Research Article
BibTex RIS Cite

Investigation of the Geometric Structure of 4-buthoxyphenyl 4'-hexylbenzoate Liquid Crystal Molecule

Year 2023, Volume: 13 Issue: 4, 2604 - 2615, 01.12.2023
https://doi.org/10.21597/jist.1305038

Abstract

In this study, the geometry of BPHB (4-buthoxyphenyl 4'-hexylbenzoate), a thermotropic nematic liquid crystal with uniaxial molecular symmetry, was optimized and spectral analyses were performed. Gaussian09 software package and GaussView 5.0 graphical interface software programs were used for this purpose. Calculations were performed by Hartree-Fock HF/6-31G(d,p) and density functional theory DFT/B3LYP/6-31G(d,p) methods. Molecular and thermodynamic structural parameters (electronic properties, electron affinity, electronegativity, molecular hardness and softness, electrophilic index, chemical potential), molecular charge distribution (Mulliken atomic charges), FT-IR spectra, molecular electrostatic potential map (MEP), HOMO-LUMO energies, dipole moments, total energies and electronic structure parameters of the optimized structure were calculated. The calculated values for both methods were compared and analyzed.

References

  • Abood, N.A. ve Hlban, S.H. (2013). Theoretical study of structures, IR and NMR of some aliphatic hydrazones derived from aliphatic aldehydes and hydrazine by DFT method. Journal of Chemical and Pharmaceutical Research, 5, 324-331.
  • Avadanei, M., Perju, E., Cozan, V., Bruma, M. (2014). Phase transitions of a monotropic azomethine liquid crystal investigated by ATR-FTIR spectroscopy. Phase Transitions, 87, 243-254.
  • Bates, M.A. ve Luckhurst, G.R. (1997). Computer simulation studies of anisotropic systems. The density and temperature dependence of the second rank orientational order parameter for the nematic phase of a Gay–Berne liquid crystal. Chemical Physics Letters, 281, 193-198.
  • Beytur, M. ve Avinca, I. (2021) Molecular, Electronic, Nonlinear Optical and Spectroscopic Analysis of Heterocyclic 3-Substituted-4-(3-methyl-2-thienylmethyleneamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones: Experiment and DFT Calculations. De Gruyter Heterocyclic Communications, 27, 1–16.
  • Bharadwaj, R.K., Bunning, T.J. ve Farmer, B.L. (2000). A mesoscale modelling study of nematic liquid crystals confined to ellipsoidal domains. Liquid Crystals, 27, 591-603.
  • Campanario, J.M., Bronchalo, E. ve Hidalgo, M. A. (1994). An Effective Approach for Teaching Intermolecular Interactions. Journal of Chemical Education, 71, 761-766.
  • Carlton, R. J., Hunter, J. T., Miller, D. S., Abbasi, R., Mushenheim, P. C., Tan, L. N., Abbott, N. L. (2013). Chemical and biological sensing using liquid crystals. Liquid Crystals Reviews, 1, 29-51.
  • Chandrasekhar, S. (1992). Liquid Crystals. Cambridge: Cambridge University Press.
  • Chigrinov, V. G. ve Yakovlev, D. A. (2006). Optimization and Modeling of Liquid Crystal Displays. Molecular Crystals and Liquid Crystals, 453, 107-121.
  • de Gennes, P. G. (1993). The Physics of Liquid Crystals. Oxford: Clarendon Press.
  • El-Mansy, M.A.M., El-Nahass, M.M., Khusayfan, N.M., El-Menyawy, E.M. (2013). DFT approach for FT-IR spectra and HOMO–LUMO energy gap for N-(p-dimethylaminobenzylidene)-p-nitroaniline (DBN). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 111, 217–222.
  • Foresman, J.B. ve Frisch, A. (1996). Exploring Chemistry with Electronic Structure Methods. Pittsburg: Gaussian Inc.
  • Fukui, K. (1982). Role of Frontier Orbitals in Chemical Reactions. Science, 218, 747-754.
