Research Article
BibTex RIS Cite

Doğrusal Olmayan Adsorpsiyon İzoterm Modellerinin Hata Analizi ile Optimizasyonu

Year 2023, Volume: 13 Issue: 1, 200 - 212, 01.03.2023
https://doi.org/10.21597/jist.1163166

Abstract

Bu çalışmada, sulu çözeltilerden kristal menekşe boyasının montmorillonit üzerine adsorpsiyonu araştırılmış ve denge izotermleri belirlenmiştir. İki parametreli denklemler Langmuir, Freundlich, Temkin izotermleri ve üç parametreli denklemler Sips, Toth, Khan izotermleri denge adsorpsiyon verilerini modelleme becerileri açısından incelenmiştir. En uygun izotermi belirlemek için hataların karelerinin toplamı, melez bir hata fonksiyonu, ortalama bağıl hata, Marquardt'ın standart sapma yüzdesi ve mutlak hataların toplamı olmak üzere beş hata analiz yöntemi kullanılmıştır. Sips izotermi, deneysel verilerle en iyi uyumu elde etmiştir ve maksimum adsorpsiyon kapasitesi 152.229 mg/g olarak bulunmuştur. Normalleştirilmiş hataların toplamı, melez kesirli hata fonksiyonunun en iyi sonuçları sağladığını göstermiştir.

