Research Article
BibTex RIS Cite

Optimization Effect on Green Synthesis of Silver Nanoparticles (AgNPs) Using Dimrit Raisin Extract and Their Antimicrobial Activity

Year 2023, Volume: 13 Issue: 3, 1926 - 1936, 01.09.2023
https://doi.org/10.21597/jist.1254243

Abstract

This paper describes the simple and environmentally friendly production of AgNPs using Dimrit raisin, grown in Burdur, extract. To optimize the synthesis of AgNPs, a number of variables, including extract concentration, silver solution concentration, synthesis time, and synthesis temperature, were investigated. AgNPs were obtained after 173 h at 1% extract concentration and 10-1 M silver concentration. The structure of the synthesised AgNPs was investigated by Transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). TEM analysis showed that the majority of the AgNPs had a spherical shape, and the average particle size was 30 nm. Antimicrobial activity was seen against Staphylococcus aureus ATTC43300, Enterococcus faecalis ATTC29212, Bacillus subtilis, Listeria monocytogenes, Klebsiella pneumoniae and Gram-negative Salmonella enterocolitis, E. coli 0157:H7 ATTC 43895, and Escherichia coli ATTC 35150.

Supporting Institution

Burdur Mehmet Akif Ersoy University

Project Number

0477-YL-17

Thanks

This research was supported by the Burdur Mehmet Akif Ersoy University Scientific Research Projects Coordinatorship under the project number of 0477-YL-17

