 films were exposed to in-situ stress factors such as vacuum atmosphere, deionized water vapor (DIWV) atmosphere, and UV light soaking at constant temperature (300 K) in order to define degradation and electronic defect changes. The electronic changes in the samples were investigated by time-dependent dark conductivity, temperature-dependent dark conductivity, and flux-dependent photoconductivity. This study provides an in-depth understanding of the degradation mechanism and electronic defect profile of MAPbI3 regarding its conductivity.

Supporting Institution

TÜBİTAK, MAKÜ BAP

Project Number

TÜBİTAK 119F033, MAKÜ-BAP 0695-YL-21

Thanks

This study was founded by TUBITAK with Project number 119F033. This work also supported by Scientific Research Project Fund of Burdur Mehmet Akif Ersoy University under the project 2017K12 - 41003-12 and numbers 0695-YL-21. Authors would like to special thanks to Dr. Friedhelm FINGER and Jülich Research Center Germany. In addition, authors would like to thank Ayşegül COŞKUN for helping measurements, Prof.Dr. Fatih Mehmet EMEN, Assoc. Dr. Murat KALELİ, Dr.Salih AKYÜREKLİ for academic encourage and supports.

References

  • Abdelmageed G, Jewell L, Hellier K, Seymour L, Luo , Bridges F, Zhang J, Carter S, 2016. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Appl. Phys. Lett. 109, 233905.
  • Aristidou, Nicholas, Irene Sanchez-Molina, Thana Chotchuangchutchaval, Michael Brown, Luis Martinez, Thomas Rath, and Saif A. Haque. 2015. The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angewandte Chemie - International Edition 54 (28): 8208–12.
  • Bass, Kelsey K., R. Eric McAnally, Shiliang Zhou, Peter I. Djurovich, Mark E. Thompson, and Brent C. Melot. 2014. Influence of Moisture on the Preparation, Crystal Structure, and Photophysical Properties of Organohalide Perovskites. Chem. Commun. 50 (99): 15819–22.
  • Bella, Federico, Gianmarco Griffini, Juan-Pablo Correa-Baena, Guido Saracco, Michael Grätzel, Anders Hagfeldt, Stefano Turri, and Claudio Gerbaldi. 2016. Improving Efficiency and Stability of Perovskite Solar Cells with Photocurable Fluoropolymers. Science 354 (6309): 203–6.
  • Chen, Yong Siou, Joseph S. Manser, and Prashant V. Kamat. 2015. All Solution-Processed Lead Halide Perovskite-BiVO4 Tandem Assembly for Photolytic Solar Fuels Production. Journal of the American Chemical Society 137 (2): 974–81.
  • Cho, Himchan, Su Hun Jeong, Min Ho Park, Young Hoon Kim, Christoph Wolf, Chang Lyoul Lee, Jin Hyuck Heo, et al. 2015. Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes. Science 350 (6265): 1222–25.
  • Christians, Jeffrey A., Pierre A. Miranda Herrera, and Prashant V. Kamat. 2015. Transformation of the Excited State and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society 137 (4): 1530–38.
  • Condeles, J. F., R. C.Z. Lofrano, J. M. Rosolen, and M. Mulato. 2006. Stoichiometry, Surface and Structural Characterization of Lead Iodide Thin Films. Brazilian Journal of Physics 36 (2 A): 320–23.
  • Deschler, Felix, Michael Price, Sandeep Pathak, Lina E. Klintberg, David Dominik Jarausch, Ruben Higler, Sven Hüttner, et al. 2014. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. Journal of Physical Chemistry Letters 5 (8): 1421–26.
  • Mihaela Girtan 2020. On the electrical and photoelectrical properties of CH3NH3PBI3 perovskites thin films Solar Energy 195 446–453
  • Gokhan, Yilmaz. 2021. Creation and Investigation of Electronic Defects on Methylammonium Lead Iodide (CH3NH3PbI3) Films Depending on Atmospheric Conditions. The European Physical Journal D 75 (6): 174.
  • Gu, Chungwan, and Jang Sik Lee. 2016. Flexible Hybrid Organic-Inorganic Perovskite Memory. ACS Nano 10 (5): 5413–18.