References

  • Adamson, A. W., & Gast, A. P. (1967). Physical chemistry of surfaces (C. 150). Interscience publishers New York.
  • Al Kausor, M., Gupta, S. S., Bhattacharyya, K. G., & Chakrabortty, D. (2022). Montmorillonite and Modified Montmorillonite as Adsorbents for Removal of Water Soluble Organic Dyes: A Review on Current Status of the Art. Inorganic Chemistry Communications, 109686.
  • Aladağ, E., Fil, B. A., Boncukcuoğlu, R., Sözüdoğru, O., & Yılmaz, A. E. (2014). Adsorption of methyl violet dye, a textile industry effluent onto montmorillonite—Batch study. Journal of dispersion science and technology, 35(12), 1737-1744.
  • Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of hazardous materials, 393, 122383. Alhendawi, H. M., Brunet, E., Payán, E. R., Juanes, O., Ubis, J. C. R., & Al-Asqalany, M. (2012). Surfactant-assisted intercalation of crystal violet in layered γ-zirconium phosphate. Dye uptake from aqueous solutions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 73(1), 387-396.
  • Al-Qodah, Z., Lafi, W., Al-Anber, Z., Al-Shannag, M., & Harahsheh, A. (2007). Adsorption of methylene blue by acid and heat treated diatomaceous silica. Desalination, 217(1-3), 212-224.
  • Alyasi, H., Mackey, H., & McKay, G. (2021). Novel model analysis for multimechanistic adsorption processes: Case study: Cadmium on nanochitosan. Separation and Purification Technology, 274, 117925.
  • Bingul, Z., & Adar, E. (2021). Usability of spent Salvia officinalis as a low-cost adsorbent in the removal of toxic dyes: Waste assessment and circular economy. International Journal of Environmental Analytical Chemistry, 1-16.
  • Bingul, Z., Gurbuz, H., Aslan, A., & Ercisli, S. (2016). Biosorption of zinc (ii) from aqueous solutions by nonliving lichen biomass of xanthoria parietina (l.) th. Fr. Environmental Engineering & Management Journal (EEMJ), 15(12).
  • Bulut, E., Özacar, M., & Şengil, İ. A. (2008). Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Microporous and mesoporous materials, 115(3), 234-246.
  • Chan, L., Cheung, W., Allen, S., & McKay, G. (2012). Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chinese Journal of Chemical Engineering, 20(3), 535-542.
  • Chanikya, P., Nidheesh, P., Babu, D. S., Gopinath, A., & Kumar, M. S. (2021). Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes. Separation and Purification Technology, 254, 117570.
  • Disli, E., Ozturk, D., & Aladağ, E. (2021). Utilizing mining dam bottom sludge as a novel adsorbent for AuO removal from wastewaters: Batch and column studies. Journal of Molecular Liquids, 338, 116644.
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10.
  • Fortunato, L., Elcik, H., Blankert, B., Ghaffour, N., & Vrouwenvelder, J. (2021). Textile dye wastewater treatment by direct contact membrane distillation: Membrane performance and detailed fouling analysis. Journal of Membrane Science, 636, 119552.
  • Freundlich, H. (1906). Over the adsorption in solution. J. Phys. chem, 57(385471), 1100-1107.
  • Gimbert, F., Morin-Crini, N., Renault, F., Badot, P.-M., & Crini, G. (2008). Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis. Journal of hazardous materials, 157(1), 34-46.
  • Hassaan, M. A., El Nemr, A., El-Zahhar, A. A., Idris, A. M., Alghamdi, M. M., Sahlabji, T., & Said, T. O. (2022). Degradation mechanism of Direct Red 23 dye by advanced oxidation processes: A comparative study. Toxin Reviews, 41(1), 38-47.
  • Ho, Y. S., Porter, J. F., & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, air, and soil pollution, 141(1), 1-33.
  • İrdemez, Ş., Özyay, G., Torun, F. E., Kul, S., & Bingül, Z. (2022). Comparison of Bomaplex Blue CR-L Removal by Adsorption Using Raw and Activated Pumpkin Seed Shells. Ecological Chemistry and Engineering S, 29(2), 199-216.
  • Kapoor, A., & Yang, R. (1989). Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Separation & Purification, 3(4), 187-192.
  • Karri, R. R., Sahu, J., & Jayakumar, N. (2017). Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and non-linear methods. Journal of the Taiwan Institute of Chemical Engineers, 80, 472-487.
  • Khan, A., Ataullah, R., & Al-Haddad, A. (1997). Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. Journal of colloid and interface science, 194(1), 154-165.
  • Kumar, K. V., & Sivanesan, S. (2005). Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon. Journal of hazardous materials, 123(1-3), 288-292.
  • Kumar, R., & Ahmad, R. (2011). Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination, 265(1-3), 112-118.
  • Kumar, V. (2019). Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+ 2 ions from aqueous solutions by a hybrid ion-exchanger. Arabian Journal of Chemistry, 12(3), 316-329.
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 38(11), 2221-2295.
  • Li, W., Mu, B., & Yang, Y. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277, 157-170.
  • Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthes, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied geochemistry, 22(2), 249-275.
  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441.
  • Miraboutalebi, S. M., Nikouzad, S. K., Peydayesh, M., Allahgholi, N., Vafajoo, L., & McKay, G. (2017). Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Safety and Environmental Protection, 106, 191-202.
  • Myers, R. H. (1990). Classical and modern regression with applications (C. 2). Duxbury press Belmont, CA. Nandi, B., Goswami, A., Das, A., Mondal, B., & Purkait, M. (2008). Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent. Separation Science and Technology, 43(6), 1382-1403.
  • Narayanan, N., Gupta, S., Gajbhiye, V., & Manjaiah, K. (2017). Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Chemosphere, 173, 502-511.
  • Ncibi, M. C. (2008). Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. Journal of Hazardous Materials, 153(1-2), 207-212.
  • Porter, J. F., McKay, G., & Choy, K. H. (1999). The prediction of sorption from a binary mixture of acidic dyes using single-and mixed-isotherm variants of the ideal adsorbed solute theory. Chemical Engineering Science, 54(24), 5863-5885.
  • Puri, C., & Sumana, G. (2018). Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Applied Clay Science, 166, 102-112.
  • Reçber, Z. (2022). Adsorption of methylene blue onto spent Alchemilla vulgaris leaves: Characterization, isotherms, kinetic and thermodynamic studies. International Journal of Environmental Science and Technology, 19(6), 4803-4814.
  • Saha, P. D., Chakraborty, S., & Chowdhury, S. (2012). Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloids and Surfaces B: Biointerfaces, 92, 262-270.
  • Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143, 138-163.
  • Shahmohammadi-Kalalagh, S., & Babazadeh, H. (2014). Isotherms for the sorption of zinc and copper onto kaolinite: Comparison of various error functions. International Journal of Environmental Science and Technology, 11(1), 111-118.
  • Shoukat, R., Khan, S. J., & Jamal, Y. (2019). Hybrid anaerobic-aerobic biological treatment for real textile wastewater. Journal of Water Process Engineering, 29, 100804.
  • Sips, R. (1948). Combined form of Langmuir and Freundlich equations. J. Chem. Phys, 16(429), 490-495.
  • Tao, Y. F., Lin, W. G., Gao, L., Yang, J., Zhou, Y., Yang, J. Y., Wei, F., Wang, Y., & Zhu, J. H. (2011). Low-cost and effective phenol and basic dyes trapper derived from the porous silica coated with hydrotalcite gel. Journal of colloid and interface science, 358(2), 554-561.
  • Temkin, M. I. (1941). Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules. Zh. Fiz. Chim., 15, 296-332.
  • Tóth, J. (2000). Calculation of the BET-compatible surface area from any type I isotherms measured above the critical temperature. Journal of Colloid and Interface Science, 225(2), 378-383.
  • Yang, H., Zhou, D., Chang, Z., & Zhang, L. (2014). Adsorption of crystal violet onto amino silica: Optimization, equilibrium, and kinetic studies. Desalination and Water Treatment, 52(31-33), 6113-6121.
  • Yang, Y., Yu, W., He, S., Yu, S., Chen, Y., Lu, L., Shu, Z., Cui, H., Zhang, Y., & Jin, H. (2019). Rapid adsorption of cationic dye-methylene blue on the modified montmorillonite/graphene oxide composites. Applied Clay Science, 168, 304-311.
  • Zolgharnein, J., Bagtash, M., & Shariatmanesh, T. (2015). Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 1016-1028.

