Research Article
BibTex RIS Cite
Year 2022, Volume: 12 Issue: 4, 2408 - 2415, 01.12.2022
https://doi.org/10.21597/jist.1159127

Abstract

References

  • Buchanan TS, Lloyd DG, Manal K, Besier TF, 2004. Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements from Measurements of Neural Command. Journal of Applied Biomechanics, 20(4): 367-395. doi: 10.1123/jab.20.4.367
  • Buchanan TS, Lloyd DG, Manal K, Besier TF, 2005. Estimation of Muscle Forces and Joint Moments Using a Forward-Inverse Dynamics Model. Medicine & Science in Sports & Exercise, 37(11): 1911-1916. doi: 10.1249/01.mss.0000176684.24008.6f
  • Caprara S, Moschini G, Snedeker J, Farshad M, Senteler M, 2020. Spinal Sagittal Alignment Goals based on Statistical Modelling and Musculoskeletal Simulations. Journal of Biomechanics, 102:109621. doi: 10.1016/j.jbiomech.2020.109621
  • Carreon LY, Glassman SD, Howard J, 2008. Fusion and Nonsurgical Treatment for Symptomatic Lumbar Degenerative Disease: A Systematic Review Of Oswestry Disability Index and MOS Short Form-36 Outcomes. Spine Journal, 8(5): 747-755. doi: 10.1016/j.spinee.2007.06.013
  • Erbulut D, Erbulut D, 2014. Biomechanical Effect of Graded Facetectomy on Asymmetrical Finite Element Lumbar Spine. Turkish Neurosurgery, 24(6): 923-928. doi: 10.5137/1019-5149.jtn.11984-14.2
  • Erbulut DU, Zafarparandeh I, Hassan CR, Lazoglu I, Ozer AF, 2015. Determination of The Biomechanical Effect of an Interspinous Process Device on Implanted and Adjacent Lumbar Spinal Segments Using a Hybrid Testing Protocol: A Finite-Element Study. 23(2): 200-208. doi: 10.3171/2014.12.spine14419
  • Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG, 2004. Adjacent Segment Degeneration in the Lumbar Spine. Journal of Bone and Joint Surgery-American Volume, 86a(7): 1497-1503.
  • Goel VK, Nyman E, 2016. Computational Modeling and Finite Element Analysis. Spine, 41(7). doi: 10.1097/BRS.0000000000001421. PMID: 27015076.
  • Han KS, Zander T, Taylor WR, Rohlmann A, 2012. An Enhanced and Validated Generic Thoraco-Lumbar Spine Model for Prediction of Muscle Forces. Medical Engineering & Physics, 34(6): 709-716. doi: 10.1016/j.medengphy.2011.09.014
  • Kaner T, Sasani M, Oktenoglu T, Ozer AF, 2010. Dynamic Stabilization of the Spine: A New Classification System. Turkish Neurosurgery, 20(2): 205-215.
  • Kumar MN, Baklanov A, Chopin D, 2001. Correlation Between Sagittal Plane Changes and Adjacent Segment Degeneration Following Lumbar Spine Fusion. European Spine Journal, 10(4): 314-319. doi: 10.1007/s005860000239 Lingutla KK, Pollock R, Benomran E, Purushothaman B, Kasis A, Bhatia CK, Friesem T, 2015. Outcome of Lumbar Spinal Fusion Surgery in Obese Patients: A Systematıc Review and Meta-Analysis. Bone & Joint Journal, 97b(10): 1395-1404. doi: 10.1302/0301-620x.97b10.35724
  • Mackiewicz A, Banach M, Denisiewicz A, Bedzinski R 2016. Comparative Studies of Cervical Spine Anterior Stabilization Systems - Finite Element Analysis. Clinical Biomechanics, (32):72-79. doi: 10.1016/j.clinbiomech.2015.11.016
  • Metzger MF, Robinson ST, Maldonado RC, Rawlinson J, Liu J, Acosta FL 2017. Biomechanical Analysis of Lateral Interbody Fusion Strategies for Adjacent Segment Degeneration in the Lumbar Spine. Spine Journal, 17(7), 1004-1011. doi: 10.1016/j.spinee.2017.03.005
  • Niemeyer F, Wilke HJ, Schmidt H, 2012. Geometry Strongly Influences the Response of Numerical Models of The Lumbar Spine--A Probabilistic Finite Element Analysis. Journal of Biomechanics, 45(8): 1414-1423. doi: 10.1016/j.jbiomech.2012.02.021
  • Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B, 1999. A Follower Load Increases the Load-Carrying Capacity of The Lumbar Spine in Compression. Spine, 24(10): 1003-1009. doi:10.1097/00007632-199905150-00014
