Research Article
BibTex RIS Cite

Bir Mekanik Jiroskopun Tasarımı, Modellenmesi ve Serbest Titreşim Analizi

Year 2024, Volume: 14 Issue: 1, 363 - 376, 01.03.2024
https://doi.org/10.21597/jist.1293086

Abstract

Jiroskoplar yön tayini için kullanılan cihazlar olmakla birlikte mekanik jiroskoplar; jiroskopik tork elde ederek yönlendirme ve dengeleme amaçlı kullanılmaktadır. Dönen cisimlere, dönme eksenleri haricindeki eksenlerden birine verilen yalpalama hızı sayesinde bir tork oluşmaktadır. Bu çalışmada oluşturulan tek volanlı bir mekanik jiroskop tasarımına, dinamik analiz uygulanması ile jiroskopik torkun hesaplanması sağlanmıştır. Bu analiz kapsamında yapılan modal analiz ile serbest titreşim frekansları belirlenmiştir. Volan dikey yerleştirilmiş olup ağırlık torku sayesinde çalışan, bir volanlı mekanik jiroskopun hareketine ilişkin dinamik cevaplar, klasik (Newtonian) mekaniği esaslı incelenmiştir. Volan 0-250 rad/s aralığında döndürüldüğünde herhangi bir doğal frekans oluşmamıştır. Jiroskop 0.468 Nm değerindeki tork ve 0.922 rad/s değerindeki yalpalama hızı ile dengelenmiştir. Jiroskopun zemine bağlandığı yatağa burulma sönümü verildiğinde nütasyon salınımları ortadan kalkmıştır. Sönümlü halde serbest titreşim frekansları değişmiştir.

Supporting Institution

Yok

Project Number

yok

Thanks

Bu çalışmanın inceleme ve değerlendirme aşamasında yapmış oldukları değerli katkılardan dolayı; editör, hakem ve emeği geçenlere içten teşekkür ederim.