Optimization of Nonlinear Adsorption Isotherm Models by Error Analysis

Year 2023, Volume: 13 Issue: 1, 200 - 212, 01.03.2023
https://doi.org/10.21597/jist.1163166

Abstract

In this study, the adsorption of crystal violet dye from aqueous solution onto montmorillonite was studied and the equilibrium isotherms were determined. Two-parameter equations; the Langmuir, Freundlich, and Temkin isotherms, and three-parameter equations; the Sips, Toth, and Khan isotherms were examined for their ability to model the equilibrium adsorption data. Five error analysis methods were used to determine the optimal isotherm: the sum of the errors squared, a hybrid error function, the average relative error, Marquardt's percent standard deviation, and the sum of absolute errors. The Sips isotherm achieved the best-fit quality with the experimental data and the maximum adsorption capacity was found to be 152.229 mg/g. The sum of the normalized errors showed that the hybrid fractional error function obtained the best overall results.

References

  • Adamson, A. W., & Gast, A. P. (1967). Physical chemistry of surfaces (C. 150). Interscience publishers New York.
  • Al Kausor, M., Gupta, S. S., Bhattacharyya, K. G., & Chakrabortty, D. (2022). Montmorillonite and Modified Montmorillonite as Adsorbents for Removal of Water Soluble Organic Dyes: A Review on Current Status of the Art. Inorganic Chemistry Communications, 109686.
  • Aladağ, E., Fil, B. A., Boncukcuoğlu, R., Sözüdoğru, O., & Yılmaz, A. E. (2014). Adsorption of methyl violet dye, a textile industry effluent onto montmorillonite—Batch study. Journal of dispersion science and technology, 35(12), 1737-1744.
  • Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of hazardous materials, 393, 122383. Alhendawi, H. M., Brunet, E., Payán, E. R., Juanes, O., Ubis, J. C. R., & Al-Asqalany, M. (2012). Surfactant-assisted intercalation of crystal violet in layered γ-zirconium phosphate. Dye uptake from aqueous solutions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 73(1), 387-396.
  • Al-Qodah, Z., Lafi, W., Al-Anber, Z., Al-Shannag, M., & Harahsheh, A. (2007). Adsorption of methylene blue by acid and heat treated diatomaceous silica. Desalination, 217(1-3), 212-224.
  • Alyasi, H., Mackey, H., & McKay, G. (2021). Novel model analysis for multimechanistic adsorption processes: Case study: Cadmium on nanochitosan. Separation and Purification Technology, 274, 117925.
  • Bingul, Z., & Adar, E. (2021). Usability of spent Salvia officinalis as a low-cost adsorbent in the removal of toxic dyes: Waste assessment and circular economy. International Journal of Environmental Analytical Chemistry, 1-16.
  • Bingul, Z., Gurbuz, H., Aslan, A., & Ercisli, S. (2016). Biosorption of zinc (ii) from aqueous solutions by nonliving lichen biomass of xanthoria parietina (l.) th. Fr. Environmental Engineering & Management Journal (EEMJ), 15(12).
  • Bulut, E., Özacar, M., & Şengil, İ. A. (2008). Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Microporous and mesoporous materials, 115(3), 234-246.
  • Chan, L., Cheung, W., Allen, S., & McKay, G. (2012). Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chinese Journal of Chemical Engineering, 20(3), 535-542.
  • Chanikya, P., Nidheesh, P., Babu, D. S., Gopinath, A., & Kumar, M. S. (2021). Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes. Separation and Purification Technology, 254, 117570.
  • Disli, E., Ozturk, D., & Aladağ, E. (2021). Utilizing mining dam bottom sludge as a novel adsorbent for AuO removal from wastewaters: Batch and column studies. Journal of Molecular Liquids, 338, 116644.
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10.
  • Fortunato, L., Elcik, H., Blankert, B., Ghaffour, N., & Vrouwenvelder, J. (2021). Textile dye wastewater treatment by direct contact membrane distillation: Membrane performance and detailed fouling analysis. Journal of Membrane Science, 636, 119552.
  • Freundlich, H. (1906). Over the adsorption in solution. J. Phys. chem, 57(385471), 1100-1107.
  • Gimbert, F., Morin-Crini, N., Renault, F., Badot, P.-M., & Crini, G. (2008). Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis. Journal of hazardous materials, 157(1), 34-46.
  • Hassaan, M. A., El Nemr, A., El-Zahhar, A. A., Idris, A. M., Alghamdi, M. M., Sahlabji, T., & Said, T. O. (2022). Degradation mechanism of Direct Red 23 dye by advanced oxidation processes: A comparative study. Toxin Reviews, 41(1), 38-47.
  • Ho, Y. S., Porter, J. F., & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, air, and soil pollution, 141(1), 1-33.
  • İrdemez, Ş., Özyay, G., Torun, F. E., Kul, S., & Bingül, Z. (2022). Comparison of Bomaplex Blue CR-L Removal by Adsorption Using Raw and Activated Pumpkin Seed Shells. Ecological Chemistry and Engineering S, 29(2), 199-216.