  • Houben, L., M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner. 1998. Structural Properties of Microcrystalline Silicon in the Transition from Highly Crystalline to Amorphous Growth. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties 77 (6): 1447–60.
  • Kojima, Akihiro, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. 2009. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 131 (17): 6050–51.
  • Lin, Qianqian, Ardalan Armin, Paul L. Burn, and Paul Meredith. 2015. Filterless Narrowband Visible Photodetectors. Nature Photonics 9 (10): 687–94.
  • Mei A., Sheng Y, Ming Y, Hu Y, Rong Y, Zhang W, Luo S, Na G, Tian C, Hou X, Xiong Y, Zhang Z, Liu S, Uchida S, Kim T, Yuan Y, Zhang L, Zhou, Y, Han H. 2020. Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking. Joule 4, 2646–2660
  • Moehl, Thomas, Jeong Hyeok Im, Yong Hui Lee, Konrad Domanski, Fabrizio Giordano, Shaik M. Zakeeruddin, M. Ibrahim Dar, et al. 2014. Strong Photocurrent Amplification in Perovskite Solar Cells with a Porous TiO2 Blocking Layer under Reverse Bias. Journal of Physical Chemistry Letters 5 (21): 3931–36.
  • Niu, Guangda, Xudong Guo, and Liduo Wang. 2015. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. Journal of Materials Chemistry A 3 (17): 8970–80.
  • Noh, Jun Hong, Sang Hyuk Im, Jin Hyuck Heo, Tarak N. Mandal, and Sang Il Seok. 2013. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters 13 (4): 1764–69.
  • Oku, Takeo. 2015. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells. In Solar Cells - New Approaches and Reviews, i:13. InTech.
  • Pistor, Paul, Alejandro Ruiz, Andreu Cabot, and Victor Izquierdo-Roca. 2016. Advanced Raman Spectroscopy of Methylammonium Lead Iodide: Development of a Non-Destructive Characterisation Methodology. Scientific Reports 6 (October): 1–8.
  • Silva Filho, José Maria Clemente da, Richard Landers, and Francisco Chagas Marques. 2019. Lead Iodide and Perovskite Films Obtained by Iodination of PbS Thin Films. Journal of Inorganic and Organometallic Polymers and Materials 29 (6): 2161–67.
  • Smirnov, V., S. Reynolds, C. Main, F. Finger, and R. Carius. 2004. Aging Effects in Microcrystalline Silicon Films Studied by Transient Photoconductivity. Journal of Non-Crystalline Solids 338–340 (June): 421–24.
  • Tan, Zhi-Kuang, Reza Saberi Moghaddam, May Ling Lai, Pablo Docampo, Ruben Higler, Felix Deschler, Michael Price, et al. 2014. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nature Nanotechnology | 9.
  • Wu, Yuxiang, Juan Li, Jian Xu, Yangyang Du, Like Huang, Jian Ni, Hongkun Cai, and Jianjun Zhang. 2016. Organic-Inorganic Hybrid CH3NH3PbI3 Perovskite Materials as Channels in Thin-Film Field-Effect Transistors. RSC Advances 6 (20): 16243–49.
  • Yilmaz, Gokhan, Aysegul Cosgun, and Aysegul Tascioglu. 2021. Lead Iodide Thin-Film Morphological-Dependent Metastability Investigation by Electrical Conductivity. Journal of Materials Science: Materials in Electronics 32 (3): 3222–31.
  • You, Jingbi, Ziruo Hong, Tze Bin Song, Lei Meng, Yongsheng Liu, Chengyang Jiang, Huanping Zhou, Wei Hsuan Chang, Gang Li, and Yang Yang. 2014. Moisture Assisted Perovskite Film Growth for High Performance Solar Cells. Applied Physics Letters 105 (18).
  • Watts C Lowell. 2022. Light Soaking in Metal-halide Perovskites. Oregon State University. PhD Dissertation.
  • Zhang, Wei, Michael Saliba, David T. Moore, Sandeep K. Pathak, Maximilian T. Hörantner, Thomas Stergiopoulos, Samuel D. Stranks, et al. 2015. Ultrasmooth Organic-Inorganic Perovskite Thin-Film Formation and Crystallization for Efficient Planar Heterojunction Solar Cells. Nature Communications 6 (1): 6142.