References

  • Abbasi, T., Anuradha, J., Ganaie, S.U. & Abbasi, S. A. (2015). Biomimetic synthesis of nanoparticles using aqueous extracts of plants (botanical species). Journal of Nano Research, 31, 138-202.
  • Abdel-Raouf, N., Al-Enazi, N. M. & Ibraheem, I.B.M. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry,10, 3029–S3039.
  • Aboelfetoh, E. F., El-Shenody, R. A. & Ghobara, M. M. (2017). Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environmental Monitoring and Assessment, 189, 349-363.
  • Abudabbus, M. M., Jevremović, I., Nešović, K., Perić-Grujić, A., Rhee, K. Y. & Mišković-Stanković, V., (2018). In situ electrochemical synthesis of silver-doped poly(vinyl alcohol)/graphene composite hydrogels and their physico-chemical and thermal properties. Composites Part B, 140, 99–107.
  • Alabdallah, N. M. & Hasan, Md. M. (2021). Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi Journal of Biological Sciences, 28, 5631-5639.
  • Arakcheev, V., Bagratashvili, V., Bekin, A., Khmelenin, D., Minaev, N., Morozov, V. & Rybaltovsky, A., (2018). Effect of wavelength in laser-assisted synthesis of silver nanoparticles by supercritical deposition technique. The Journal of Supercritical Fluids, 140, 159–164.
  • Balouiri, M., Sadiki, M. & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79.
  • Bollella, P., Schulz, C., Favero, G., Mazzei, F., Ludwig, R., Gorton, L. & Antiochia, R. (2017). Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroynalysis, 29, 77-86.
  • Budi, S., Dhanasmoro, L., Purwanto, A. & Muhab, S. (2021). Time-dependent growth of the dendritic silver prepared using square wave voltammetry technique for methylene blue photodegradation. Polish Journal of Chemical Technology, 23(2), 60-65.
  • Doan, V.-D., Thieu, A.T., Nguyen, T.-D., Nguyen, V.-C., Cao, X.-T., Nguyen, T.L.-H. & Le, V.T. (2020). Biosynthesis of Gold Nanoparticles Using Litsea cubeba Fruit Extract for Catalytic Reduction of 4-Nitrophenol. Journal of Nanomaterials, https://doi.org/10.1155/2020/4548790
  • Dubey, S.P., Lahtinen, M. & Sillanpää, M. (2010). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry, 45, 1065-1071.
  • Dwivedi, A.D. & Gopal, K. (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369, 27–33. Fagbayigbo, B.O., Opeolu, B.O., Fatoki, O.S., Akenga, Ayuko, T. & Olatunji, O.S. (2017). Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter. Environmental Science & Pollution Research, 24, 13107-13120.
  • Govindappa, M., Hemashekhar, B. & Arthikala, M. (2018). Ravishankar Rai, V., Ramachandra, Y.L., Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results in Physics, 9, 400–408.
  • Hasan, K.M.F., Xiaoyi, L., Shaoqin, Z., Horvàth, P. G., Bak, M., Bejò, L., Sipos, G. & Alpàr, T. (2022). Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon, 8, 12322.
  • Hemmati, S., Rashtiani, A., Zangeneh, M. M., Mohammadi, P., Zangeneh, A. & Veisi, H. (2019). Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron, 158, 8-14.
  • Hoseinpour, V. & Ghaemi, N. (2018). Green synthesis of manganese nanoparticles: applications and future perspective–A review. Journal of Photochemistry & Photobiology, B: Biology, 189, 234-243.
  • Khatami, M., Alijani, H. Q., Fakheri, B., Mobasseri, M. M., Heydarpour, M., Farahani, Z. K. & Khan, A. U. (2019). Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. Journal of Cleaner Production, 208, 1171-1177.
  • Kirtiwar, S., Gharpure, S. & Ankamwar, B. (2019). Effect of nutrient media on antibacterial activity of silver nanoparticles synthesized using Neolamarckia cadamba. Journal of Nanoscience and Nanotechnology, 19, 1923-1933.
  • Kumar, B., Vizuete, K. S., Sharma, V., Debut, A. & Cumbal, L. (2019). Ecofriendly synthesis of monodispersed silver nanoparticles using Andean Mortiño berry as reductant and its photocatalytic activity. Vacuum, 160, 272–278.
  • Li, S., Shen, Y., Xie, A., Yu, X., Qui, L., Zhang, L. & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annum L. extract. Green Chemistry, 9, 852–858.
  • Meng, F., Sun, H., Huang, Y., Tang, Y. & Chen, Q. (2019). Peptide cleavage-based electrochemical biosensor coupling graphene oxide and silver nanoparticles. Analytica Chimica Acta, 1047, 45-51.
  • Moldovan, B., David, L., Vulcu, A., Olenic, L., Perde-Schrepler, M., Fischer-Fodor, E., Baldea, I., Clichici, S. & Filip, G. A. (2017). In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Materials Science and Engineering C, 79, 720–727. Moteriya, P., Padalia, H. & Chanda, S. (2014). Green biosynthesis of silver nanoparticles using Psidium guajava L. leaf extract and antibacterial activity against some pathogenic microorganisms. Journal of Pharmacy Research, 8(11),1579-1585.
  • Paosen, S., Saising, J., Septama, A. W. & Voravuthikunchai, S. P. (2017). Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity. Materials Letters, 209, 201–206.