References

  • Ahmed, A., Adnaik, I., Bhavsar, D. & Sargar, T. S. (2016). Design and Analysis of Gyro Wheel for Stabilization of a Bicycle. International Journal for Scientific Research & Development, 4(04), 349-351.
  • Anonimouse. (2023a). Nutation Wikipedia®. en.wikipedia.org: Wikimedia Foundation, Inc.,.
  • Anonimouse. (2023b). Precession Wikipedia®. en.wikipedia.org: Wikimedia Foundation, Inc.,.
  • Ansys®. (2023). Academic Research Mechanical Products, 2021 R2, Help System, ANSYS Mechanical User's Guide: ANSYS, Inc.
  • Bayram, H. (2020). Design and Implementation of Autonomous Surface Vehicle for Inland Water. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 101-111. doi: 10.21597/jist.642503
  • Boyce, M. P. (2012). 5 - Rotor Dynamics. In M. P. Boyce (Ed.), Gas Turbine Engineering Handbook (Fourth Edition) (pp. 215-250). Oxford: Butterworth-Heinemann.
  • Dagnaes-Hansen, N. A. ve Santos, I. F. (2018). Magnetically suspended flywheel in gimbal mount – Nonlinear modelling and simulation. Journal of Sound and Vibration, 432, 327-350. doi: 10.1016/j.jsv.2018.06.033
  • Dagnaes-Hansen, N. A. ve Santos, I. F. (2019). Magnetically suspended flywheel in gimbal mount - Test bench design and experimental validation. Journal of Sound and Vibration, 448, 197-210. doi: 10.1016/j.jsv.2019.01.023
  • Fan, Y., Ding, H., Li, M. & Li, J. (2018). Modal Analysis of a Thick-Disk Rotor with Interference Fit Using Finite Element Method. Mathematical Problems in Engineering, 2018, 5021245. doi: 10.1155/2018/5021245
  • Feynman, R. P., Leighton, R. B. & Sands, M. (2011). The Feynman Lectures on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat: Basic Books.
  • Giaccu, G. F. ve Caracoglia, L. (2021). A gyroscopic stabilizer to improve flutter performance of long-span cable-supported bridges. Engineering Structures, 240, 112373. doi: 10.1016/j.engstruct.2021.112373
  • Goldstein, H. (1980). Classical Mechanics: Addison-Wesley Publishing Company.
  • He, Z., Wen, T., Zhang, X., Li, H., Chen, X. & Liu, X. (2022, 25-27 Nov. 2022). Multi-physics Coupling and Thermal Network Analysis of MSKMJ. Paper presented at the 2022 China Automation Congress (CAC).
  • Hu, Q., Guo, C. & Zhang, J. (2017). Singularity and steering logic for control moment gyros on flexible space structures. Acta Astronautica, 137, 261-273. doi: 10.1016/j.actaastro.2017.04.030
  • Kacar, İ., Eroğlu, M. A. & Yalçın, M. K. (2021). Design and development of an autonomous bicycle. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 364-372. doi: 10.28948/ngumuh.628580
  • Kojima, H., Nakamura, R. & Keshtkar, S. (2021). Model predictive steering control law for double gimbal scissored-pair control moment gyros. Acta Astronautica, 183, 273-285. doi: 10.1016/j.actaastro.2021.03.023
  • Kostyuchenko, T. ve Indygasheva, N. (2018). Computer-aided design system for control moment gyroscope. MATEC Web Conf., 158, 01021.
  • Kownacki, C. (2011). Optimization approach to adapt Kalman filters for the real-time application of accelerometer and gyroscope signals' filtering. Digital Signal Processing, 21(1), 131-140. doi: 10.1016/j.dsp.2010.09.001
  • Lee, S.-D. ve Jung, S. (2018). Human-actuator collaborative control by a novel frequency-division technique for linear maneuverability of control moment gyroscopic actuators. Mechatronics, 55, 224-233. doi: 10.1016/j.mechatronics.2018.05.001
  • Liu, F., Gao, F., Zhang, W., Zhang, B. & He, J. (2019). The optimization design with minimum power for variable speed control moment gyroscopes with integrated power and attitude control. Aerospace Science and Technology, 88, 287-297. doi: 10.1016/j.ast.2019.03.028
  • Liu, F., Gao, Y. & Zhang, W. (2021). Large angle maneuver and high accuracy attitude pointing steering law for variable speed control momentum gyroscopes. Journal of the Franklin Institute, 358(7), 3441-3469. doi: 10.1016/j.jfranklin.2021.02.019