Atmosferik Koşullara Bağlı Olarak CH3NH3PbI3 İnce Filmlerin Karanlık ve Fotoiletkenlik Davranışı

Year 2022, Volume: 12 Issue: 4, 2140 - 2152, 01.12.2022
https://doi.org/10.21597/jist.1118721

Abstract

Metilamonyum kurşun iyodür (MAPbI3) (CH3NH3PbI3), başta fotovoltaik uygulamalar olmak üzere birçok alanda büyük potansiyele sahiptir. Ne yazık ki, MAPbI3 ciddi şekilde bozunmadan muzdariptir. Bozunma sorunu, bu malzemenin fotovoltaik ve diğer potansiyel uygulamalarını sınırlandırmaktadır. Kararlı fotovoltaik malzeme üretebilmek için MAPbI3'ün bozunma mekanizması ve elektronik kusur profilinin iletkenlik tarafında dikkatli bir şekilde anlaşılması gerekir. Bu çalışmada stres faktörlerinden kaynaklı elektronik kusur değişimleri incelenmiştir. MAPbI3 filmler, termal kimyasal buhar biriktirme (Termal CVD) ve döndürmeli kaplama yöntemleri ile büyütülmüştür. Büyütme sıcaklıklarından kaynaklanan morfolojik farklılıklar, taramalı elektron mikroskobu (SEM) ile belirlenmiştir. Element analizler ve yapısal analizler, sırasıyla, enerji dağılımlı X-ışını spektroskopisi (EDS) ve X-ışını kırınımı (XRD) ile yapılmıştır. Depolanan MAPbI3 filmleri, bozunma ve elektronik kusur değişikliklerini tanımlamak için vakum atmosferi, deiyonize su buharı (DIWV) atmosferi ve sabit sıcaklıkta (300 K) UV ışığı ile yaşlandırma gibi tek stres faktörlerine maruz bırakılmıştır. Numunelerin elektronik değişiklikleri zamana bağlı karanlık iletkenlik, sıcaklığa bağlı karanlık iletkenlik ve ışık akısına bağlı fotoiletkenlik ile incelenmiştir. Bu çalışma, iletkenlik tarafında MAPbI3'ün bozunma mekanizması ve elektronik kusur profili hakkında derinlemesine bir anlayış sağlamaktadır