  • Geerlings, P., De Proft, F. ve Langenaeker, W. (2003). Conceptual Density Functional Theory. Chemical Reviews, 103, 1793-1873.
  • Gray, G.W. (1962). Molecular Structure and Properties of Liquid Crystals. New York: Academic Press.
  • Gümüş, H.P. ve Atalay, Y. (2017). 3-hidroksi-4-hidroksimiinometil-5-hidroksimetil-1,2-dimetilpiridinyum iyodid molekülünün geometrik yapısının incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21, 564-571.
  • Hohenberg, P. ve Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review B, 136, 864-871.
  • Lee, H-G., Munir, S. ve Park, S-Y. (2016). Cholesteric Liquid Crystal Droplets for Biosensors. ACS Applied Materials & Interfaces, 8, 26407-26417.
  • Levine, I.N. (2003). Quantum Chemistry (5th ed.). Singapore: Pearson Education.
  • Liu, D. ve Jang, C-H. (2014). A new strategy for imaging urease activity using liquid crystal dropletpatterns formed on solid surfaces. Sensors and Actuators B, 193, 770-773.
  • Luckhurst, G.R. ve Romono, S. (1999). Computer simulation study of a nematogenic lattice model based on an elastic energy mapping of the pair potential. Liquid Crystals, 26(6), 871-884.
  • Mamuk, A. E. ve Nesrullajev, A. (2016). Refractive and birefringent properties and order parameter of nematic liquid crystal at the direct and reverse nematic ↔ isotropic liquid phase transition. Journal Of Optoelectronıcs And Advanced Materıals, 18, 928-937.
  • Mamuk, A. E. ve Avcı, N. (2021). 4-butoxybenzylidene-4’-butylaniline (BBBA) Sıvı Kristalinin Geniş Sıcaklık Aralığında İncelenmesi: Optik, Dielektrik, Kalorimetrik ve Kızılötesi Spektroskopik Analiz. BEÜ Fen Bilimleri Dergisi, 10, 311-324.
  • Mamuk, A. E., Koçak, Ç. ve Demirci Dönmez, Ç. E. (2021). Production and characterization of liquid crystal/polyacrylonitrile nano-fibers by electrospinning method. Colloid and Polymer Science, 299, 1209-1221.
  • Mamuk, A. E., Koçak, Ç., Aslan, S., Bal Altuntaş, D. (2022). Electrochemical Properties of Coumarin 500 Encapsulated in a Liquid Crystal Guided Electrospun Fiber Core and Their Supercapacitor Application. ACS Applied Energy Materials, 5, 12078-12089.
  • March, N.H. (1996). Electrostatic Potential, Bond Density and Bond Order in Molecules and Clusters. Molecular Electrostatic Potentials: Concepts and Applications Theoretical and Computational Chemistry, 3, 619-647.
  • Martínez-Felipe A., Imrie C.T. ve Ribes-Greus A. (2013). Study of structure formation in side-chain liquid crystal copolymers by variable temperature fourier transform infrared spectroscopy. Industrial & Engineering Chemistry Research, 52, 8714-8721.
  • Mulliken, R.S. (1955). Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. The Journal of Chemical Physics, 23, 1833-1840.
  • Ojha, D.P., Kumar, D. ve Pisipati, V.G.K.M. (2002). Statistical Study of Molecular Ordering in a Nematogenic Compound – A Computational Analysis. Crystal Research and Technology, 37, 83-91.
  • Osiecka N., Galewski Z., Juszyńska-Gałązka E., Massalska-Arodź M. (2016). Studies of reorganization of the molecules during smectic A–smectic C phase transition using infrared spectroscopy and generalized two-dimensional correlation analysis. Journal of Molecular Liquids, 224, 677-683.
  • Pauling, L. (1960). The Nature of the Chemical Bond. New York: Cornell University Press.
  • Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E. (1978). Electronegativity: The Density Functional Viewpoint. The Journal of Chemical Physics, 68, 3801-3807.