  • Kapoor, A., & Yang, R. (1989). Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Separation & Purification, 3(4), 187-192.
  • Karri, R. R., Sahu, J., & Jayakumar, N. (2017). Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and non-linear methods. Journal of the Taiwan Institute of Chemical Engineers, 80, 472-487.
  • Khan, A., Ataullah, R., & Al-Haddad, A. (1997). Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. Journal of colloid and interface science, 194(1), 154-165.
  • Kumar, K. V., & Sivanesan, S. (2005). Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon. Journal of hazardous materials, 123(1-3), 288-292.
  • Kumar, R., & Ahmad, R. (2011). Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination, 265(1-3), 112-118.
  • Kumar, V. (2019). Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+ 2 ions from aqueous solutions by a hybrid ion-exchanger. Arabian Journal of Chemistry, 12(3), 316-329.
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 38(11), 2221-2295.
  • Li, W., Mu, B., & Yang, Y. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277, 157-170.
  • Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthes, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied geochemistry, 22(2), 249-275.
  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441.
  • Miraboutalebi, S. M., Nikouzad, S. K., Peydayesh, M., Allahgholi, N., Vafajoo, L., & McKay, G. (2017). Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Safety and Environmental Protection, 106, 191-202.
  • Myers, R. H. (1990). Classical and modern regression with applications (C. 2). Duxbury press Belmont, CA. Nandi, B., Goswami, A., Das, A., Mondal, B., & Purkait, M. (2008). Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent. Separation Science and Technology, 43(6), 1382-1403.
  • Narayanan, N., Gupta, S., Gajbhiye, V., & Manjaiah, K. (2017). Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Chemosphere, 173, 502-511.
  • Ncibi, M. C. (2008). Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. Journal of Hazardous Materials, 153(1-2), 207-212.
  • Porter, J. F., McKay, G., & Choy, K. H. (1999). The prediction of sorption from a binary mixture of acidic dyes using single-and mixed-isotherm variants of the ideal adsorbed solute theory. Chemical Engineering Science, 54(24), 5863-5885.
  • Puri, C., & Sumana, G. (2018). Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Applied Clay Science, 166, 102-112.
  • Reçber, Z. (2022). Adsorption of methylene blue onto spent Alchemilla vulgaris leaves: Characterization, isotherms, kinetic and thermodynamic studies. International Journal of Environmental Science and Technology, 19(6), 4803-4814.
  • Saha, P. D., Chakraborty, S., & Chowdhury, S. (2012). Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloids and Surfaces B: Biointerfaces, 92, 262-270.
  • Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143, 138-163.
  • Shahmohammadi-Kalalagh, S., & Babazadeh, H. (2014). Isotherms for the sorption of zinc and copper onto kaolinite: Comparison of various error functions. International Journal of Environmental Science and Technology, 11(1), 111-118.
  • Shoukat, R., Khan, S. J., & Jamal, Y. (2019). Hybrid anaerobic-aerobic biological treatment for real textile wastewater. Journal of Water Process Engineering, 29, 100804.
  • Sips, R. (1948). Combined form of Langmuir and Freundlich equations. J. Chem. Phys, 16(429), 490-495.
  • Tao, Y. F., Lin, W. G., Gao, L., Yang, J., Zhou, Y., Yang, J. Y., Wei, F., Wang, Y., & Zhu, J. H. (2011). Low-cost and effective phenol and basic dyes trapper derived from the porous silica coated with hydrotalcite gel. Journal of colloid and interface science, 358(2), 554-561.
  • Temkin, M. I. (1941). Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules. Zh. Fiz. Chim., 15, 296-332.
  • Tóth, J. (2000). Calculation of the BET-compatible surface area from any type I isotherms measured above the critical temperature. Journal of Colloid and Interface Science, 225(2), 378-383.
  • Yang, H., Zhou, D., Chang, Z., & Zhang, L. (2014). Adsorption of crystal violet onto amino silica: Optimization, equilibrium, and kinetic studies. Desalination and Water Treatment, 52(31-33), 6113-6121.
  • Yang, Y., Yu, W., He, S., Yu, S., Chen, Y., Lu, L., Shu, Z., Cui, H., Zhang, Y., & Jin, H. (2019). Rapid adsorption of cationic dye-methylene blue on the modified montmorillonite/graphene oxide composites. Applied Clay Science, 168, 304-311.
  • Zolgharnein, J., Bagtash, M., & Shariatmanesh, T. (2015). Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 1016-1028.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Çevre Mühendisliği / Environment Engineering
Authors

