Research Article
BibTex RIS Cite

Duman ve Duman Kökenli Bileşiklerin Liquidambar orientalis Mill. (Anadolu Sığla Ağacı)'in Tohum Çimlenmesi Üzerindeki Etkileri

Year 2023, Volume: 13 Issue: 4, 2393 - 2402, 01.12.2023
https://doi.org/10.21597/jist.1309431

Abstract

Duman ve duman kökenli bileşikler, bitkilerde tohum çimlenmesi, somatik embriyogenez ve çiçeklenme gibi fizyolojik ve gelişimsel süreçleri düzenleyebilmektedir. Dumanla ilişkili çimlenme yanıtları, karrikinler, gliseronitril, siringaldehit, katekol ve 3,4,5-trimetilfuran-2(5H)-on gibi uyarıcı ve inhibe edici bileşiklerin mevcudiyeti nedeniyle oldukça karmaşık bir yapıya sahiptir. Bu çalışmada, duman suyu, karrikinolid (KAR1), mandelonitril (MAN) ve katekol (KAT) uygulamalarının Liquidambar orientalis Mill.'in tohum çimlenmesi üzerindeki etkileri incelenmiştir. Ayrıca KAR1 ve siyanohidrin ile indüklenen tohum çimlenmesinde rol aldıkları düşünülen giberellik asit (GA3) ve reaktif oksijen türleri de (ROT) deneylere dâhil edilmiştir. ROT uygulamaları için hidrojen peroksit ve metil violojen çözeltileri kullanılmıştır. Çimlenme deneyleri, 20 °C'ye ayarlanmış inkübatörlerde farklı ışık koşulları altında gerçekleştirilmiştir. Çalışmanın sonuçları, L. orientalis tohumlarının dumana karşı duyarlı olduğunu göstermiştir. Buna ek olarak, 0.01 ve 0.1 µM KAR1 ve 50 µM MAN solüsyonları hem karanlık hem de aydınlık koşullar altında çalışma türünün çimlenmesini teşvik etmiştir (p < 0.05). Öte yandan, KAT uygulamaları çimlenme üzerinde olumlu veya olumsuz bir etki yaratmamıştır. KAR1 ve siyanohidrine hassas olan L. orientalis tohumları 10-5 ila 10-3 M konsantrasyon aralığında GA3'e karşı pozitif bir çimlenme cevabı vermiştir. GA3 uygulamaları yüksek çimlenme başarısı için ışığa olan gereksinimi de ortadan kaldırmıştır. ROT ile uyarılan çimlenme ise sadece ışık varlığında gözlemlenmiştir. Bu çalışmadan elde edilen bulgular, dar yayılışlı bir tür olan L. orientalis'in çimlenme başarısını arttırmak için kullanılabilir.

Supporting Institution

Muğla Sıtkı Koçman Üniversitesi Öğretim Üyesi Yetiştirme Programı (ÖYP) Koordinatörlüğü