  • Parr, R.G., von Szentpaly, L. ve Liu, S. (1999). Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924.
  • Pearson, R.G. (1989). Absolute Electronegativity and Hardness: Applications to Organic Chemistry. Journal of Organic Chemistry, 54, 1423-1430.
  • Popov, N., Honaker, L. W., Popova, M., Usoltseva, N., Mann, E. K., Jakli, A., Popov, P. (2017). Thermotropic Liquid Crystal-Assisted Chemical and Biological Sensors. Materials, 11(20), 1-28.
  • Reed, A. E. ve Weinhold, F. (1985). Natural localized molecular orbitals. The Journal of Chemical Physics, 83, 1736-1740.
  • Reed, A.E., Weinstock, R.B. ve Weinhold, F. (1985). Natural Atomic Orbitals and Natural Population Analysis. The Journal of Chemical Physics, 83, 735-746.
  • Reed, A.E., Curtiss, L.A. ve Weinhold, F. (1988). Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Review, 88, 899-926.
  • Sanz, F., Manaut, F., Jose, J. Segura, J., Carbo, M. ve De La Torre, R. (1988). Automatic determination of MEP patterns of molecules and its application to caffeine metabolism inhibitors. Journal of Molecular Structure: THEOCHEM, 170, 171-180.
  • Sarman, S. (2000). Molecular dynamics simulation of thermomechanical coupling in cholesteric liquid crystals. Molecular Physics, 98, 27-35.
  • Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., Montgomery, J.A. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347-1363.
  • Scrocco, E., ve Tomasi, J. (1973). In: New Concepts II. Topics in Current Chemistry Fortschritte der Chemischen Forschung, The electrostatic molecular potential as a tool for the interpretation of molecular properties. 42, 95-170. Berlin, Heidelberg: Springer.
  • Senet, P. (1997). Chemical hardnesses of atoms and molecules from frontier orbitals. Chemical Physics Letters, 275, 527-532.
  • Sharma, D., Tiwari, G. ve Tiwari, S. N. (2019) . Electronic Structure and Thermodynamic Properties of 4-nheptyl-4´-cyanobiphenyl: A Computational Study. Materials Today: Proceedings, 15, 409–415.
  • Sharma, D. Tiwari, G. ve Tiwari, S.N. (2017). Thermodynamical Properties and Infrared Spectra of 4-n-propoxy-4´-cyanobiphenyl: Hartree-Fock and Density Functional Theory Methods. International Journal of Electroactive Materials, 5, 19-30.
  • Singh, S., Singh, H., Srivastava, A., Tandon, P., Deb, R., Debnath,,S., Rao, N.V.S., Ayala, A.P. (2016). Study of phase transitions in a bent-core liquid crystal probed by infrared spectroscopy. Vibrational Spectroscopy, 86, 24-34.
  • Smondyrev, A.M. ve Phcovtis, R.A. (1999). Nematic Structures in. Cylindrical Cavities. Liquid Crystals, 26, 235-240.
  • Tiwari, S.N. ve Sharma, D. (2015). Molecular structure and interaction energy studies of 4, 4′-methoxy bis-hydrazone. Journal of Molecular Liquids, 207, 99-106.
  • Wilson, M.R. (2007). Molecular simulation of liquid crystals: progress towards a better understanding of bulk structure and the prediction of material properties. Chemical Society Reviews, 36(12), 1881-8.
  • Yakubov, A.A. (2000). Study of molecular structure and interactions in partially fluorinated liquid crystal by infrared spectroscopy. Journal of Molecular Structure, 519, 205–209.
  • Yang, J., Yan, H., Wang, G., Zhang, X., Wang, T. ve Gong, X. (2014). Computational investigations into the substituent effects of –N3, –NF2, –NO2, and –NH2 on the structure, sensitivity and detonation properties of N, N′-azobis(1, 2, 4-triazole). Journal of Molecular Modeling, 20, 2148-2159.
  • Young, D. (2001). Computational Chemistry: A Practical Guida for Aplying Tecniques to Real-World Problems. New York: Wiley-Interscience.