  • Pereira, B. S., Silva, M. F., Bittencourt, P. R. S., de Oliveira, D. M. F., Pineda, E. A. G. & Hechenleitner, A. A. W. (2015). Cellophane and filter paper as cellulosic support for silver nanoparticles and its thermal decomposition catalysis. Carbohydrate Polymers, 133, 277–283.
  • Praphakar, R. A., Jeyaraj, M., Ahmed, M., Kumar, S. S. & Rajan, M. (2018). Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. International Journal of Biological Macromolecules, 118, 1627-1638.
  • Qidwai, A., Kumar, R. & Dikshit, A. (2018). Green synthesis of silver nanoparticles by seed of Phoenix sylvestris L. and their role in the management of cosmetics embarrassment. Green Chemistry Letters and Reviews, 11(2), 176–188.
  • Razavi, R., Molaei, R., Moradi, M., Tajik, H., Ezati, P. & Yordshahi, A.S. (2019). Biosynthesis of metallic nanoparticles using mulberry fruit (Morusalba L.) extract for the preparation of antimicrobial nanocellulose film. Applied Nanoscience, https://doi.org/10.1007/s13204-019-01137-8
  • Rivera-Rangel, R. D., González-Muñoz, M. P., Avila-Rodriguez, M., Razo-Lazcano, T. A. & Solans, C., (2018). Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids and Surfaces A, 536, 60–67.
  • Rokade, A. A., Kim, J. H., Lim, S. R., Yoo, S. I., Jin, Y. E. & Park, S. S. (2017). A novel green synthesis of silver nanoparticles using Rubus crataegifolius bge fruit extract. Journal of Cluster Science, 28, 2017–2026.
  • Saber, M. M., Mirtajani, S. B. & Karimzadeh, K. (2018). Green synthesis of silver nanoparticles using Trapa natans extract and their anticancer activity against A431 human skin cancer cells. Journal of Drug Delivery Science and Technology, 47, 375-379.
  • Sakr, T. M., Khowessah, O.M., Motaleb, M.A., Abd El-Bary, A. & El-Kolaly, M.T. (2018). I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. European Journal of Pharmaceutical Sciences, 122, 239-245.
  • Salarian, A.A., Mollamahale, Y. B., Hami, Z. & Soltani-Rezaee-Rad, M., (2017). Cephalexin nanoparticles: Synthesis, cytotoxicity and their synergistic antibacterial study in combination with silver nanoparticles. Materials Chemistry and Physics 198, 125-130. Sana, S. S. & Dogiparthi, L. K., (2018). Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Materials Letters 226, 47-51.
  • Sauthier, G., del Pino, A.P., Figueras, A., & György, E. (2011). Synthesis and Characterization of Ag Nanoparticles and Ag-Loaded TiO2 Photocatalysts. Journal of the American Ceramic Society, 94(11), 3780-3786.
  • Shaikh, A. F., Tamboli, M. S., Patil, R. H., Bhan, A., Ambekar, J. D. & Kale, B. B. (2019). Bioinspired carbon quantum dots: An antibiofilm agents. Journal of Nanoscience and Nanotechnology, 19, 2339-2345.
  • Shanmuganathan, R., MubarakAli, D., Prabakar, D., Muthukumar, H., Thajuddin, N., Kumar, S. S. & Pugazhendhi, A. (2017). An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environmental Science and Pollution Research, 25, 10362–10370.
  • Song, J. & Kim, B. (2008). Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyroskaki) leaf extract. Korean Journal of Chemical Engineering, 25, 808-811.
  • Song, J.Y. & Kim, B.S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32, 79-84.
  • Sportelli, M. C., Clemente, M., Izzi, M., Volpe, A., Ancona, A., Picca, R. A., Palazzo, G. & Cioffi, N., (2018). Exceptionally stable silver nanoparticles synthesized by laser ablation in alcoholic organic solvent. Colloids and Surfaces A, 559, 148–158.
  • Tang, S. & Zheng, J. (2018). Antibacterial Activity of Silver Nanoparticles: Structural Effects, Advanced Healthcare Materials, 7, 1701503.
  • Trak, D. & Arslan, Y. (2021). Synthesis of silver nanoparticles using dried black mulberry (Morus nigra L.) fruit extract and their antibacterial and effective dye degradation activities. Inorganic and Nano-Metal Chemistry, https://doi.org/10.1080/24701556.2021.1980038
  • Valsalam, S., Agastian, P., Arasu, M. V., Al-Dhabi, N. A., Ghilan, A. K. M., Kaviyarasu, K., Ravindran, B., Chang, S. W. & Arokiyaraj, S., (2019). Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. Journal of Photochemistry & Photobiology, B: Biology, 191, 65-74.
  • Wang, L., Lu, Z., Lin, F., Qin, H., Zhang, Z., Zhang, J., Lei, X., Dai, P. & Zhang, X. (2018). Two-step process for synthesizing flower-like silver nanoparticles by wet-chemical method, Materials Letters, 233, 184–187.
  • You, F., Sun, Y. & Zhang, L. (2018). Design of biomimetic surface for fabrication of monodispersed silver nanoparticles with high catalytic activity. Materials Letters 229, 316–319. Yüksel, S., Schwenke, A. M., Soliveri, G., Ardizzone, S., Weber, K., Cialla-May, D., Hoeppener, S., Schubert, U. S. & Popp, J., (2016). Trace detection of tetrahydrocannabinol (THC) with a SERS-based capillary platform prepared by the in situ microwave synthesis of AgNPs. Analytica Chimica Acta, 939, 93-100.
  • Zaki, S., El Kady, M.F. & Abd-El-Haleem, D. (2011). Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Materials Research Bulletin, 46, 1571-1576.
Year 2023, Volume: 13 Issue: 3, 1926 - 1936, 01.09.2023
https://doi.org/10.21597/jist.1254243