References

  • Abu, Y., Romo, J. T., Bai, Y., & Coulman, B. (2016). Priming seeds in aqueous smoke solutions to improve seed germination and biomass production of perennial forage species. Canadian Journal of Plant Science, 96(4), 551-563.
  • Arslan, M., & Şahin, H. (2016). Unutulan Bir Orman Ürünü Kaynağı: Anadolu Sığla Ağacı (Liquidambar orientalis Miller). Bartın Orman Fakültesi Dergisi, 18(1), 103-117.
  • Atay, İ. (1985). Sığla Ağacı (Liquidambar orientalis L.) nın önemi ve silvikültürel özellikleri. Journal of the Faculty of Forestry Istanbul University, 35(1), 15-21.
  • Bailly, C. (2019). The signalling role of ROS in the regulation of seed germination and dormancy. Biochemical Journal, 476(20), 3019-3032.
  • Bailly, C., & Merendino, L. (2021). Oxidative signalling in seed germination and early seedling growth: an emerging role for ROS trafficking and inter-organelle communication. Biochemical Journal, 478(10), 1977-1984.
  • Baldwin, I. T., Staszak-Kozinski, L., & Davidson, R. (1994). Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. Journal of Chemical Ecology, 20(9), 2345-2371.
  • Cao, D., Baskin, J. M., Baskin, C. C., & Li, D.-Z. (2023). Burning lignin: overlooked cues for post-fire seed germination. Trends in Plant Science, 28(4), 386-389.
  • Çatav, Ş. S., & Akbaş, K. (2021). Yedi Akdeniz Lamiaceae Türünün Duman ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi. Journal of Advanced Research in Natural and Applied Sciences, 7(4), 478-485.
  • Çatav, Ş. S., Küçükakyüz, K., Tavşanoğlu, Ç., & Pausas, J. G. (2018). Effect of fire-derived chemicals on germination and seedling growth in Mediterranean plant species. Basic and Applied Ecology, 30, 65-75.
  • Cembrowska-Lech, D., Koprowski, M., & Kępczyński, J. (2015). Germination induction of dormant Avena fatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2-) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. Journal of Plant Physiology, 176, 169-179.
  • Downes, K. S., Light, M. E., Pošta, M., Kohout, L., & van Staden, J. (2013). Comparison of germination responses of Anigozanthos flavidus (Haemodoraceae), Gyrostemon racemiger and Gyrostemon ramulosus (Gyrostemonaceae) to smoke-water and the smoke-derived compounds karrikinolide (KAR1) and glyceronitrile. Annals of Botany, 111(3), 489-497.
  • Flematti, G. R., Dixon, K. W., & Smith, S. M. (2015). What are karrikins and how were they ‘discovered’ by plants? BMC Biology, 13(1), 108.
  • Gniazdowska, A., Krasuska, U., & Bogatek, R. (2010). Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta, 232, 1397-1407.
  • Gomes, M., & Garcia, Q. (2013). Reactive oxygen species and seed germination. Biologia, 68(3), 351-357.
  • Gupta, S., Plačková, L., Kulkarni, M. G., Doležal, K., & Van Staden, J. (2019). Role of smoke stimulatory and inhibitory biomolecules in phytochrome-regulated seed germination of Lactuca sativa. Plant Physiology, 181(2), 458-470.
  • ISTA (International Seed Testing Association). (1996). International rules for seed testing: The germination test. Seed Science and Technology, 24, 155-202.
  • Kępczyński, J. (2018). Induction of agricultural weed seed germination by smoke and smoke-derived karrikin (KAR1), with a particular reference to Avena fatua L. Acta Physiologiae Plantarum, 40, 87.
  • Kępczyński, J. (2020). Progress in utilizing plant-derived smoke water and smoke-derived KAR1 in plant tissue culture. Plant Cell, Tissue and Organ Culture (PCTOC), 140, 271-278.
  • Kępczyński, J., Cembrowska-Lech, D., & Van Staden, J. (2013). Necessity of gibberellin for stimulatory effect of KAR1 on germination of dormant Avena fatua L. caryopses. Acta Physiologiae Plantarum, 35(2), 379-387.
  • Keskin, D., & Güvensen, N. C. (2022). Investigation of antimicrobial properties and chemical composition of different extracts of sweet gum leaves (Liquidambar orientalis). International Journal of Agriculture Environment and Food Sciences, 6(1), 13-18.
  • Lariguet, P., Ranocha, P., De Meyer, M., Barbier, O., Penel, C., & Dunand, C. (2013). Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis. Planta, 238, 381-395.
  • Lee, I., Kim, E., Choi, S., Kim, D., Hong, W., Choi, J., et al. (2021). A Raf-like kinase is required for smoke-induced seed dormancy in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 118(14), e2020636118.
  • Light, M. E., Kulkarni, M. G., Ascough, G. D., & Van Staden, J. (2007). Improved flowering of a South African Watsonia with smoke treatments. South African Journal of Botany, 73(2), 298-298.
  • Martinez, S. E., Conn, C. E., Guercio, A. M., Sepulveda, C., Fiscus, C. J., Koenig, D., et al. (2022). A KARRIKIN INSENSITIVE2 paralog in lettuce mediates highly sensitive germination responses to karrikinolide. Plant Physiology, 190(2), 1440-1456.