4-buthoxyphenyl 4’-hexylbenzoate Sıvı Kristal Molekülünün Geometrik Yapısının İncelenmesi

Year 2023, Volume: 13 Issue: 4, 2604 - 2615, 01.12.2023
https://doi.org/10.21597/jist.1305038

Abstract

Bu çalışmada, tek eksenli moleküler simetriye sahip bir termotropik nematik sıvı kristal olan BPHB (4-buthoxyphenyl 4’-hexylbenzoate) molekülünün geometrisi optimize edilmiştir ve spektral analizleri yapılmıştır. Bu amaçla Gaussian09 yazılım paketi ve GaussView 5.0 grafik ara yüz yazılım programları kullanılmıştır. Hesaplamalar Hartree-Fock HF/6-31G(d,p) ve yoğunluk fonksiyonel teorisi DFT/B3LYP/6-31G(d,p) yöntemleriyle gerçekleştirilmiştir. Optimize edilen yapının moleküler ve termodinamik yapısal parametreleri (elektronik özellikler, elektron ilgisi, elektronegatiflik, moleküler sertlik ve yumuşaklık, elektrofilik indeks, kimyasal potansiyel gibi), moleküler yük dağılımı (Mulliken atomik yükleri), FT-IR spektrumları, moleküler elektrostatik potansiyel haritası (MEP), HOMO-LUMO enerjileri, dipol momentleri, toplam enerjileri ve elektronik yapı parametreleri hesaplanmıştır. Her iki yöntem için hesaplanan değerler karşılaştırılarak analiz edilmiştir.