  • Perez-Orribo L, Zucherman JF, Hsu KY, Reyes PM, Rodriguez-Martinez NG, Crawford NR, 2016. Biomechanics of a Posterior Lumbar Motion Stabilizing Device In Vitro Comparison to Intact and Fused Conditions. Spine, 41(2): 55-63. doi: 10.1097/Brs.0000000000001148
  • Ramos A, Duarte RJ, Mesnard M, 2015. Prediction at Long-Term Condyle Screw Fixation of Temporomandibular Joint Implant: A Numerical Study. Journal of Cranio-Maxillofacial Surgery, 43(4): 469-474. doi:10.1016/j.jcms.2015.02.013
  • Rana, M., J. K. Biswas, S. Roy, P. Biswas, S. K. Karmakar and A. Roychowdhury (2020). "Motion analysis of lumbar vertebrae for different rod materials and flexible rod device – An experimental and finite element study." Biocybernetics and Biomedical Engineering 40(1): 415-425.
  • Rana, M., S. Roy, P. Biswas, S. K. Biswas and J. K. Biswas (2020). "Design and development of a novel expanding flexible rod device (FRD) for stability in the lumbar spine: A finite-element study." The International Journal of Artificial Organs 43(12): 803-810.
  • Rohlmann A, Nabil Boustani H, Bergmann G, Zander T, 2010. Effect Of A Pedicle-Screw-Based Motion Preservation System on Lumbar Spine Biomechanics: A Probabilistic Finite Element Study with Subsequent Sensitivity Analysis. Journal of Biomechanics, 43(15): 2963-2969. doi: 10.1016/j.jbiomech.2010.07.018
  • Rohlmann A, Neller S, Claes L, Bergmann G, Wilke, H, 2002. Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine. Spine, (26): 557-561. doi: 10.1097/00007632-200112150-00014
  • Sensoy AT, Kaymaz I, Alsaran A 2015. İnsan Omurgasına Sanal Cerrahi ile Yerleştirilen Mikroçatlaklı Pedikül Vidalardaki Mekanik Davranışın Sonlu Elemanlar Yöntemiyle İncelenmesi. Mühendislikte Yeni Teknolojiler Sempozyumu,22-23 Ekim 2015, Bayburt. doi: 10.13140/RG.2.2.10569.34404
  • Shen HK, Fogel GR, Zhu J, Liao ZH, Liu WQ, 2019. Biomechanical Analysis of Different Lumbar Interspinous Process Devices: A Finite Element Study. World Neurosurgery, (127): 1112-1119. doi: 10.1016/j.wneu.2019.04.051
  • Wu TK, Meng Y, Wang BY, Rong X, Hong Y, Ding C, Liu H, 2019. Biomechanics Following Skip-Level Cervical Disc Arthroplasty Versus Skip-Level Cervical Discectomy and Fusion: A Finite Element-Based Study. Bmc Musculoskeletal Disorders, 20(49). doi:10.1186/s12891-019-2425-3
  • Zahari SN, Latif MJA, Rahim NRA, Kadir MRA, Kamarul T, 2017. The Effects of Physiological Biomechanical Loading on Intradiscal Pressure and Annulus Stress in Lumbar Spine: A Finite Element Analysis. Journal of Healthcare Engineering, 9618940. doi: 10.1155/2017/9618940
  • Zhong ZC, Hung C, Lin HM, Wang YH, Huang CH, Chen CS 2013. The Influence of Different Magnitudes and Methods of Applying Preload on Fusion and Disc Replacement Constructs in The Lumbar Spine: A Finite Element Analysis. Computer Methods in Biomechanics and Biomedical Engineering, 16(9): 943-953. doi: 10.1080/10255842.2011.645226
  • Zhong ZC, Wei SH, Wang JP, Feng CK, Chen CS, Yu CH, 2006. Finite Element Analysis of the Lumbar Spine with A New Cage Using A Topology Optimization Method. Medical Engineering & Physics, 28(1): 90-98. doi: 10.1016/j.medengphy.2005.03.007
  • Zhu WY, Zang L, Li J, Guan L, Hai Y, 2019. A Biomechanical Study on Proximal Junctional Kyphosis Following Long-Segment Posterior Spinal Fusion. Brazilian Journal of Medical and Biological Research, 52(5). doi: 10.1590/1414-431X20197748
  • Zhu ZQ, Liu CJ, Wang KF, Zhou J, Wang JF, Zhu Y, Liu HY, 2015. Topping-Off Technique Prevents Aggravation of Degeneration of Adjacent Segment Fusion Revealed by Retrospective and Finite Element Biomechanical Analysis. Journal of Orthopaedic Surgery and Research, 10(10). doi:10.1186/s13018-014-0142-z

Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease

Year 2022, Volume: 12 Issue: 4, 2408 - 2415, 01.12.2022
https://doi.org/10.21597/jist.1159127

Abstract

Adjacent Segment Disease (ASD) is a postoperative drawback of spinal fusion surgery which yields an increase in the range of motion in the adjacent spinal level. Therefore, the main aim of this study is to investigate the optimum mechanical properties of the spinal rod allowing a reduced rigidity in the spinal fixation level for decreasing the displacement of the adjacent segment. In this study, the spinal fixation system was modelled and attached to L3-L4 level. The elasticity modulus of the rods and the follower load were parametrically defined in order to investigate their optimum values under physiological loading conditions of extension. The maximum displacement value determined for the upper adjacent intervertebral disc was defined as the output parameter. Thereafter, the biomechanical response of the spinal bone-implant complex was simulated using Finite Element Analysis (FEA). Using the parametric FEA results, a polynomial mathematical model was constructed and Response Surface Method (RSM) was used to plot the relationship between input and output parameters. According to the results of the study, the optimum elasticity modulus of the rods and the suggested follower load have been determined as 80.8 GPa and 303.84 N, respectively. The maximum principal strain values obtained in the pedicle screws were 746 µℇ, 1563 µℇ, 3037 µℇ and 2937 µℇ, respectively. However, since the results are strongly associated with anatomical and biomechanical differences, the proposed patient-specific approach may enhance the accuracy for a more successful spinal fusion surgery operation in terms of minimizing the risk of ASD.