Abstract

Project Number

0477-YL-17

References

  • Abbasi, T., Anuradha, J., Ganaie, S.U. & Abbasi, S. A. (2015). Biomimetic synthesis of nanoparticles using aqueous extracts of plants (botanical species). Journal of Nano Research, 31, 138-202.
  • Abdel-Raouf, N., Al-Enazi, N. M. & Ibraheem, I.B.M. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry,10, 3029–S3039.
  • Aboelfetoh, E. F., El-Shenody, R. A. & Ghobara, M. M. (2017). Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environmental Monitoring and Assessment, 189, 349-363.
  • Abudabbus, M. M., Jevremović, I., Nešović, K., Perić-Grujić, A., Rhee, K. Y. & Mišković-Stanković, V., (2018). In situ electrochemical synthesis of silver-doped poly(vinyl alcohol)/graphene composite hydrogels and their physico-chemical and thermal properties. Composites Part B, 140, 99–107.
  • Alabdallah, N. M. & Hasan, Md. M. (2021). Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi Journal of Biological Sciences, 28, 5631-5639.
  • Arakcheev, V., Bagratashvili, V., Bekin, A., Khmelenin, D., Minaev, N., Morozov, V. & Rybaltovsky, A., (2018). Effect of wavelength in laser-assisted synthesis of silver nanoparticles by supercritical deposition technique. The Journal of Supercritical Fluids, 140, 159–164.
  • Balouiri, M., Sadiki, M. & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79.
  • Bollella, P., Schulz, C., Favero, G., Mazzei, F., Ludwig, R., Gorton, L. & Antiochia, R. (2017). Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroynalysis, 29, 77-86.
  • Budi, S., Dhanasmoro, L., Purwanto, A. & Muhab, S. (2021). Time-dependent growth of the dendritic silver prepared using square wave voltammetry technique for methylene blue photodegradation. Polish Journal of Chemical Technology, 23(2), 60-65.
  • Doan, V.-D., Thieu, A.T., Nguyen, T.-D., Nguyen, V.-C., Cao, X.-T., Nguyen, T.L.-H. & Le, V.T. (2020). Biosynthesis of Gold Nanoparticles Using Litsea cubeba Fruit Extract for Catalytic Reduction of 4-Nitrophenol. Journal of Nanomaterials, https://doi.org/10.1155/2020/4548790
  • Dubey, S.P., Lahtinen, M. & Sillanpää, M. (2010). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry, 45, 1065-1071.
  • Dwivedi, A.D. & Gopal, K. (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369, 27–33. Fagbayigbo, B.O., Opeolu, B.O., Fatoki, O.S., Akenga, Ayuko, T. & Olatunji, O.S. (2017). Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter. Environmental Science & Pollution Research, 24, 13107-13120.
  • Govindappa, M., Hemashekhar, B. & Arthikala, M. (2018). Ravishankar Rai, V., Ramachandra, Y.L., Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results in Physics, 9, 400–408.
  • Hasan, K.M.F., Xiaoyi, L., Shaoqin, Z., Horvàth, P. G., Bak, M., Bejò, L., Sipos, G. & Alpàr, T. (2022). Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon, 8, 12322.
  • Hemmati, S., Rashtiani, A., Zangeneh, M. M., Mohammadi, P., Zangeneh, A. & Veisi, H. (2019). Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron, 158, 8-14.
  • Hoseinpour, V. & Ghaemi, N. (2018). Green synthesis of manganese nanoparticles: applications and future perspective–A review. Journal of Photochemistry & Photobiology, B: Biology, 189, 234-243.
  • Khatami, M., Alijani, H. Q., Fakheri, B., Mobasseri, M. M., Heydarpour, M., Farahani, Z. K. & Khan, A. U. (2019). Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. Journal of Cleaner Production, 208, 1171-1177.
  • Kirtiwar, S., Gharpure, S. & Ankamwar, B. (2019). Effect of nutrient media on antibacterial activity of silver nanoparticles synthesized using Neolamarckia cadamba. Journal of Nanoscience and Nanotechnology, 19, 1923-1933.
  • Kumar, B., Vizuete, K. S., Sharma, V., Debut, A. & Cumbal, L. (2019). Ecofriendly synthesis of monodispersed silver nanoparticles using Andean Mortiño berry as reductant and its photocatalytic activity. Vacuum, 160, 272–278.
  • Li, S., Shen, Y., Xie, A., Yu, X., Qui, L., Zhang, L. & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annum L. extract. Green Chemistry, 9, 852–858.
  • Meng, F., Sun, H., Huang, Y., Tang, Y. & Chen, Q. (2019). Peptide cleavage-based electrochemical biosensor coupling graphene oxide and silver nanoparticles. Analytica Chimica Acta, 1047, 45-51.
  • Moldovan, B., David, L., Vulcu, A., Olenic, L., Perde-Schrepler, M., Fischer-Fodor, E., Baldea, I., Clichici, S. & Filip, G. A. (2017). In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Materials Science and Engineering C, 79, 720–727. Moteriya, P., Padalia, H. & Chanda, S. (2014). Green biosynthesis of silver nanoparticles using Psidium guajava L. leaf extract and antibacterial activity against some pathogenic microorganisms. Journal of Pharmacy Research, 8(11),1579-1585.
  • Paosen, S., Saising, J., Septama, A. W. & Voravuthikunchai, S. P. (2017). Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity. Materials Letters, 209, 201–206.