References

  • Abood, N.A. ve Hlban, S.H. (2013). Theoretical study of structures, IR and NMR of some aliphatic hydrazones derived from aliphatic aldehydes and hydrazine by DFT method. Journal of Chemical and Pharmaceutical Research, 5, 324-331.
  • Avadanei, M., Perju, E., Cozan, V., Bruma, M. (2014). Phase transitions of a monotropic azomethine liquid crystal investigated by ATR-FTIR spectroscopy. Phase Transitions, 87, 243-254.
  • Bates, M.A. ve Luckhurst, G.R. (1997). Computer simulation studies of anisotropic systems. The density and temperature dependence of the second rank orientational order parameter for the nematic phase of a Gay–Berne liquid crystal. Chemical Physics Letters, 281, 193-198.
  • Beytur, M. ve Avinca, I. (2021) Molecular, Electronic, Nonlinear Optical and Spectroscopic Analysis of Heterocyclic 3-Substituted-4-(3-methyl-2-thienylmethyleneamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones: Experiment and DFT Calculations. De Gruyter Heterocyclic Communications, 27, 1–16.
  • Bharadwaj, R.K., Bunning, T.J. ve Farmer, B.L. (2000). A mesoscale modelling study of nematic liquid crystals confined to ellipsoidal domains. Liquid Crystals, 27, 591-603.
  • Campanario, J.M., Bronchalo, E. ve Hidalgo, M. A. (1994). An Effective Approach for Teaching Intermolecular Interactions. Journal of Chemical Education, 71, 761-766.
  • Carlton, R. J., Hunter, J. T., Miller, D. S., Abbasi, R., Mushenheim, P. C., Tan, L. N., Abbott, N. L. (2013). Chemical and biological sensing using liquid crystals. Liquid Crystals Reviews, 1, 29-51.
  • Chandrasekhar, S. (1992). Liquid Crystals. Cambridge: Cambridge University Press.
  • Chigrinov, V. G. ve Yakovlev, D. A. (2006). Optimization and Modeling of Liquid Crystal Displays. Molecular Crystals and Liquid Crystals, 453, 107-121.
  • de Gennes, P. G. (1993). The Physics of Liquid Crystals. Oxford: Clarendon Press.
  • El-Mansy, M.A.M., El-Nahass, M.M., Khusayfan, N.M., El-Menyawy, E.M. (2013). DFT approach for FT-IR spectra and HOMO–LUMO energy gap for N-(p-dimethylaminobenzylidene)-p-nitroaniline (DBN). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 111, 217–222.
  • Foresman, J.B. ve Frisch, A. (1996). Exploring Chemistry with Electronic Structure Methods. Pittsburg: Gaussian Inc.
  • Fukui, K. (1982). Role of Frontier Orbitals in Chemical Reactions. Science, 218, 747-754.
  • Geerlings, P., De Proft, F. ve Langenaeker, W. (2003). Conceptual Density Functional Theory. Chemical Reviews, 103, 1793-1873.
  • Gray, G.W. (1962). Molecular Structure and Properties of Liquid Crystals. New York: Academic Press.
  • Gümüş, H.P. ve Atalay, Y. (2017). 3-hidroksi-4-hidroksimiinometil-5-hidroksimetil-1,2-dimetilpiridinyum iyodid molekülünün geometrik yapısının incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21, 564-571.
  • Hohenberg, P. ve Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review B, 136, 864-871.
  • Lee, H-G., Munir, S. ve Park, S-Y. (2016). Cholesteric Liquid Crystal Droplets for Biosensors. ACS Applied Materials & Interfaces, 8, 26407-26417.
  • Levine, I.N. (2003). Quantum Chemistry (5th ed.). Singapore: Pearson Education.
  • Liu, D. ve Jang, C-H. (2014). A new strategy for imaging urease activity using liquid crystal dropletpatterns formed on solid surfaces. Sensors and Actuators B, 193, 770-773.
  • Luckhurst, G.R. ve Romono, S. (1999). Computer simulation study of a nematogenic lattice model based on an elastic energy mapping of the pair potential. Liquid Crystals, 26(6), 871-884.
  • Mamuk, A. E. ve Nesrullajev, A. (2016). Refractive and birefringent properties and order parameter of nematic liquid crystal at the direct and reverse nematic ↔ isotropic liquid phase transition. Journal Of Optoelectronıcs And Advanced Materıals, 18, 928-937.
  • Mamuk, A. E. ve Avcı, N. (2021). 4-butoxybenzylidene-4’-butylaniline (BBBA) Sıvı Kristalinin Geniş Sıcaklık Aralığında İncelenmesi: Optik, Dielektrik, Kalorimetrik ve Kızılötesi Spektroskopik Analiz. BEÜ Fen Bilimleri Dergisi, 10, 311-324.
  • Mamuk, A. E., Koçak, Ç. ve Demirci Dönmez, Ç. E. (2021). Production and characterization of liquid crystal/polyacrylonitrile nano-fibers by electrospinning method. Colloid and Polymer Science, 299, 1209-1221.
  • Mamuk, A. E., Koçak, Ç., Aslan, S., Bal Altuntaş, D. (2022). Electrochemical Properties of Coumarin 500 Encapsulated in a Liquid Crystal Guided Electrospun Fiber Core and Their Supercapacitor Application. ACS Applied Energy Materials, 5, 12078-12089.
  • March, N.H. (1996). Electrostatic Potential, Bond Density and Bond Order in Molecules and Clusters. Molecular Electrostatic Potentials: Concepts and Applications Theoretical and Computational Chemistry, 3, 619-647.
