Research Article
BibTex RIS Cite

Tatlı Patates ve Gölevezin Bazı Biyoaktif Bileşenleri: Bitki Organlarına Dayalı Karşılaştırmalı Bir Çalışma

Year 2023, Volume: 13 Issue: 4, 2315 - 2324, 01.12.2023
https://doi.org/10.21597/jist.1293188

Abstract

Bu çalışmada, Türkiye'de lokal olarak yetiştirilen tatlı patates ve gölevez bitkilerinin farklı organlarının biyoaktif bileşenlerinin değişkenliğini ve dağılımını değerlendirmek amacıyla yürütülmüştür. Bu iki türün farklı organından (tatlı patatesin yumru ve yaprakları; gölevezin yaprakları, yaprak sapları, ana yumruları ve lateral yumruları) ekstrakte edilen örneklerde değerlendirmeler yapılmıştır. Çalışmada iki farklı türün ve örnek alınan organlarının toplam suda çözülebilir protein, toplam flavonoid, toplam fenolik, H2O2 giderme kapasitesi, toplam karotenoid, FRAP antioksidan kapasitesi, CUPRAC antioksidan kapasitesi ve toplam kuru madde parametreleri ölçülmüştür. İncelenen tüm parametreler için organ ortalamaları arasındaki fark istatistiksel olarak anlamlı bulunmuştur. Genel olarak her iki türün yaprakları toplam kuru madde ve CUPRAC antioksidan kapasitesi dışındaki tüm parametreler için en yüksek içeriğe sahip bulunmuştur. Ayrıca parametrelerin gen havuzundaki varyasyonu açıklamadaki etkinliği temel bileşenler analizi kullanılarak incelenmiştir. H2O2 giderme kapasitesi, toplam kuru madde içeriği ve CUPRAC antioksidan kapasitesi dışındaki tüm parametreler varyasyona yüksek katkı yapmıştır. Elde edilen bulgulara göre, bu iki tür ve organları arasında yüksek varyasyon olduğu anlaşılmıştır. Bu sonuçlar, ileride bu iki tür ile ilgili yapılacak çalışmalara yol gösterici olacaktır.