  • Merritt, D. J., Kristiansen, M., Flematti, G. R., Turner, S. R., Ghisalberti, E. L., Trengove, R. D., & Dixon, K. W. (2006). Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae. Seed Science Research, 16(1), 29-35.
  • Nalbantsoy, A., Karış, M., Karakaya, L., & Akgül, Y. (2016). Antioxidant, cytotoxic and iNOS activity of Liquidambar orientalis Mill. resin extracts. Turkish Journal of Biochemistry, 41(3), 198-205.
  • Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107-130.
  • Nelson, D. C., Riseborough, J.-A., Flematti, G. R., Stevens, J., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2009). Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant physiology, 149(2), 863-873.
  • Nguyen, T.-N., Tuan, P. A., & Ayele, B. T. (2022). Jasmonate regulates seed dormancy in wheat via modulating the balance between gibberellin and abscisic acid. Journal of Experimental Botany, 73(8), 2434-2453.
  • Oracz, K., El-Maarouf-Bouteau, H., Kranner, I., Bogatek, R., Corbineau, F., & Bailly, C. (2009). The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiology, 150(1), 494-505.
  • Oracz, K., & Karpiński, S. (2016). Phytohormones signaling pathways and ROS involvement in seed germination. Frontiers in Plant Science, 7, 864.
  • Öztürk, M., Çelik, A., Güvensen, A., & Hamzaoğlu, E. (2008). Ecology of tertiary relict endemic Liquidambar orientalis Mill. forests. Forest Ecology and Management, 256(4), 510-518.
  • Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., & ve ark. (2016). Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(8), 715-716.
  • Puglia, G. D., Balestrasse, K., Bustos, J. S., & Huarte, H. R. (2022). New insights into the role of alternating temperatures and cyanide in the ROS-mediated cardoon seed dormancy termination. Horticulturae, 8(10), 960.
  • Ruduś, I., Cembrowska-Lech, D., Jaworska, A., & Kępczyński, J. (2019). Involvement of ethylene biosynthesis and perception during germination of dormant Avena fatua L. caryopses induced by KAR1 or GA3. Planta, 249, 719-738.
  • Sami, A., Rehman, S., Tanvir, M. A., Zhou, X. Y., Zhu, Z. H., & Zhou, K. (2021). Assessment of the germination potential of Brassica oleracea seeds treated with karrikin 1 and cyanide, which modify the ethylene biosynthetic pathway. Journal of Plant Growth Regulation, 40, 1257-1269.
  • Sarac, N., & Şen, B. (2014). Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of Liquidambar orientalis Mill. var. orientalis. Industrial Crops and Products, 53, 60-64.
  • Schwachtje, J., & Baldwin, I. T. (2004). Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Science Research, 14(1), 51-60.
  • Scott, A. C., & Glasspool, I. J. (2006). The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences, 103(29), 10861-10865.
  • Suzek, H., Celik, I., Dogan, A., & Yildirim, S. (2016). Protective effect and antioxidant role of sweetgum (Liquidambar orientalis) oil against carbon tetrachloride-induced hepatotoxicity and oxidative stress in rats. Pharmaceutical biology, 54(3), 451-457.
  • Tavşanoğlu, Ç., Ergan, G., Çatav, Ş. S., Zare, G., Küçükakyüz, K., & Özüdoğru, B. (2017). Multiple fire-related cues stimulate germination in Chaenorhinum rubrifolium (Plantaginaceae), a rare annual in the Mediterranean Basin. Seed Science Research, 27(1), 26–38.
  • Ürker, O., Yılmaz, T., Öztürk, Ş., & Çobanoğlu, N. (2014). Anadolu Sığla Ormanları’nın Çevre Sosyolojisi Kapsamında İncelenmesi. Sosyoloji Araştırmaları Dergisi, 17(2), 152-187.
  • Wang, M., Schoettner, M., Xu, S., Paetz, C., Wilde, J., Baldwin, I. T., & Groten, K. (2017). Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen species-mediated redox signaling. New Phytologist, 213(4), 1755-1770.
  • Wang, Q., Smith, S. M., & Huang, J. (2022). Origins of strigolactone and karrikin signaling in plants. Trends in Plant Science, 27(5), 450-459.
  • Waters, M. T., & Nelson, D. C. (2023). Karrikin perception and signalling. New Phytologist, 237(5), 1525-1541.
  • Yan, A., & Chen, Z. (2020). The control of seed dormancy and germination by temperature, light and nitrate. The Botanical Review, 86, 39-75.
  • Yao, J., Scaffidi, A., Meng, Y., Melville, K. T., Komatsu, A., Khosla, A., et al. (2021). Desmethyl butenolides are optimal ligands for karrikin receptor proteins. New Phytologist, 230(3), 1003-1016.
  • Yao, J., & Waters, M. T. (2020). Perception of karrikins by plants: a continuing enigma. Journal of Experimental Botany, 71(6), 1774-1781.
  • Yu, L.-L., Liu, C.-J., Peng, Y., He, Z.-Q., & Xu, F. (2022). New insights into the role of cyanide in the promotion of seed germination in tomato. BMC Plant Biology, 22(1), 28.