  • Marshall, J. A., Sun, W. & L’Afflitto, A. (2021). A survey of guidance, navigation, and control systems for autonomous multi-rotor small unmanned aerial systems. Annual Reviews in Control, 52, 390-427. doi: 10.1016/j.arcontrol.2021.10.013
  • Montoya–Cháirez, J., Santibáñez, V. & Moreno–Valenzuela, J. (2019). Adaptive control schemes applied to a control moment gyroscope of 2 degrees of freedom. Mechatronics, 57, 73-85. doi: 10.1016/j.mechatronics.2018.11.011
  • Moreno–Valenzuela, J., Montoya–Cháirez, J. & Santibáñez, V. (2020). Robust trajectory tracking control of an underactuated control moment gyroscope via neural network–based feedback linearization. Neurocomputing, 403, 314-324. doi: 10.1016/j.neucom.2020.04.019
  • Muthusamy, V. ve Kumar, K. D. (2021). A novel data-driven method for fault detection and isolation of control moment gyroscopes onboard satellites. Acta Astronautica, 180, 604-621. doi: 10.1016/j.actaastro.2020.11.004
  • Osman, M. O. M., Sankar, S. & Dukkipati, R. V. (1982). Design synthesis of a gyrogrinder using direct search optimization. Mechanism and Machine Theory, 17(1), 33-45. doi: 10.1016/0094-114X(82)90022-2
  • Sucuoglu, H. S., Bogrekci, I., Gultekin, A. & Demircioglu, P. (2018). Design, Analysis and Development of Mobile Robot with Flip-Flop Motion Ability. IFAC-PapersOnLine, 51(30), 436-440. doi: https://doi.org/10.1016/j.ifacol.2018.11.323
  • Sun, J., Cai, Z., Sun, J. & Jin, D. (2023). Dynamic analysis of a rigid-flexible inflatable space structure coupled with control moment gyroscopes. Nonlinear Dynamics, 111(9), 8061-8081. doi: 10.1007/s11071-023-08254-8
  • Ünker, F. ve Çuvalcı, O. (2015a). Seismic Motion Control of a Column Using a Gyroscope. Procedia - Social and Behavioral Sciences, 195, 2316-2325. doi: 10.1016/j.sbspro.2015.06.183
  • Ünker, F. ve Çuvalcı, O. (2015b). Vibration Control of a Column Using a Gyroscope. Procedia - Social and Behavioral Sciences, 195, 2306-2315. doi: 10.1016/j.sbspro.2015.06.182
  • Wang, Z., Xu, R., Zhu, S., Jiang, H., Li, Z., Liang, Z. & Luo, D. (2020). Integration planning of gimbal angle and attitude motion for zero propellant maneuver under attitude and control moment gyroscope constraints. Acta Astronautica, 172, 123-133. doi: 10.1016/j.actaastro.2020.03.040
  • Xiu, T., Yue-dong, L., Xin-xiao, L. & Er-yong, H. (2021). Structural Engineering Analysis for a Control Moment Gyroscope Framework. Journal of Physics: Conference Series, 1939, 012119. doi: 10.1088/1742-6596/1939/1/012119
  • Ye, X., Xu, X., Wen, T. & Han, B. (2021). Design and optimization of repeatable locking/unlocking device for magnetically suspended control moment gyro. Acta Astronautica, 186, 24-32. doi: 10.1016/j.actaastro.2021.05.025
  • Yilmaz, S. ve Kilci, S. B. (2021). Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(1), 119-131. doi: 10.21597/jist.715459
  • Zhang, P.-F., Hao, J.-H. & Chen, Q. (2020). Gyro-less angular velocity estimation and intermittent attitude control of spacecraft using coarse-sensors based on geometric analysis. Aerospace Science and Technology, 103, 105900. doi: 10.1016/j.ast.2020.105900
  • Zhang, Y., Tang, J. & Xu, X. (2022). Modal analysis and multidisciplinary optimization of disk-shaped rotor in MSKMJ. International Journal of Mechanical Sciences, 226, 107387. doi: 10.1016/j.ijmecsci.2022.107387
  • Zhao, H., Liu, F. & Yao, Y. (2017). Optimization design steering law for VSKMJs with the function of attitude control and energy storage. Aerospace Science and Technology, 65, 9-17. doi: 10.1016/j.ast.2017.02.005
  • Zheng, S., Li, H., Han, B. & Yang, J. (2017). Power Consumption Reduction for Magnetic Bearing Systems During Torque Output of Control Moment Gyros. IEEE Transactions on Power Electronics, 32(7), 5752-5759. doi: 10.1109/TPEL.2016.2608660