Project Number

1919B012214990

References

  • Afzal, N., Afionis, S., Stringer, L., Favretto, N., Sakai, M., Sakai, P. (2021). Benefits and trade-offs of smallholder sweet potato cultivation as a pathway toward achieving the sustainable development goals. Sustainability, 13, 552.
  • Agbor-Egbe, T., Rickard, J.E. (1990). Evaluation of the chemical composition of fresh and stored edible aroids. J. Sci. Food Agric. 53:487-495.
  • Akyüz, M. (2019). Determination of Antioxidant Activity of Ethanol Extract of Gölevez [(Colocasia esculenta (L.)] Tubers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22, 388-394.
  • Albuquerque, T.M.R., Sampaio, K.B., de Souza, E.L.(2019). Sweet potato roots: Unrevealing an old food as a source of health promoting bioactive compounds–A review. Trends Food Sci. Technol. 85, 277–286
  • Angami, T., Jha, A. K., Buragohain, J., Deka, B. C., Verma, V. K., and Nath, A. (2015). Evaluation of taro (Colocasia esculenta L.) cultivars for growth, yield and quality attributes. Journal of Horticultural Sciences, 10(2), 183-189.
  • Anonymous (2023). Food and Agriculture Organization of the United Nations, Statistics Division, URL: http://faostat3.fao.org/home/E, (accessed date: May 02, 2023).
  • Cartier, A., Woods, J., Sismour, E., Allen, J., Ford, E., Githinji, L., and Xu, Y. (2017). Physiochemical, nutritional and antioxidant properties of fourteen Virginia-grown sweet potato varieties. Journal of Food Measurement and Characterization, 11, 1333-1341.
  • Çalışkan, M.E., Can, E., Çalışkan, S., Gazel, M. (2011). The Studies on Establishment of A Seed Production System for sweet potato, Türkiye IV Seed Congress, 14-17 June 2011, Samsun.
  • Çalışkan, M.E., Söğüt, T., Boydak, E., Ertürk, E. ve Arıoğlu, H. (2007). Growth, yield and guality of sweet potato (Ipomoea battatas (L.) Lam) cultivars in contrasting environments in Turkey, Turkish Journal of Agriculture and Forestry, 31: 213-227.
  • Danilcenko, H., Jariene, E., Slepetiene, A., Sawicka, B., Zaldariene, S. (2017). The distribution of bioactive compounds in the tubers of organically grown Jerusalem artichoke (Helianthus tuberosus L.) during the growing period. Acta Sci Pol. Hortorum Cultus, 16:97–107.
  • De Vries, C.A., Ferwerda, J.D., Flach, M. (1967). Choice of food crops in relation to actual and potential production in the tropics. Neth. J. Agric. Sci. 15:241-248.
  • Escobar-Puentes, A.A., Palomo, I., Rodríguez, L., Fuentes, E., Villegas-Ochoa, M.A., González-Aguilar, G.A., Olivas-Aguirre, F.J., Wall-Medrano, A. (2022). Sweet Potato (Ipomoea batatas L.) Phenotypes: From Agroindustry to Health Effects. Foods , 11, 1058
  • Fukusima, E., Iwasa, S., Tokumasu, S., Iwasa, M. (1962). Chromosome numbers of the taro varieties cultivated in Japan. Chromosome Inf. Serv. 3:38-39.
  • Geren, H., Öztürk, G., Kavut, T.Y., Yıldırım, Z., 2010. An investigation on insolubility possibilities of vines of sweet potato (Ipomoea batatas L.) genotypes grown under Bornova conditions, Journal of Agriculture Faculty of Ege University, 47(2):171-179.
  • Göhl, B. (1981). Tropical Feeds. Food and Agriculture Organization, Animal Production and Health Series 12, 314, Rome.
  • Güçlü, K., Altun, M., Özyürek, M., Karademir, S. E., and Apak, R. (2006). Antioxidant capacity of fresh, sun‐and sulphited‐dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. International journal of food science & technology, 41, 76-85.
  • Gülçin, İ., Taslimi, P., Aygün, A., Sadeghian, N., Bastem, E., Kufrevioglu, O. I., Türkan, F., Şen, F. (2018). Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. International journal of biological macromolecules, 119, 741-746.
  • Islam, S. N., Nusrat, T., Begum, P., and Ahsan, M. (2016). Carotenoids and β-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency. Food Chemistry, 199(1), 628-631.
  • Jantaharn, P., Mongkolthanaruk, W., Senawong, T., Jogloyd, S., McCloskey, S. (2018). Bioactive compounds from organic extracts of Helianthus tuberosus L. flowers. Ind Crops Prod, 119:57–63.
  • Kapinga, R., Byaruhanga, P., Zschocke, T., Tumwegamire, S. (2009). Growing orange fleshed sweet potato for a healthy diet. A supplementary learners’ resource book for upper primary schools. International Potato Center (CIP), Kampala, Uganda, 142 pp.
  • Kapoor, B., Singh, S., and Kumar, P. (2022). Taro (Colocasia esculenta): Zero wastage orphan food crop for food and nutritional security. South African Journal of Botany, 145, 157-169.
  • Kristl, J., Ivancic, A., Mergedus, A., Sem, V., Kolar, M., and Lebot, V. (2016). Variation of nitrate content among randomly selected taro (Colocasia esculenta (L.) Schott) genotypes and the distribution of nitrate within a corm. Journal of Food Composition and Analysis, 47, 76-81.
  • Lebot, V., Prana, M. S., Kreike, N., Van Heck, H., Pardales, J., Okpul, T., T. Gendua, M. Thongjiem, H. Hue, N. Viet Yap, T. C. (2004). Characterization of taro (Colocasia esculenta (L.) Schott) genetic resources in Southeast Asia and Oceania. Genetic Resources and Crop Evolution, 51, 381-392.
  • Lind, H.Y. Barrau, M.L. (1946). Ways to use vegetables in Hawaii. Hawaii Agric. Expt. Sta. Bull. 97, Honolulu, Hawaii.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193:265-275.
  • McCartan, S. A. Staden, J. V. and Finnie, J. F. (1996). In Vitro Propagation of Taro. Southern African Society For Horticultural Sciences, 6;1-3.
  • Ochse, J.J. (1931). Vegetables of the Dutch East Indies. Dept. Agric., Indus. Comm., Neth. E. Indies, Buitenzorg, Java, Indonesia.
  • Padhan B, Panda D. (2020). Potential of Neglected and Underutilized Yams (Dioscorea spp.) for Improving Nutritional Security and Health Benefits. Front Pharmacol., 24;11:496.
  • Petropoulos, S.A., Sampaio, S.L., Di Gioia, F., Tzortzakis, N., Rouphael, Y., Kyriacou, M.C., Ferreira, I. (2019). Grown to be blue—Antioxidant properties and health effects of colored vegetables. Part I: Root vegetables. Antioxidants 8, 617.
  • Plunknet, D.L., De La Pena R.S. and Obrero, F. (1970). Taro (Colocasia esculenta). Field Crop, 23, 412-426.
  • Ruch, R.J., Cheng, S.J., Klaunıg, J.E. (1989) Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003-1008.
  • Rukundo, P., Shimelis, H., Laing, M., Mashilo, J. (2020). Genotype-by-environment interaction for dual-purpose traits in sweet potato. J. Crop Improv. 34, 800–823.
  • Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • Strauss, M. S. (1983). Anatomy and morphology of taro [Colocasia esculenta (L.) Schott]. A Rewiew of Colocasia esculenta and Its Potentials. Wang, J. (ed.), 20-23. University of Hawaii Press. Honolulu.
  • Sun, Y., Pan, Z., Yang, C., Jia, Z., and Guo, X. (2019). Comparative assessment of phenolic profiles, cellular antioxidant and antiproliferative activities in ten varieties of sweet potato (Ipomoea Batatas) storage roots. Molecules, 24(24), 4476.
  • Şen M, Akgül A, Özcan M (2001). Physical and chemical characteristics of taro (Colocasia esculenta(L.) Schoott) corms and processing to chips and puree. Turkish Journal of Agriculture and Forestry, 25(6), 427- 432.
  • Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Hawkins Byrne, D. (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal, 19:669-675.
  • Tian Q., Konczak I., Schwartz S.J. (2005). Probing anthocyanin profiles in purple sweet potato cell line (Ipomoea batatas L. Cv. Ayamurasaki) by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. J. Agric. Food Chem., 53:6503–6509.
  • Tumwegamire, S., Kapinga, R., Rubaihayo, P. R., LaBonte, D. R., Grüneberg, W. J., Burgos, G., Felde, T. z., Carpio, R., Pawelzik, E., & Mwanga, R. O. (2011). Evaluation of Dry Matter, Protein, Starch, Sucrose, β-carotene, Iron, Zinc, Calcium, and Magnesium in East African Sweet potato [Ipomoea batatas (L.) Lam] Germplasm, HortScience horts, 46(3), 348-357
  • Ugent, D. and Peterson, L. (1988). Archeological remains of potato and sweet potato in Peru. CIP (International Potato Centre) Circular, 16: 3.
  • Yuan, X., Gao, M., Xiao, H., Tan, C., Du, Y. (2012). Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem, 133:10–14.
  • Zhang, R., Zeng, Q., Deng, Y., Zhang, M., Wei, Z., Zhang, Y., Tang, X. (2013). Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chem, 136:1169-1176.
  • Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem, 64:555-559.