  • Martínez-Felipe A., Imrie C.T. ve Ribes-Greus A. (2013). Study of structure formation in side-chain liquid crystal copolymers by variable temperature fourier transform infrared spectroscopy. Industrial & Engineering Chemistry Research, 52, 8714-8721.
  • Mulliken, R.S. (1955). Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. The Journal of Chemical Physics, 23, 1833-1840.
  • Ojha, D.P., Kumar, D. ve Pisipati, V.G.K.M. (2002). Statistical Study of Molecular Ordering in a Nematogenic Compound – A Computational Analysis. Crystal Research and Technology, 37, 83-91.
  • Osiecka N., Galewski Z., Juszyńska-Gałązka E., Massalska-Arodź M. (2016). Studies of reorganization of the molecules during smectic A–smectic C phase transition using infrared spectroscopy and generalized two-dimensional correlation analysis. Journal of Molecular Liquids, 224, 677-683.
  • Pauling, L. (1960). The Nature of the Chemical Bond. New York: Cornell University Press.
  • Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E. (1978). Electronegativity: The Density Functional Viewpoint. The Journal of Chemical Physics, 68, 3801-3807.
  • Parr, R.G., von Szentpaly, L. ve Liu, S. (1999). Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924.
  • Pearson, R.G. (1989). Absolute Electronegativity and Hardness: Applications to Organic Chemistry. Journal of Organic Chemistry, 54, 1423-1430.
  • Popov, N., Honaker, L. W., Popova, M., Usoltseva, N., Mann, E. K., Jakli, A., Popov, P. (2017). Thermotropic Liquid Crystal-Assisted Chemical and Biological Sensors. Materials, 11(20), 1-28.
  • Reed, A. E. ve Weinhold, F. (1985). Natural localized molecular orbitals. The Journal of Chemical Physics, 83, 1736-1740.
  • Reed, A.E., Weinstock, R.B. ve Weinhold, F. (1985). Natural Atomic Orbitals and Natural Population Analysis. The Journal of Chemical Physics, 83, 735-746.
  • Reed, A.E., Curtiss, L.A. ve Weinhold, F. (1988). Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Review, 88, 899-926.
  • Sanz, F., Manaut, F., Jose, J. Segura, J., Carbo, M. ve De La Torre, R. (1988). Automatic determination of MEP patterns of molecules and its application to caffeine metabolism inhibitors. Journal of Molecular Structure: THEOCHEM, 170, 171-180.
  • Sarman, S. (2000). Molecular dynamics simulation of thermomechanical coupling in cholesteric liquid crystals. Molecular Physics, 98, 27-35.
  • Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., Montgomery, J.A. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347-1363.
  • Scrocco, E., ve Tomasi, J. (1973). In: New Concepts II. Topics in Current Chemistry Fortschritte der Chemischen Forschung, The electrostatic molecular potential as a tool for the interpretation of molecular properties. 42, 95-170. Berlin, Heidelberg: Springer.
  • Senet, P. (1997). Chemical hardnesses of atoms and molecules from frontier orbitals. Chemical Physics Letters, 275, 527-532.
  • Sharma, D., Tiwari, G. ve Tiwari, S. N. (2019) . Electronic Structure and Thermodynamic Properties of 4-nheptyl-4´-cyanobiphenyl: A Computational Study. Materials Today: Proceedings, 15, 409–415.
  • Sharma, D. Tiwari, G. ve Tiwari, S.N. (2017). Thermodynamical Properties and Infrared Spectra of 4-n-propoxy-4´-cyanobiphenyl: Hartree-Fock and Density Functional Theory Methods. International Journal of Electroactive Materials, 5, 19-30.
  • Singh, S., Singh, H., Srivastava, A., Tandon, P., Deb, R., Debnath,,S., Rao, N.V.S., Ayala, A.P. (2016). Study of phase transitions in a bent-core liquid crystal probed by infrared spectroscopy. Vibrational Spectroscopy, 86, 24-34.
  • Smondyrev, A.M. ve Phcovtis, R.A. (1999). Nematic Structures in. Cylindrical Cavities. Liquid Crystals, 26, 235-240.
  • Tiwari, S.N. ve Sharma, D. (2015). Molecular structure and interaction energy studies of 4, 4′-methoxy bis-hydrazone. Journal of Molecular Liquids, 207, 99-106.
  • Wilson, M.R. (2007). Molecular simulation of liquid crystals: progress towards a better understanding of bulk structure and the prediction of material properties. Chemical Society Reviews, 36(12), 1881-8.
  • Yakubov, A.A. (2000). Study of molecular structure and interactions in partially fluorinated liquid crystal by infrared spectroscopy. Journal of Molecular Structure, 519, 205–209.
  • Yang, J., Yan, H., Wang, G., Zhang, X., Wang, T. ve Gong, X. (2014). Computational investigations into the substituent effects of –N3, –NF2, –NO2, and –NH2 on the structure, sensitivity and detonation properties of N, N′-azobis(1, 2, 4-triazole). Journal of Molecular Modeling, 20, 2148-2159.
  • Young, D. (2001). Computational Chemistry: A Practical Guida for Aplying Tecniques to Real-World Problems. New York: Wiley-Interscience.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Pınar Özden 0000-0001-5308-2060