The Effects of Smoke and Smoke-Derived Compounds on Seed Germination of Liquidambar orientalis Mill. (Anatolian Sweetgum Tree)

Year 2023, Volume: 13 Issue: 4, 2393 - 2402, 01.12.2023
https://doi.org/10.21597/jist.1309431

Abstract

Smoke and smoke-derived compounds can regulate physiological and developmental processes, such as seed germination, somatic embryogenesis, and flowering in plants. Smoke-related germination responses are highly complex due to the presence of stimulatory and inhibitory compounds, such as karrikins, glyceronitrile, syringaldehyde, catechol, and 3,4,5-trimethylfuran-2(5H)-one. In this study, the effects of smoke water, karrikinolide (KAR1), mandelonitrile (MAN), and catechol (CAT) treatments on seed germination of Liquidambar orientalis Mill. were investigated. Moreover, gibberellic acid (GA3) and reactive oxygen species (ROS), which are thought to play a role in KAR1- and cyanohydrin-induced seed germination, were also included in the experiments. Hydrogen peroxide and methyl viologen solutions were used for ROS treatments. Germination experiments were carried out under different light conditions in incubators set at 20 °C. The results of the study showed that L. orientalis seeds were sensitive to smoke. In addition, 0.01 and 0.1 µM KAR1 and 50 µM MAN solutions promoted the germination of the study species under both dark and light conditions (p < 0.05). On the other hand, CAT treatments did not have a positive or negative effect on germination. L. orientalis seeds sensitive to KAR1 and cyanohydrin gave a positive germination response to GA3 in the concentration range of 10-5 to 10-3 M. GA3 treatments also eliminated the requirement of light for high germination success. ROS-induced germination was only observed in the presence of light. The findings of this study can be used to increase the germination success of L. orientalis, a narrowly distributed species.