Some Bioactive Components of Sweet Potato and Taro: A Comparative Study Based On Plant Organs

Year 2023, Volume: 13 Issue: 4, 2315 - 2324, 01.12.2023
https://doi.org/10.21597/jist.1293188

Abstract

This study was carried out to evaluate the variability and distribution of bioactive components of different organs of sweet potato and taro plants grown locally in Turkey. Samples extracted from different organs of these two species (tubers and leaves of sweet potato; leaves, petioles, main tubers, and lateral tubers of taro) were evaluated. Total water-soluble protein, total flavonoids, total phenolics, H2O2 scavenging capacity, carotenoids, FRAP antioxidant capacity, CUPRAC antioxidant capacity, and total dry matter parameters of two different species and their organs were measured. The difference between the organ averages for all parameters examined was statistically significant. In general, leaves of both species had the highest content for all parameters except total dry matter and CUPRAC antioxidant capacity. The effectiveness of the parameters in explaining variation in the gene pool was also examined using principal component analysis. All parameters contributed highly to the variation except H2O2 capacity, total dry matter content, and CUPRAC antioxidant capacity. According to the findings, there is a high variation between each species and between the organs. These results will guide future studies on these two species.

Supporting Institution

The Scientific and Technological Research Council of Türkiye-TÜBİTAK 2209-A - Research Project Support Programme for Undergraduate Students