References

  • Buchanan TS, Lloyd DG, Manal K, Besier TF, 2004. Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements from Measurements of Neural Command. Journal of Applied Biomechanics, 20(4): 367-395. doi: 10.1123/jab.20.4.367
  • Buchanan TS, Lloyd DG, Manal K, Besier TF, 2005. Estimation of Muscle Forces and Joint Moments Using a Forward-Inverse Dynamics Model. Medicine & Science in Sports & Exercise, 37(11): 1911-1916. doi: 10.1249/01.mss.0000176684.24008.6f
  • Caprara S, Moschini G, Snedeker J, Farshad M, Senteler M, 2020. Spinal Sagittal Alignment Goals based on Statistical Modelling and Musculoskeletal Simulations. Journal of Biomechanics, 102:109621. doi: 10.1016/j.jbiomech.2020.109621
  • Carreon LY, Glassman SD, Howard J, 2008. Fusion and Nonsurgical Treatment for Symptomatic Lumbar Degenerative Disease: A Systematic Review Of Oswestry Disability Index and MOS Short Form-36 Outcomes. Spine Journal, 8(5): 747-755. doi: 10.1016/j.spinee.2007.06.013
  • Erbulut D, Erbulut D, 2014. Biomechanical Effect of Graded Facetectomy on Asymmetrical Finite Element Lumbar Spine. Turkish Neurosurgery, 24(6): 923-928. doi: 10.5137/1019-5149.jtn.11984-14.2
  • Erbulut DU, Zafarparandeh I, Hassan CR, Lazoglu I, Ozer AF, 2015. Determination of The Biomechanical Effect of an Interspinous Process Device on Implanted and Adjacent Lumbar Spinal Segments Using a Hybrid Testing Protocol: A Finite-Element Study. 23(2): 200-208. doi: 10.3171/2014.12.spine14419
  • Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG, 2004. Adjacent Segment Degeneration in the Lumbar Spine. Journal of Bone and Joint Surgery-American Volume, 86a(7): 1497-1503.
  • Goel VK, Nyman E, 2016. Computational Modeling and Finite Element Analysis. Spine, 41(7). doi: 10.1097/BRS.0000000000001421. PMID: 27015076.
  • Han KS, Zander T, Taylor WR, Rohlmann A, 2012. An Enhanced and Validated Generic Thoraco-Lumbar Spine Model for Prediction of Muscle Forces. Medical Engineering & Physics, 34(6): 709-716. doi: 10.1016/j.medengphy.2011.09.014
  • Kaner T, Sasani M, Oktenoglu T, Ozer AF, 2010. Dynamic Stabilization of the Spine: A New Classification System. Turkish Neurosurgery, 20(2): 205-215.
  • Kumar MN, Baklanov A, Chopin D, 2001. Correlation Between Sagittal Plane Changes and Adjacent Segment Degeneration Following Lumbar Spine Fusion. European Spine Journal, 10(4): 314-319. doi: 10.1007/s005860000239 Lingutla KK, Pollock R, Benomran E, Purushothaman B, Kasis A, Bhatia CK, Friesem T, 2015. Outcome of Lumbar Spinal Fusion Surgery in Obese Patients: A Systematıc Review and Meta-Analysis. Bone & Joint Journal, 97b(10): 1395-1404. doi: 10.1302/0301-620x.97b10.35724
  • Mackiewicz A, Banach M, Denisiewicz A, Bedzinski R 2016. Comparative Studies of Cervical Spine Anterior Stabilization Systems - Finite Element Analysis. Clinical Biomechanics, (32):72-79. doi: 10.1016/j.clinbiomech.2015.11.016
  • Metzger MF, Robinson ST, Maldonado RC, Rawlinson J, Liu J, Acosta FL 2017. Biomechanical Analysis of Lateral Interbody Fusion Strategies for Adjacent Segment Degeneration in the Lumbar Spine. Spine Journal, 17(7), 1004-1011. doi: 10.1016/j.spinee.2017.03.005
  • Niemeyer F, Wilke HJ, Schmidt H, 2012. Geometry Strongly Influences the Response of Numerical Models of The Lumbar Spine--A Probabilistic Finite Element Analysis. Journal of Biomechanics, 45(8): 1414-1423. doi: 10.1016/j.jbiomech.2012.02.021
  • Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B, 1999. A Follower Load Increases the Load-Carrying Capacity of The Lumbar Spine in Compression. Spine, 24(10): 1003-1009. doi:10.1097/00007632-199905150-00014
  • Perez-Orribo L, Zucherman JF, Hsu KY, Reyes PM, Rodriguez-Martinez NG, Crawford NR, 2016. Biomechanics of a Posterior Lumbar Motion Stabilizing Device In Vitro Comparison to Intact and Fused Conditions. Spine, 41(2): 55-63. doi: 10.1097/Brs.0000000000001148
  • Ramos A, Duarte RJ, Mesnard M, 2015. Prediction at Long-Term Condyle Screw Fixation of Temporomandibular Joint Implant: A Numerical Study. Journal of Cranio-Maxillofacial Surgery, 43(4): 469-474. doi:10.1016/j.jcms.2015.02.013
  • Rana, M., J. K. Biswas, S. Roy, P. Biswas, S. K. Karmakar and A. Roychowdhury (2020). "Motion analysis of lumbar vertebrae for different rod materials and flexible rod device – An experimental and finite element study." Biocybernetics and Biomedical Engineering 40(1): 415-425.
  • Rana, M., S. Roy, P. Biswas, S. K. Biswas and J. K. Biswas (2020). "Design and development of a novel expanding flexible rod device (FRD) for stability in the lumbar spine: A finite-element study." The International Journal of Artificial Organs 43(12): 803-810.
  • Rohlmann A, Nabil Boustani H, Bergmann G, Zander T, 2010. Effect Of A Pedicle-Screw-Based Motion Preservation System on Lumbar Spine Biomechanics: A Probabilistic Finite Element Study with Subsequent Sensitivity Analysis. Journal of Biomechanics, 43(15): 2963-2969. doi: 10.1016/j.jbiomech.2010.07.018
  • Rohlmann A, Neller S, Claes L, Bergmann G, Wilke, H, 2002. Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine. Spine, (26): 557-561. doi: 10.1097/00007632-200112150-00014
  • Sensoy AT, Kaymaz I, Alsaran A 2015. İnsan Omurgasına Sanal Cerrahi ile Yerleştirilen Mikroçatlaklı Pedikül Vidalardaki Mekanik Davranışın Sonlu Elemanlar Yöntemiyle İncelenmesi. Mühendislikte Yeni Teknolojiler Sempozyumu,22-23 Ekim 2015, Bayburt. doi: 10.13140/RG.2.2.10569.34404
  • Shen HK, Fogel GR, Zhu J, Liao ZH, Liu WQ, 2019. Biomechanical Analysis of Different Lumbar Interspinous Process Devices: A Finite Element Study. World Neurosurgery, (127): 1112-1119. doi: 10.1016/j.wneu.2019.04.051
  • Wu TK, Meng Y, Wang BY, Rong X, Hong Y, Ding C, Liu H, 2019. Biomechanics Following Skip-Level Cervical Disc Arthroplasty Versus Skip-Level Cervical Discectomy and Fusion: A Finite Element-Based Study. Bmc Musculoskeletal Disorders, 20(49). doi:10.1186/s12891-019-2425-3
  • Zahari SN, Latif MJA, Rahim NRA, Kadir MRA, Kamarul T, 2017. The Effects of Physiological Biomechanical Loading on Intradiscal Pressure and Annulus Stress in Lumbar Spine: A Finite Element Analysis. Journal of Healthcare Engineering, 9618940. doi: 10.1155/2017/9618940
  • Zhong ZC, Hung C, Lin HM, Wang YH, Huang CH, Chen CS 2013. The Influence of Different Magnitudes and Methods of Applying Preload on Fusion and Disc Replacement Constructs in The Lumbar Spine: A Finite Element Analysis. Computer Methods in Biomechanics and Biomedical Engineering, 16(9): 943-953. doi: 10.1080/10255842.2011.645226
  • Zhong ZC, Wei SH, Wang JP, Feng CK, Chen CS, Yu CH, 2006. Finite Element Analysis of the Lumbar Spine with A New Cage Using A Topology Optimization Method. Medical Engineering & Physics, 28(1): 90-98. doi: 10.1016/j.medengphy.2005.03.007
  • Zhu WY, Zang L, Li J, Guan L, Hai Y, 2019. A Biomechanical Study on Proximal Junctional Kyphosis Following Long-Segment Posterior Spinal Fusion. Brazilian Journal of Medical and Biological Research, 52(5). doi: 10.1590/1414-431X20197748
  • Zhu ZQ, Liu CJ, Wang KF, Zhou J, Wang JF, Zhu Y, Liu HY, 2015. Topping-Off Technique Prevents Aggravation of Degeneration of Adjacent Segment Fusion Revealed by Retrospective and Finite Element Biomechanical Analysis. Journal of Orthopaedic Surgery and Research, 10(10). doi:10.1186/s13018-014-0142-z
There are 29 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Abdullah Tahir Şensoy 0000-0002-9371-8307