Project Number

TÜBİTAK 119F033, MAKÜ-BAP 0695-YL-21

References

  • Abdelmageed G, Jewell L, Hellier K, Seymour L, Luo , Bridges F, Zhang J, Carter S, 2016. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Appl. Phys. Lett. 109, 233905.
  • Aristidou, Nicholas, Irene Sanchez-Molina, Thana Chotchuangchutchaval, Michael Brown, Luis Martinez, Thomas Rath, and Saif A. Haque. 2015. The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angewandte Chemie - International Edition 54 (28): 8208–12.
  • Bass, Kelsey K., R. Eric McAnally, Shiliang Zhou, Peter I. Djurovich, Mark E. Thompson, and Brent C. Melot. 2014. Influence of Moisture on the Preparation, Crystal Structure, and Photophysical Properties of Organohalide Perovskites. Chem. Commun. 50 (99): 15819–22.
  • Bella, Federico, Gianmarco Griffini, Juan-Pablo Correa-Baena, Guido Saracco, Michael Grätzel, Anders Hagfeldt, Stefano Turri, and Claudio Gerbaldi. 2016. Improving Efficiency and Stability of Perovskite Solar Cells with Photocurable Fluoropolymers. Science 354 (6309): 203–6.
  • Chen, Yong Siou, Joseph S. Manser, and Prashant V. Kamat. 2015. All Solution-Processed Lead Halide Perovskite-BiVO4 Tandem Assembly for Photolytic Solar Fuels Production. Journal of the American Chemical Society 137 (2): 974–81.
  • Cho, Himchan, Su Hun Jeong, Min Ho Park, Young Hoon Kim, Christoph Wolf, Chang Lyoul Lee, Jin Hyuck Heo, et al. 2015. Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes. Science 350 (6265): 1222–25.
  • Christians, Jeffrey A., Pierre A. Miranda Herrera, and Prashant V. Kamat. 2015. Transformation of the Excited State and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society 137 (4): 1530–38.
  • Condeles, J. F., R. C.Z. Lofrano, J. M. Rosolen, and M. Mulato. 2006. Stoichiometry, Surface and Structural Characterization of Lead Iodide Thin Films. Brazilian Journal of Physics 36 (2 A): 320–23.
  • Deschler, Felix, Michael Price, Sandeep Pathak, Lina E. Klintberg, David Dominik Jarausch, Ruben Higler, Sven Hüttner, et al. 2014. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. Journal of Physical Chemistry Letters 5 (8): 1421–26.
  • Mihaela Girtan 2020. On the electrical and photoelectrical properties of CH3NH3PBI3 perovskites thin films Solar Energy 195 446–453
  • Gokhan, Yilmaz. 2021. Creation and Investigation of Electronic Defects on Methylammonium Lead Iodide (CH3NH3PbI3) Films Depending on Atmospheric Conditions. The European Physical Journal D 75 (6): 174.
  • Gu, Chungwan, and Jang Sik Lee. 2016. Flexible Hybrid Organic-Inorganic Perovskite Memory. ACS Nano 10 (5): 5413–18.
  • Houben, L., M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner. 1998. Structural Properties of Microcrystalline Silicon in the Transition from Highly Crystalline to Amorphous Growth. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties 77 (6): 1447–60.
  • Kojima, Akihiro, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. 2009. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 131 (17): 6050–51.
  • Lin, Qianqian, Ardalan Armin, Paul L. Burn, and Paul Meredith. 2015. Filterless Narrowband Visible Photodetectors. Nature Photonics 9 (10): 687–94.
  • Mei A., Sheng Y, Ming Y, Hu Y, Rong Y, Zhang W, Luo S, Na G, Tian C, Hou X, Xiong Y, Zhang Z, Liu S, Uchida S, Kim T, Yuan Y, Zhang L, Zhou, Y, Han H. 2020. Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking. Joule 4, 2646–2660
  • Moehl, Thomas, Jeong Hyeok Im, Yong Hui Lee, Konrad Domanski, Fabrizio Giordano, Shaik M. Zakeeruddin, M. Ibrahim Dar, et al. 2014. Strong Photocurrent Amplification in Perovskite Solar Cells with a Porous TiO2 Blocking Layer under Reverse Bias. Journal of Physical Chemistry Letters 5 (21): 3931–36.
  • Niu, Guangda, Xudong Guo, and Liduo Wang. 2015. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. Journal of Materials Chemistry A 3 (17): 8970–80.
  • Noh, Jun Hong, Sang Hyuk Im, Jin Hyuck Heo, Tarak N. Mandal, and Sang Il Seok. 2013. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters 13 (4): 1764–69.
  • Oku, Takeo. 2015. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells. In Solar Cells - New Approaches and Reviews, i:13. InTech.
  • Pistor, Paul, Alejandro Ruiz, Andreu Cabot, and Victor Izquierdo-Roca. 2016. Advanced Raman Spectroscopy of Methylammonium Lead Iodide: Development of a Non-Destructive Characterisation Methodology. Scientific Reports 6 (October): 1–8.
  • Silva Filho, José Maria Clemente da, Richard Landers, and Francisco Chagas Marques. 2019. Lead Iodide and Perovskite Films Obtained by Iodination of PbS Thin Films. Journal of Inorganic and Organometallic Polymers and Materials 29 (6): 2161–67.
  • Smirnov, V., S. Reynolds, C. Main, F. Finger, and R. Carius. 2004. Aging Effects in Microcrystalline Silicon Films Studied by Transient Photoconductivity. Journal of Non-Crystalline Solids 338–340 (June): 421–24.
  • Tan, Zhi-Kuang, Reza Saberi Moghaddam, May Ling Lai, Pablo Docampo, Ruben Higler, Felix Deschler, Michael Price, et al. 2014. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nature Nanotechnology | 9.
  • Wu, Yuxiang, Juan Li, Jian Xu, Yangyang Du, Like Huang, Jian Ni, Hongkun Cai, and Jianjun Zhang. 2016. Organic-Inorganic Hybrid CH3NH3PbI3 Perovskite Materials as Channels in Thin-Film Field-Effect Transistors. RSC Advances 6 (20): 16243–49.
  • Yilmaz, Gokhan, Aysegul Cosgun, and Aysegul Tascioglu. 2021. Lead Iodide Thin-Film Morphological-Dependent Metastability Investigation by Electrical Conductivity. Journal of Materials Science: Materials in Electronics 32 (3): 3222–31.
  • You, Jingbi, Ziruo Hong, Tze Bin Song, Lei Meng, Yongsheng Liu, Chengyang Jiang, Huanping Zhou, Wei Hsuan Chang, Gang Li, and Yang Yang. 2014. Moisture Assisted Perovskite Film Growth for High Performance Solar Cells. Applied Physics Letters 105 (18).
  • Watts C Lowell. 2022. Light Soaking in Metal-halide Perovskites. Oregon State University. PhD Dissertation.
  • Zhang, Wei, Michael Saliba, David T. Moore, Sandeep K. Pathak, Maximilian T. Hörantner, Thomas Stergiopoulos, Samuel D. Stranks, et al. 2015. Ultrasmooth Organic-Inorganic Perovskite Thin-Film Formation and Crystallization for Efficient Planar Heterojunction Solar Cells. Nature Communications 6 (1): 6142.
There are 29 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Ayşegül Taşçıoğlu 0000-0002-1771-358X