Project Number

1919B012214990

References

  • Afzal, N., Afionis, S., Stringer, L., Favretto, N., Sakai, M., Sakai, P. (2021). Benefits and trade-offs of smallholder sweet potato cultivation as a pathway toward achieving the sustainable development goals. Sustainability, 13, 552.
  • Agbor-Egbe, T., Rickard, J.E. (1990). Evaluation of the chemical composition of fresh and stored edible aroids. J. Sci. Food Agric. 53:487-495.
  • Akyüz, M. (2019). Determination of Antioxidant Activity of Ethanol Extract of Gölevez [(Colocasia esculenta (L.)] Tubers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22, 388-394.
  • Albuquerque, T.M.R., Sampaio, K.B., de Souza, E.L.(2019). Sweet potato roots: Unrevealing an old food as a source of health promoting bioactive compounds–A review. Trends Food Sci. Technol. 85, 277–286
  • Angami, T., Jha, A. K., Buragohain, J., Deka, B. C., Verma, V. K., and Nath, A. (2015). Evaluation of taro (Colocasia esculenta L.) cultivars for growth, yield and quality attributes. Journal of Horticultural Sciences, 10(2), 183-189.
  • Anonymous (2023). Food and Agriculture Organization of the United Nations, Statistics Division, URL: http://faostat3.fao.org/home/E, (accessed date: May 02, 2023).
  • Cartier, A., Woods, J., Sismour, E., Allen, J., Ford, E., Githinji, L., and Xu, Y. (2017). Physiochemical, nutritional and antioxidant properties of fourteen Virginia-grown sweet potato varieties. Journal of Food Measurement and Characterization, 11, 1333-1341.
  • Çalışkan, M.E., Can, E., Çalışkan, S., Gazel, M. (2011). The Studies on Establishment of A Seed Production System for sweet potato, Türkiye IV Seed Congress, 14-17 June 2011, Samsun.
  • Çalışkan, M.E., Söğüt, T., Boydak, E., Ertürk, E. ve Arıoğlu, H. (2007). Growth, yield and guality of sweet potato (Ipomoea battatas (L.) Lam) cultivars in contrasting environments in Turkey, Turkish Journal of Agriculture and Forestry, 31: 213-227.
  • Danilcenko, H., Jariene, E., Slepetiene, A., Sawicka, B., Zaldariene, S. (2017). The distribution of bioactive compounds in the tubers of organically grown Jerusalem artichoke (Helianthus tuberosus L.) during the growing period. Acta Sci Pol. Hortorum Cultus, 16:97–107.
  • De Vries, C.A., Ferwerda, J.D., Flach, M. (1967). Choice of food crops in relation to actual and potential production in the tropics. Neth. J. Agric. Sci. 15:241-248.
  • Escobar-Puentes, A.A., Palomo, I., Rodríguez, L., Fuentes, E., Villegas-Ochoa, M.A., González-Aguilar, G.A., Olivas-Aguirre, F.J., Wall-Medrano, A. (2022). Sweet Potato (Ipomoea batatas L.) Phenotypes: From Agroindustry to Health Effects. Foods , 11, 1058
  • Fukusima, E., Iwasa, S., Tokumasu, S., Iwasa, M. (1962). Chromosome numbers of the taro varieties cultivated in Japan. Chromosome Inf. Serv. 3:38-39.
  • Geren, H., Öztürk, G., Kavut, T.Y., Yıldırım, Z., 2010. An investigation on insolubility possibilities of vines of sweet potato (Ipomoea batatas L.) genotypes grown under Bornova conditions, Journal of Agriculture Faculty of Ege University, 47(2):171-179.
  • Göhl, B. (1981). Tropical Feeds. Food and Agriculture Organization, Animal Production and Health Series 12, 314, Rome.
  • Güçlü, K., Altun, M., Özyürek, M., Karademir, S. E., and Apak, R. (2006). Antioxidant capacity of fresh, sun‐and sulphited‐dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. International journal of food science & technology, 41, 76-85.
  • Gülçin, İ., Taslimi, P., Aygün, A., Sadeghian, N., Bastem, E., Kufrevioglu, O. I., Türkan, F., Şen, F. (2018). Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. International journal of biological macromolecules, 119, 741-746.
  • Islam, S. N., Nusrat, T., Begum, P., and Ahsan, M. (2016). Carotenoids and β-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency. Food Chemistry, 199(1), 628-631.
  • Jantaharn, P., Mongkolthanaruk, W., Senawong, T., Jogloyd, S., McCloskey, S. (2018). Bioactive compounds from organic extracts of Helianthus tuberosus L. flowers. Ind Crops Prod, 119:57–63.
  • Kapinga, R., Byaruhanga, P., Zschocke, T., Tumwegamire, S. (2009). Growing orange fleshed sweet potato for a healthy diet. A supplementary learners’ resource book for upper primary schools. International Potato Center (CIP), Kampala, Uganda, 142 pp.