  • Pereira, B. S., Silva, M. F., Bittencourt, P. R. S., de Oliveira, D. M. F., Pineda, E. A. G. & Hechenleitner, A. A. W. (2015). Cellophane and filter paper as cellulosic support for silver nanoparticles and its thermal decomposition catalysis. Carbohydrate Polymers, 133, 277–283.
  • Praphakar, R. A., Jeyaraj, M., Ahmed, M., Kumar, S. S. & Rajan, M. (2018). Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. International Journal of Biological Macromolecules, 118, 1627-1638.
  • Qidwai, A., Kumar, R. & Dikshit, A. (2018). Green synthesis of silver nanoparticles by seed of Phoenix sylvestris L. and their role in the management of cosmetics embarrassment. Green Chemistry Letters and Reviews, 11(2), 176–188.
  • Razavi, R., Molaei, R., Moradi, M., Tajik, H., Ezati, P. & Yordshahi, A.S. (2019). Biosynthesis of metallic nanoparticles using mulberry fruit (Morusalba L.) extract for the preparation of antimicrobial nanocellulose film. Applied Nanoscience, https://doi.org/10.1007/s13204-019-01137-8
  • Rivera-Rangel, R. D., González-Muñoz, M. P., Avila-Rodriguez, M., Razo-Lazcano, T. A. & Solans, C., (2018). Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids and Surfaces A, 536, 60–67.
  • Rokade, A. A., Kim, J. H., Lim, S. R., Yoo, S. I., Jin, Y. E. & Park, S. S. (2017). A novel green synthesis of silver nanoparticles using Rubus crataegifolius bge fruit extract. Journal of Cluster Science, 28, 2017–2026.
  • Saber, M. M., Mirtajani, S. B. & Karimzadeh, K. (2018). Green synthesis of silver nanoparticles using Trapa natans extract and their anticancer activity against A431 human skin cancer cells. Journal of Drug Delivery Science and Technology, 47, 375-379.
  • Sakr, T. M., Khowessah, O.M., Motaleb, M.A., Abd El-Bary, A. & El-Kolaly, M.T. (2018). I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. European Journal of Pharmaceutical Sciences, 122, 239-245.
  • Salarian, A.A., Mollamahale, Y. B., Hami, Z. & Soltani-Rezaee-Rad, M., (2017). Cephalexin nanoparticles: Synthesis, cytotoxicity and their synergistic antibacterial study in combination with silver nanoparticles. Materials Chemistry and Physics 198, 125-130. Sana, S. S. & Dogiparthi, L. K., (2018). Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Materials Letters 226, 47-51.
  • Sauthier, G., del Pino, A.P., Figueras, A., & György, E. (2011). Synthesis and Characterization of Ag Nanoparticles and Ag-Loaded TiO2 Photocatalysts. Journal of the American Ceramic Society, 94(11), 3780-3786.
  • Shaikh, A. F., Tamboli, M. S., Patil, R. H., Bhan, A., Ambekar, J. D. & Kale, B. B. (2019). Bioinspired carbon quantum dots: An antibiofilm agents. Journal of Nanoscience and Nanotechnology, 19, 2339-2345.
  • Shanmuganathan, R., MubarakAli, D., Prabakar, D., Muthukumar, H., Thajuddin, N., Kumar, S. S. & Pugazhendhi, A. (2017). An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environmental Science and Pollution Research, 25, 10362–10370.
  • Song, J. & Kim, B. (2008). Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyroskaki) leaf extract. Korean Journal of Chemical Engineering, 25, 808-811.
  • Song, J.Y. & Kim, B.S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32, 79-84.
  • Sportelli, M. C., Clemente, M., Izzi, M., Volpe, A., Ancona, A., Picca, R. A., Palazzo, G. & Cioffi, N., (2018). Exceptionally stable silver nanoparticles synthesized by laser ablation in alcoholic organic solvent. Colloids and Surfaces A, 559, 148–158.
  • Tang, S. & Zheng, J. (2018). Antibacterial Activity of Silver Nanoparticles: Structural Effects, Advanced Healthcare Materials, 7, 1701503.
  • Trak, D. & Arslan, Y. (2021). Synthesis of silver nanoparticles using dried black mulberry (Morus nigra L.) fruit extract and their antibacterial and effective dye degradation activities. Inorganic and Nano-Metal Chemistry, https://doi.org/10.1080/24701556.2021.1980038
  • Valsalam, S., Agastian, P., Arasu, M. V., Al-Dhabi, N. A., Ghilan, A. K. M., Kaviyarasu, K., Ravindran, B., Chang, S. W. & Arokiyaraj, S., (2019). Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. Journal of Photochemistry & Photobiology, B: Biology, 191, 65-74.
  • Wang, L., Lu, Z., Lin, F., Qin, H., Zhang, Z., Zhang, J., Lei, X., Dai, P. & Zhang, X. (2018). Two-step process for synthesizing flower-like silver nanoparticles by wet-chemical method, Materials Letters, 233, 184–187.
  • You, F., Sun, Y. & Zhang, L. (2018). Design of biomimetic surface for fabrication of monodispersed silver nanoparticles with high catalytic activity. Materials Letters 229, 316–319. Yüksel, S., Schwenke, A. M., Soliveri, G., Ardizzone, S., Weber, K., Cialla-May, D., Hoeppener, S., Schubert, U. S. & Popp, J., (2016). Trace detection of tetrahydrocannabinol (THC) with a SERS-based capillary platform prepared by the in situ microwave synthesis of AgNPs. Analytica Chimica Acta, 939, 93-100.
  • Zaki, S., El Kady, M.F. & Abd-El-Haleem, D. (2011). Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Materials Research Bulletin, 46, 1571-1576.
There are 44 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Sinan Özkan 0000-0001-6931-9018