References

  • Abu, Y., Romo, J. T., Bai, Y., & Coulman, B. (2016). Priming seeds in aqueous smoke solutions to improve seed germination and biomass production of perennial forage species. Canadian Journal of Plant Science, 96(4), 551-563.
  • Arslan, M., & Şahin, H. (2016). Unutulan Bir Orman Ürünü Kaynağı: Anadolu Sığla Ağacı (Liquidambar orientalis Miller). Bartın Orman Fakültesi Dergisi, 18(1), 103-117.
  • Atay, İ. (1985). Sığla Ağacı (Liquidambar orientalis L.) nın önemi ve silvikültürel özellikleri. Journal of the Faculty of Forestry Istanbul University, 35(1), 15-21.
  • Bailly, C. (2019). The signalling role of ROS in the regulation of seed germination and dormancy. Biochemical Journal, 476(20), 3019-3032.
  • Bailly, C., & Merendino, L. (2021). Oxidative signalling in seed germination and early seedling growth: an emerging role for ROS trafficking and inter-organelle communication. Biochemical Journal, 478(10), 1977-1984.
  • Baldwin, I. T., Staszak-Kozinski, L., & Davidson, R. (1994). Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. Journal of Chemical Ecology, 20(9), 2345-2371.
  • Cao, D., Baskin, J. M., Baskin, C. C., & Li, D.-Z. (2023). Burning lignin: overlooked cues for post-fire seed germination. Trends in Plant Science, 28(4), 386-389.
  • Çatav, Ş. S., & Akbaş, K. (2021). Yedi Akdeniz Lamiaceae Türünün Duman ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi. Journal of Advanced Research in Natural and Applied Sciences, 7(4), 478-485.
  • Çatav, Ş. S., Küçükakyüz, K., Tavşanoğlu, Ç., & Pausas, J. G. (2018). Effect of fire-derived chemicals on germination and seedling growth in Mediterranean plant species. Basic and Applied Ecology, 30, 65-75.
  • Cembrowska-Lech, D., Koprowski, M., & Kępczyński, J. (2015). Germination induction of dormant Avena fatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2-) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. Journal of Plant Physiology, 176, 169-179.
  • Downes, K. S., Light, M. E., Pošta, M., Kohout, L., & van Staden, J. (2013). Comparison of germination responses of Anigozanthos flavidus (Haemodoraceae), Gyrostemon racemiger and Gyrostemon ramulosus (Gyrostemonaceae) to smoke-water and the smoke-derived compounds karrikinolide (KAR1) and glyceronitrile. Annals of Botany, 111(3), 489-497.
  • Flematti, G. R., Dixon, K. W., & Smith, S. M. (2015). What are karrikins and how were they ‘discovered’ by plants? BMC Biology, 13(1), 108.
  • Gniazdowska, A., Krasuska, U., & Bogatek, R. (2010). Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta, 232, 1397-1407.
  • Gomes, M., & Garcia, Q. (2013). Reactive oxygen species and seed germination. Biologia, 68(3), 351-357.
  • Gupta, S., Plačková, L., Kulkarni, M. G., Doležal, K., & Van Staden, J. (2019). Role of smoke stimulatory and inhibitory biomolecules in phytochrome-regulated seed germination of Lactuca sativa. Plant Physiology, 181(2), 458-470.
  • ISTA (International Seed Testing Association). (1996). International rules for seed testing: The germination test. Seed Science and Technology, 24, 155-202.
  • Kępczyński, J. (2018). Induction of agricultural weed seed germination by smoke and smoke-derived karrikin (KAR1), with a particular reference to Avena fatua L. Acta Physiologiae Plantarum, 40, 87.
  • Kępczyński, J. (2020). Progress in utilizing plant-derived smoke water and smoke-derived KAR1 in plant tissue culture. Plant Cell, Tissue and Organ Culture (PCTOC), 140, 271-278.
  • Kępczyński, J., Cembrowska-Lech, D., & Van Staden, J. (2013). Necessity of gibberellin for stimulatory effect of KAR1 on germination of dormant Avena fatua L. caryopses. Acta Physiologiae Plantarum, 35(2), 379-387.
  • Keskin, D., & Güvensen, N. C. (2022). Investigation of antimicrobial properties and chemical composition of different extracts of sweet gum leaves (Liquidambar orientalis). International Journal of Agriculture Environment and Food Sciences, 6(1), 13-18.
  • Lariguet, P., Ranocha, P., De Meyer, M., Barbier, O., Penel, C., & Dunand, C. (2013). Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis. Planta, 238, 381-395.
  • Lee, I., Kim, E., Choi, S., Kim, D., Hong, W., Choi, J., et al. (2021). A Raf-like kinase is required for smoke-induced seed dormancy in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 118(14), e2020636118.
  • Light, M. E., Kulkarni, M. G., Ascough, G. D., & Van Staden, J. (2007). Improved flowering of a South African Watsonia with smoke treatments. South African Journal of Botany, 73(2), 298-298.
  • Martinez, S. E., Conn, C. E., Guercio, A. M., Sepulveda, C., Fiscus, C. J., Koenig, D., et al. (2022). A KARRIKIN INSENSITIVE2 paralog in lettuce mediates highly sensitive germination responses to karrikinolide. Plant Physiology, 190(2), 1440-1456.