  • Kapoor, B., Singh, S., and Kumar, P. (2022). Taro (Colocasia esculenta): Zero wastage orphan food crop for food and nutritional security. South African Journal of Botany, 145, 157-169.
  • Kristl, J., Ivancic, A., Mergedus, A., Sem, V., Kolar, M., and Lebot, V. (2016). Variation of nitrate content among randomly selected taro (Colocasia esculenta (L.) Schott) genotypes and the distribution of nitrate within a corm. Journal of Food Composition and Analysis, 47, 76-81.
  • Lebot, V., Prana, M. S., Kreike, N., Van Heck, H., Pardales, J., Okpul, T., T. Gendua, M. Thongjiem, H. Hue, N. Viet Yap, T. C. (2004). Characterization of taro (Colocasia esculenta (L.) Schott) genetic resources in Southeast Asia and Oceania. Genetic Resources and Crop Evolution, 51, 381-392.
  • Lind, H.Y. Barrau, M.L. (1946). Ways to use vegetables in Hawaii. Hawaii Agric. Expt. Sta. Bull. 97, Honolulu, Hawaii.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193:265-275.
  • McCartan, S. A. Staden, J. V. and Finnie, J. F. (1996). In Vitro Propagation of Taro. Southern African Society For Horticultural Sciences, 6;1-3.
  • Ochse, J.J. (1931). Vegetables of the Dutch East Indies. Dept. Agric., Indus. Comm., Neth. E. Indies, Buitenzorg, Java, Indonesia.
  • Padhan B, Panda D. (2020). Potential of Neglected and Underutilized Yams (Dioscorea spp.) for Improving Nutritional Security and Health Benefits. Front Pharmacol., 24;11:496.
  • Petropoulos, S.A., Sampaio, S.L., Di Gioia, F., Tzortzakis, N., Rouphael, Y., Kyriacou, M.C., Ferreira, I. (2019). Grown to be blue—Antioxidant properties and health effects of colored vegetables. Part I: Root vegetables. Antioxidants 8, 617.
  • Plunknet, D.L., De La Pena R.S. and Obrero, F. (1970). Taro (Colocasia esculenta). Field Crop, 23, 412-426.
  • Ruch, R.J., Cheng, S.J., Klaunıg, J.E. (1989) Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003-1008.
  • Rukundo, P., Shimelis, H., Laing, M., Mashilo, J. (2020). Genotype-by-environment interaction for dual-purpose traits in sweet potato. J. Crop Improv. 34, 800–823.
  • Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • Strauss, M. S. (1983). Anatomy and morphology of taro [Colocasia esculenta (L.) Schott]. A Rewiew of Colocasia esculenta and Its Potentials. Wang, J. (ed.), 20-23. University of Hawaii Press. Honolulu.
  • Sun, Y., Pan, Z., Yang, C., Jia, Z., and Guo, X. (2019). Comparative assessment of phenolic profiles, cellular antioxidant and antiproliferative activities in ten varieties of sweet potato (Ipomoea Batatas) storage roots. Molecules, 24(24), 4476.
  • Şen M, Akgül A, Özcan M (2001). Physical and chemical characteristics of taro (Colocasia esculenta(L.) Schoott) corms and processing to chips and puree. Turkish Journal of Agriculture and Forestry, 25(6), 427- 432.
  • Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Hawkins Byrne, D. (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal, 19:669-675.
  • Tian Q., Konczak I., Schwartz S.J. (2005). Probing anthocyanin profiles in purple sweet potato cell line (Ipomoea batatas L. Cv. Ayamurasaki) by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. J. Agric. Food Chem., 53:6503–6509.
  • Tumwegamire, S., Kapinga, R., Rubaihayo, P. R., LaBonte, D. R., Grüneberg, W. J., Burgos, G., Felde, T. z., Carpio, R., Pawelzik, E., & Mwanga, R. O. (2011). Evaluation of Dry Matter, Protein, Starch, Sucrose, β-carotene, Iron, Zinc, Calcium, and Magnesium in East African Sweet potato [Ipomoea batatas (L.) Lam] Germplasm, HortScience horts, 46(3), 348-357
  • Ugent, D. and Peterson, L. (1988). Archeological remains of potato and sweet potato in Peru. CIP (International Potato Centre) Circular, 16: 3.
  • Yuan, X., Gao, M., Xiao, H., Tan, C., Du, Y. (2012). Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem, 133:10–14.
  • Zhang, R., Zeng, Q., Deng, Y., Zhang, M., Wei, Z., Zhang, Y., Tang, X. (2013). Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chem, 136:1169-1176.
  • Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem, 64:555-559.
There are 43 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Bahçe Bitkileri / Horticulture
Authors