Burcu Kabak 0000-0003-4217-1767

Erdal Kendüzler 0000-0002-9457-1503

Project Number 0477-YL-17
Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date February 27, 2023
Acceptance Date May 17, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Özkan, S., Kabak, B., & Kendüzler, E. (2023). Optimization Effect on Green Synthesis of Silver Nanoparticles (AgNPs) Using Dimrit Raisin Extract and Their Antimicrobial Activity. Journal of the Institute of Science and Technology, 13(3), 1926-1936. https://doi.org/10.21597/jist.1254243
AMA Özkan S, Kabak B, Kendüzler E. Optimization Effect on Green Synthesis of Silver Nanoparticles (AgNPs) Using Dimrit Raisin Extract and Their Antimicrobial Activity. J. Inst. Sci. and Tech. September 2023;13(3):1926-1936. doi:10.21597/jist.1254243
Chicago Özkan, Sinan, Burcu Kabak, and Erdal Kendüzler. “Optimization Effect on Green Synthesis of Silver Nanoparticles (AgNPs) Using Dimrit Raisin Extract and Their Antimicrobial Activity”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1926-36. https://doi.org/10.21597/jist.1254243.
EndNote Özkan S, Kabak B, Kendüzler E (September 1, 2023) Optimization Effect on Green Synthesis of Silver Nanoparticles (AgNPs) Using Dimrit Raisin Extract and Their Antimicrobial Activity. Journal of the Institute of Science and Technology 13 3 1926–1936.
IEEE S. Özkan, B. Kabak, and E. Kendüzler, “Optimization Effect on Green Synthesis of Silver Nanoparticles (AgNPs) Using Dimrit Raisin Extract and Their Antimicrobial Activity”, J. Inst. Sci. and Tech., vol. 13, no. 3, pp. 1926–1936, 2023, doi: 10.21597/jist.1254243.
ISNAD Özkan, Sinan et al. “Optimization Effect on Green Synthesis of Silver Nanoparticles (AgNPs) Using Dimrit Raisin Extract and Their Antimicrobial Activity”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1926-1936. https://doi.org/10.21597/jist.1254243.
JAMA Özkan S, Kabak B, Kendüzler E. Optimization Effect on Green Synthesis of Silver Nanoparticles (AgNPs) Using Dimrit Raisin Extract and Their Antimicrobial Activity. J. Inst. Sci. and Tech. 2023;13:1926–1936.
MLA Özkan, Sinan et al. “Optimization Effect on Green Synthesis of Silver Nanoparticles (AgNPs) Using Dimrit Raisin Extract and Their Antimicrobial Activity”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1926-3, doi:10.21597/jist.1254243.
Vancouver Özkan S, Kabak B, Kendüzler E. Optimization Effect on Green Synthesis of Silver Nanoparticles (AgNPs) Using Dimrit Raisin Extract and Their Antimicrobial Activity. J. Inst. Sci. and Tech. 2023;13(3):1926-3.