  • Merritt, D. J., Kristiansen, M., Flematti, G. R., Turner, S. R., Ghisalberti, E. L., Trengove, R. D., & Dixon, K. W. (2006). Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae. Seed Science Research, 16(1), 29-35.
  • Nalbantsoy, A., Karış, M., Karakaya, L., & Akgül, Y. (2016). Antioxidant, cytotoxic and iNOS activity of Liquidambar orientalis Mill. resin extracts. Turkish Journal of Biochemistry, 41(3), 198-205.
  • Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107-130.
  • Nelson, D. C., Riseborough, J.-A., Flematti, G. R., Stevens, J., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2009). Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant physiology, 149(2), 863-873.
  • Nguyen, T.-N., Tuan, P. A., & Ayele, B. T. (2022). Jasmonate regulates seed dormancy in wheat via modulating the balance between gibberellin and abscisic acid. Journal of Experimental Botany, 73(8), 2434-2453.
  • Oracz, K., El-Maarouf-Bouteau, H., Kranner, I., Bogatek, R., Corbineau, F., & Bailly, C. (2009). The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiology, 150(1), 494-505.
  • Oracz, K., & Karpiński, S. (2016). Phytohormones signaling pathways and ROS involvement in seed germination. Frontiers in Plant Science, 7, 864.
  • Öztürk, M., Çelik, A., Güvensen, A., & Hamzaoğlu, E. (2008). Ecology of tertiary relict endemic Liquidambar orientalis Mill. forests. Forest Ecology and Management, 256(4), 510-518.
  • Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., & ve ark. (2016). Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(8), 715-716.
  • Puglia, G. D., Balestrasse, K., Bustos, J. S., & Huarte, H. R. (2022). New insights into the role of alternating temperatures and cyanide in the ROS-mediated cardoon seed dormancy termination. Horticulturae, 8(10), 960.
  • Ruduś, I., Cembrowska-Lech, D., Jaworska, A., & Kępczyński, J. (2019). Involvement of ethylene biosynthesis and perception during germination of dormant Avena fatua L. caryopses induced by KAR1 or GA3. Planta, 249, 719-738.
  • Sami, A., Rehman, S., Tanvir, M. A., Zhou, X. Y., Zhu, Z. H., & Zhou, K. (2021). Assessment of the germination potential of Brassica oleracea seeds treated with karrikin 1 and cyanide, which modify the ethylene biosynthetic pathway. Journal of Plant Growth Regulation, 40, 1257-1269.
  • Sarac, N., & Şen, B. (2014). Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of Liquidambar orientalis Mill. var. orientalis. Industrial Crops and Products, 53, 60-64.
  • Schwachtje, J., & Baldwin, I. T. (2004). Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Science Research, 14(1), 51-60.
  • Scott, A. C., & Glasspool, I. J. (2006). The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences, 103(29), 10861-10865.
  • Suzek, H., Celik, I., Dogan, A., & Yildirim, S. (2016). Protective effect and antioxidant role of sweetgum (Liquidambar orientalis) oil against carbon tetrachloride-induced hepatotoxicity and oxidative stress in rats. Pharmaceutical biology, 54(3), 451-457.
  • Tavşanoğlu, Ç., Ergan, G., Çatav, Ş. S., Zare, G., Küçükakyüz, K., & Özüdoğru, B. (2017). Multiple fire-related cues stimulate germination in Chaenorhinum rubrifolium (Plantaginaceae), a rare annual in the Mediterranean Basin. Seed Science Research, 27(1), 26–38.
  • Ürker, O., Yılmaz, T., Öztürk, Ş., & Çobanoğlu, N. (2014). Anadolu Sığla Ormanları’nın Çevre Sosyolojisi Kapsamında İncelenmesi. Sosyoloji Araştırmaları Dergisi, 17(2), 152-187.
  • Wang, M., Schoettner, M., Xu, S., Paetz, C., Wilde, J., Baldwin, I. T., & Groten, K. (2017). Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen species-mediated redox signaling. New Phytologist, 213(4), 1755-1770.
  • Wang, Q., Smith, S. M., & Huang, J. (2022). Origins of strigolactone and karrikin signaling in plants. Trends in Plant Science, 27(5), 450-459.
  • Waters, M. T., & Nelson, D. C. (2023). Karrikin perception and signalling. New Phytologist, 237(5), 1525-1541.
  • Yan, A., & Chen, Z. (2020). The control of seed dormancy and germination by temperature, light and nitrate. The Botanical Review, 86, 39-75.
  • Yao, J., Scaffidi, A., Meng, Y., Melville, K. T., Komatsu, A., Khosla, A., et al. (2021). Desmethyl butenolides are optimal ligands for karrikin receptor proteins. New Phytologist, 230(3), 1003-1016.
  • Yao, J., & Waters, M. T. (2020). Perception of karrikins by plants: a continuing enigma. Journal of Experimental Botany, 71(6), 1774-1781.
  • Yu, L.-L., Liu, C.-J., Peng, Y., He, Z.-Q., & Xu, F. (2022). New insights into the role of cyanide in the promotion of seed germination in tomato. BMC Plant Biology, 22(1), 28.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Ecology (Other)
Journal Section Biyoloji / Biology
Authors