Berk Can Yıldız 0009-0004-6685-2094

Emir Furkan Demir This is me 0009-0005-9019-3217

Fatih Hancı 0000-0002-2015-0351

Project Number 1919B012214990
Early Pub Date November 30, 2023
Publication Date December 1, 2023
Submission Date May 5, 2023
Acceptance Date October 3, 2023
Published in Issue Year 2023 Volume: 13 Issue: 4

Cite

APA Yıldız, B. C., Demir, E. F., & Hancı, F. (2023). Some Bioactive Components of Sweet Potato and Taro: A Comparative Study Based On Plant Organs. Journal of the Institute of Science and Technology, 13(4), 2315-2324. https://doi.org/10.21597/jist.1293188
AMA Yıldız BC, Demir EF, Hancı F. Some Bioactive Components of Sweet Potato and Taro: A Comparative Study Based On Plant Organs. J. Inst. Sci. and Tech. December 2023;13(4):2315-2324. doi:10.21597/jist.1293188
Chicago Yıldız, Berk Can, Emir Furkan Demir, and Fatih Hancı. “Some Bioactive Components of Sweet Potato and Taro: A Comparative Study Based On Plant Organs”. Journal of the Institute of Science and Technology 13, no. 4 (December 2023): 2315-24. https://doi.org/10.21597/jist.1293188.
EndNote Yıldız BC, Demir EF, Hancı F (December 1, 2023) Some Bioactive Components of Sweet Potato and Taro: A Comparative Study Based On Plant Organs. Journal of the Institute of Science and Technology 13 4 2315–2324.
IEEE B. C. Yıldız, E. F. Demir, and F. Hancı, “Some Bioactive Components of Sweet Potato and Taro: A Comparative Study Based On Plant Organs”, J. Inst. Sci. and Tech., vol. 13, no. 4, pp. 2315–2324, 2023, doi: 10.21597/jist.1293188.
ISNAD Yıldız, Berk Can et al. “Some Bioactive Components of Sweet Potato and Taro: A Comparative Study Based On Plant Organs”. Journal of the Institute of Science and Technology 13/4 (December 2023), 2315-2324. https://doi.org/10.21597/jist.1293188.
JAMA Yıldız BC, Demir EF, Hancı F. Some Bioactive Components of Sweet Potato and Taro: A Comparative Study Based On Plant Organs. J. Inst. Sci. and Tech. 2023;13:2315–2324.
MLA Yıldız, Berk Can et al. “Some Bioactive Components of Sweet Potato and Taro: A Comparative Study Based On Plant Organs”. Journal of the Institute of Science and Technology, vol. 13, no. 4, 2023, pp. 2315-24, doi:10.21597/jist.1293188.
Vancouver Yıldız BC, Demir EF, Hancı F. Some Bioactive Components of Sweet Potato and Taro: A Comparative Study Based On Plant Organs. J. Inst. Sci. and Tech. 2023;13(4):2315-24.