Early Pub Date November 25, 2022
Publication Date December 1, 2022
Submission Date August 8, 2022
Acceptance Date September 20, 2022
Published in Issue Year 2022 Volume: 12 Issue: 4

Cite

APA Şensoy, A. T. (2022). Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease. Journal of the Institute of Science and Technology, 12(4), 2408-2415. https://doi.org/10.21597/jist.1159127
AMA Şensoy AT. Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease. J. Inst. Sci. and Tech. December 2022;12(4):2408-2415. doi:10.21597/jist.1159127
Chicago Şensoy, Abdullah Tahir. “Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease”. Journal of the Institute of Science and Technology 12, no. 4 (December 2022): 2408-15. https://doi.org/10.21597/jist.1159127.
EndNote Şensoy AT (December 1, 2022) Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease. Journal of the Institute of Science and Technology 12 4 2408–2415.
IEEE A. T. Şensoy, “Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease”, J. Inst. Sci. and Tech., vol. 12, no. 4, pp. 2408–2415, 2022, doi: 10.21597/jist.1159127.
ISNAD Şensoy, Abdullah Tahir. “Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease”. Journal of the Institute of Science and Technology 12/4 (December 2022), 2408-2415. https://doi.org/10.21597/jist.1159127.
JAMA Şensoy AT. Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease. J. Inst. Sci. and Tech. 2022;12:2408–2415.
MLA Şensoy, Abdullah Tahir. “Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease”. Journal of the Institute of Science and Technology, vol. 12, no. 4, 2022, pp. 2408-15, doi:10.21597/jist.1159127.
Vancouver Şensoy AT. Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease. J. Inst. Sci. and Tech. 2022;12(4):2408-15.