Şükrü Serter Çatav 0000-0002-9934-254X

Kenan Akbaş 0000-0002-0198-4668

Early Pub Date November 30, 2023
Publication Date December 1, 2023
Submission Date June 3, 2023
Acceptance Date September 7, 2023
Published in Issue Year 2023 Volume: 13 Issue: 4

Cite

APA Çatav, Ş. S., & Akbaş, K. (2023). Duman ve Duman Kökenli Bileşiklerin Liquidambar orientalis Mill. (Anadolu Sığla Ağacı)’in Tohum Çimlenmesi Üzerindeki Etkileri. Journal of the Institute of Science and Technology, 13(4), 2393-2402. https://doi.org/10.21597/jist.1309431
AMA Çatav ŞS, Akbaş K. Duman ve Duman Kökenli Bileşiklerin Liquidambar orientalis Mill. (Anadolu Sığla Ağacı)’in Tohum Çimlenmesi Üzerindeki Etkileri. J. Inst. Sci. and Tech. December 2023;13(4):2393-2402. doi:10.21597/jist.1309431
Chicago Çatav, Şükrü Serter, and Kenan Akbaş. “Duman Ve Duman Kökenli Bileşiklerin Liquidambar Orientalis Mill. (Anadolu Sığla Ağacı)’in Tohum Çimlenmesi Üzerindeki Etkileri”. Journal of the Institute of Science and Technology 13, no. 4 (December 2023): 2393-2402. https://doi.org/10.21597/jist.1309431.
EndNote Çatav ŞS, Akbaş K (December 1, 2023) Duman ve Duman Kökenli Bileşiklerin Liquidambar orientalis Mill. (Anadolu Sığla Ağacı)’in Tohum Çimlenmesi Üzerindeki Etkileri. Journal of the Institute of Science and Technology 13 4 2393–2402.
IEEE Ş. S. Çatav and K. Akbaş, “Duman ve Duman Kökenli Bileşiklerin Liquidambar orientalis Mill. (Anadolu Sığla Ağacı)’in Tohum Çimlenmesi Üzerindeki Etkileri”, J. Inst. Sci. and Tech., vol. 13, no. 4, pp. 2393–2402, 2023, doi: 10.21597/jist.1309431.
ISNAD Çatav, Şükrü Serter - Akbaş, Kenan. “Duman Ve Duman Kökenli Bileşiklerin Liquidambar Orientalis Mill. (Anadolu Sığla Ağacı)’in Tohum Çimlenmesi Üzerindeki Etkileri”. Journal of the Institute of Science and Technology 13/4 (December 2023), 2393-2402. https://doi.org/10.21597/jist.1309431.
JAMA Çatav ŞS, Akbaş K. Duman ve Duman Kökenli Bileşiklerin Liquidambar orientalis Mill. (Anadolu Sığla Ağacı)’in Tohum Çimlenmesi Üzerindeki Etkileri. J. Inst. Sci. and Tech. 2023;13:2393–2402.
MLA Çatav, Şükrü Serter and Kenan Akbaş. “Duman Ve Duman Kökenli Bileşiklerin Liquidambar Orientalis Mill. (Anadolu Sığla Ağacı)’in Tohum Çimlenmesi Üzerindeki Etkileri”. Journal of the Institute of Science and Technology, vol. 13, no. 4, 2023, pp. 2393-02, doi:10.21597/jist.1309431.
Vancouver Çatav ŞS, Akbaş K. Duman ve Duman Kökenli Bileşiklerin Liquidambar orientalis Mill. (Anadolu Sığla Ağacı)’in Tohum Çimlenmesi Üzerindeki Etkileri. J. Inst. Sci. and Tech. 2023;13(4):2393-402.