Erdinç Aladağ 0000-0003-1354-0930

Early Pub Date February 24, 2023
Publication Date March 1, 2023
Submission Date August 17, 2022
Acceptance Date December 2, 2022
Published in Issue Year 2023 Volume: 13 Issue: 1

Cite

APA Aladağ, E. (2023). Doğrusal Olmayan Adsorpsiyon İzoterm Modellerinin Hata Analizi ile Optimizasyonu. Journal of the Institute of Science and Technology, 13(1), 200-212. https://doi.org/10.21597/jist.1163166
AMA Aladağ E. Doğrusal Olmayan Adsorpsiyon İzoterm Modellerinin Hata Analizi ile Optimizasyonu. J. Inst. Sci. and Tech. March 2023;13(1):200-212. doi:10.21597/jist.1163166
Chicago Aladağ, Erdinç. “Doğrusal Olmayan Adsorpsiyon İzoterm Modellerinin Hata Analizi Ile Optimizasyonu”. Journal of the Institute of Science and Technology 13, no. 1 (March 2023): 200-212. https://doi.org/10.21597/jist.1163166.
EndNote Aladağ E (March 1, 2023) Doğrusal Olmayan Adsorpsiyon İzoterm Modellerinin Hata Analizi ile Optimizasyonu. Journal of the Institute of Science and Technology 13 1 200–212.
IEEE E. Aladağ, “Doğrusal Olmayan Adsorpsiyon İzoterm Modellerinin Hata Analizi ile Optimizasyonu”, J. Inst. Sci. and Tech., vol. 13, no. 1, pp. 200–212, 2023, doi: 10.21597/jist.1163166.
ISNAD Aladağ, Erdinç. “Doğrusal Olmayan Adsorpsiyon İzoterm Modellerinin Hata Analizi Ile Optimizasyonu”. Journal of the Institute of Science and Technology 13/1 (March 2023), 200-212. https://doi.org/10.21597/jist.1163166.
JAMA Aladağ E. Doğrusal Olmayan Adsorpsiyon İzoterm Modellerinin Hata Analizi ile Optimizasyonu. J. Inst. Sci. and Tech. 2023;13:200–212.
MLA Aladağ, Erdinç. “Doğrusal Olmayan Adsorpsiyon İzoterm Modellerinin Hata Analizi Ile Optimizasyonu”. Journal of the Institute of Science and Technology, vol. 13, no. 1, 2023, pp. 200-12, doi:10.21597/jist.1163166.
Vancouver Aladağ E. Doğrusal Olmayan Adsorpsiyon İzoterm Modellerinin Hata Analizi ile Optimizasyonu. J. Inst. Sci. and Tech. 2023;13(1):200-12.