Gökhan Yılmaz 0000-0003-0834-9736

Project Number TÜBİTAK 119F033, MAKÜ-BAP 0695-YL-21
Early Pub Date November 25, 2022
Publication Date December 1, 2022
Submission Date May 19, 2022
Acceptance Date September 24, 2022
Published in Issue Year 2022 Volume: 12 Issue: 4

Cite

APA Taşçıoğlu, A., & Yılmaz, G. (2022). Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions. Journal of the Institute of Science and Technology, 12(4), 2140-2152. https://doi.org/10.21597/jist.1118721
AMA Taşçıoğlu A, Yılmaz G. Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions. J. Inst. Sci. and Tech. December 2022;12(4):2140-2152. doi:10.21597/jist.1118721
Chicago Taşçıoğlu, Ayşegül, and Gökhan Yılmaz. “Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions”. Journal of the Institute of Science and Technology 12, no. 4 (December 2022): 2140-52. https://doi.org/10.21597/jist.1118721.
EndNote Taşçıoğlu A, Yılmaz G (December 1, 2022) Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions. Journal of the Institute of Science and Technology 12 4 2140–2152.
IEEE A. Taşçıoğlu and G. Yılmaz, “Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions”, J. Inst. Sci. and Tech., vol. 12, no. 4, pp. 2140–2152, 2022, doi: 10.21597/jist.1118721.
ISNAD Taşçıoğlu, Ayşegül - Yılmaz, Gökhan. “Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions”. Journal of the Institute of Science and Technology 12/4 (December 2022), 2140-2152. https://doi.org/10.21597/jist.1118721.
JAMA Taşçıoğlu A, Yılmaz G. Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions. J. Inst. Sci. and Tech. 2022;12:2140–2152.
MLA Taşçıoğlu, Ayşegül and Gökhan Yılmaz. “Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions”. Journal of the Institute of Science and Technology, vol. 12, no. 4, 2022, pp. 2140-52, doi:10.21597/jist.1118721.
Vancouver Taşçıoğlu A, Yılmaz G. Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions. J. Inst. Sci. and Tech. 2022;12(4):2140-52.