Early Pub Date November 30, 2023
Publication Date December 1, 2023
Submission Date May 29, 2023
Acceptance Date August 23, 2023
Published in Issue Year 2023 Volume: 13 Issue: 4

Cite

APA Özden, P. (2023). 4-buthoxyphenyl 4’-hexylbenzoate Sıvı Kristal Molekülünün Geometrik Yapısının İncelenmesi. Journal of the Institute of Science and Technology, 13(4), 2604-2615. https://doi.org/10.21597/jist.1305038
AMA Özden P. 4-buthoxyphenyl 4’-hexylbenzoate Sıvı Kristal Molekülünün Geometrik Yapısının İncelenmesi. J. Inst. Sci. and Tech. December 2023;13(4):2604-2615. doi:10.21597/jist.1305038
Chicago Özden, Pınar. “4-Buthoxyphenyl 4’-Hexylbenzoate Sıvı Kristal Molekülünün Geometrik Yapısının İncelenmesi”. Journal of the Institute of Science and Technology 13, no. 4 (December 2023): 2604-15. https://doi.org/10.21597/jist.1305038.
EndNote Özden P (December 1, 2023) 4-buthoxyphenyl 4’-hexylbenzoate Sıvı Kristal Molekülünün Geometrik Yapısının İncelenmesi. Journal of the Institute of Science and Technology 13 4 2604–2615.
IEEE P. Özden, “4-buthoxyphenyl 4’-hexylbenzoate Sıvı Kristal Molekülünün Geometrik Yapısının İncelenmesi”, J. Inst. Sci. and Tech., vol. 13, no. 4, pp. 2604–2615, 2023, doi: 10.21597/jist.1305038.
ISNAD Özden, Pınar. “4-Buthoxyphenyl 4’-Hexylbenzoate Sıvı Kristal Molekülünün Geometrik Yapısının İncelenmesi”. Journal of the Institute of Science and Technology 13/4 (December 2023), 2604-2615. https://doi.org/10.21597/jist.1305038.
JAMA Özden P. 4-buthoxyphenyl 4’-hexylbenzoate Sıvı Kristal Molekülünün Geometrik Yapısının İncelenmesi. J. Inst. Sci. and Tech. 2023;13:2604–2615.
MLA Özden, Pınar. “4-Buthoxyphenyl 4’-Hexylbenzoate Sıvı Kristal Molekülünün Geometrik Yapısının İncelenmesi”. Journal of the Institute of Science and Technology, vol. 13, no. 4, 2023, pp. 2604-15, doi:10.21597/jist.1305038.
Vancouver Özden P. 4-buthoxyphenyl 4’-hexylbenzoate Sıvı Kristal Molekülünün Geometrik Yapısının İncelenmesi. J. Inst. Sci. and Tech. 2023;13(4):2604-15.