Design, Modeling and Free Vibration Analysis of A Mechanical Gyroscope

Year 2024, Volume: 14 Issue: 1, 363 - 376, 01.03.2024
https://doi.org/10.21597/jist.1293086

Abstract

Gyroscopes are devices used for orientation determination however mechanical gyroscopes are used for orientating and balancing via gyroscopic torque. This torque is generated by the precession speed given to the rotating objects from one of the axes other than the rotation axes. In this study, a single flywheel mechanical gyroscope design was created and the gyroscopic torque was calculated by dynamic analysis. Free vibration frequencies were determined by modal analysis. Dynamic responses for the movement of the gyroscope with a flywheel, which is mounted vertically and balances the weight torque, are investigated on the basis of classical (Newtonian) mechanics. When the flywheel rotates in the range of 0-250 rad/s, it does not correspond to any natural frequency. Torque of 0.468 Nm is offset by a precession velocity of 0.922 rad/s. Nutation oscillations disappears when torsional damping is given to the bed where the gyroscope is attached to the ground. The free vibration frequencies change in the damped state.

Project Number

yok

References

  • Ahmed, A., Adnaik, I., Bhavsar, D. & Sargar, T. S. (2016). Design and Analysis of Gyro Wheel for Stabilization of a Bicycle. International Journal for Scientific Research & Development, 4(04), 349-351.
  • Anonimouse. (2023a). Nutation Wikipedia®. en.wikipedia.org: Wikimedia Foundation, Inc.,.
  • Anonimouse. (2023b). Precession Wikipedia®. en.wikipedia.org: Wikimedia Foundation, Inc.,.
  • Ansys®. (2023). Academic Research Mechanical Products, 2021 R2, Help System, ANSYS Mechanical User's Guide: ANSYS, Inc.
  • Bayram, H. (2020). Design and Implementation of Autonomous Surface Vehicle for Inland Water. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 101-111. doi: 10.21597/jist.642503
  • Boyce, M. P. (2012). 5 - Rotor Dynamics. In M. P. Boyce (Ed.), Gas Turbine Engineering Handbook (Fourth Edition) (pp. 215-250). Oxford: Butterworth-Heinemann.
  • Dagnaes-Hansen, N. A. ve Santos, I. F. (2018). Magnetically suspended flywheel in gimbal mount – Nonlinear modelling and simulation. Journal of Sound and Vibration, 432, 327-350. doi: 10.1016/j.jsv.2018.06.033
  • Dagnaes-Hansen, N. A. ve Santos, I. F. (2019). Magnetically suspended flywheel in gimbal mount - Test bench design and experimental validation. Journal of Sound and Vibration, 448, 197-210. doi: 10.1016/j.jsv.2019.01.023
  • Fan, Y., Ding, H., Li, M. & Li, J. (2018). Modal Analysis of a Thick-Disk Rotor with Interference Fit Using Finite Element Method. Mathematical Problems in Engineering, 2018, 5021245. doi: 10.1155/2018/5021245
  • Feynman, R. P., Leighton, R. B. & Sands, M. (2011). The Feynman Lectures on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat: Basic Books.
  • Giaccu, G. F. ve Caracoglia, L. (2021). A gyroscopic stabilizer to improve flutter performance of long-span cable-supported bridges. Engineering Structures, 240, 112373. doi: 10.1016/j.engstruct.2021.112373
  • Goldstein, H. (1980). Classical Mechanics: Addison-Wesley Publishing Company.
  • He, Z., Wen, T., Zhang, X., Li, H., Chen, X. & Liu, X. (2022, 25-27 Nov. 2022). Multi-physics Coupling and Thermal Network Analysis of MSKMJ. Paper presented at the 2022 China Automation Congress (CAC).
  • Hu, Q., Guo, C. & Zhang, J. (2017). Singularity and steering logic for control moment gyros on flexible space structures. Acta Astronautica, 137, 261-273. doi: 10.1016/j.actaastro.2017.04.030
  • Kacar, İ., Eroğlu, M. A. & Yalçın, M. K. (2021). Design and development of an autonomous bicycle. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 364-372. doi: 10.28948/ngumuh.628580
  • Kojima, H., Nakamura, R. & Keshtkar, S. (2021). Model predictive steering control law for double gimbal scissored-pair control moment gyros. Acta Astronautica, 183, 273-285. doi: 10.1016/j.actaastro.2021.03.023
  • Kostyuchenko, T. ve Indygasheva, N. (2018). Computer-aided design system for control moment gyroscope. MATEC Web Conf., 158, 01021.
  • Kownacki, C. (2011). Optimization approach to adapt Kalman filters for the real-time application of accelerometer and gyroscope signals' filtering. Digital Signal Processing, 21(1), 131-140. doi: 10.1016/j.dsp.2010.09.001
  • Lee, S.-D. ve Jung, S. (2018). Human-actuator collaborative control by a novel frequency-division technique for linear maneuverability of control moment gyroscopic actuators. Mechatronics, 55, 224-233. doi: 10.1016/j.mechatronics.2018.05.001
  • Liu, F., Gao, F., Zhang, W., Zhang, B. & He, J. (2019). The optimization design with minimum power for variable speed control moment gyroscopes with integrated power and attitude control. Aerospace Science and Technology, 88, 287-297. doi: 10.1016/j.ast.2019.03.028
  • Liu, F., Gao, Y. & Zhang, W. (2021). Large angle maneuver and high accuracy attitude pointing steering law for variable speed control momentum gyroscopes. Journal of the Franklin Institute, 358(7), 3441-3469. doi: 10.1016/j.jfranklin.2021.02.019
  • Marshall, J. A., Sun, W. & L’Afflitto, A. (2021). A survey of guidance, navigation, and control systems for autonomous multi-rotor small unmanned aerial systems. Annual Reviews in Control, 52, 390-427. doi: 10.1016/j.arcontrol.2021.10.013
  • Montoya–Cháirez, J., Santibáñez, V. & Moreno–Valenzuela, J. (2019). Adaptive control schemes applied to a control moment gyroscope of 2 degrees of freedom. Mechatronics, 57, 73-85. doi: 10.1016/j.mechatronics.2018.11.011
  • Moreno–Valenzuela, J., Montoya–Cháirez, J. & Santibáñez, V. (2020). Robust trajectory tracking control of an underactuated control moment gyroscope via neural network–based feedback linearization. Neurocomputing, 403, 314-324. doi: 10.1016/j.neucom.2020.04.019
  • Muthusamy, V. ve Kumar, K. D. (2021). A novel data-driven method for fault detection and isolation of control moment gyroscopes onboard satellites. Acta Astronautica, 180, 604-621. doi: 10.1016/j.actaastro.2020.11.004
  • Osman, M. O. M., Sankar, S. & Dukkipati, R. V. (1982). Design synthesis of a gyrogrinder using direct search optimization. Mechanism and Machine Theory, 17(1), 33-45. doi: 10.1016/0094-114X(82)90022-2
  • Sucuoglu, H. S., Bogrekci, I., Gultekin, A. & Demircioglu, P. (2018). Design, Analysis and Development of Mobile Robot with Flip-Flop Motion Ability. IFAC-PapersOnLine, 51(30), 436-440. doi: https://doi.org/10.1016/j.ifacol.2018.11.323
  • Sun, J., Cai, Z., Sun, J. & Jin, D. (2023). Dynamic analysis of a rigid-flexible inflatable space structure coupled with control moment gyroscopes. Nonlinear Dynamics, 111(9), 8061-8081. doi: 10.1007/s11071-023-08254-8
  • Ünker, F. ve Çuvalcı, O. (2015a). Seismic Motion Control of a Column Using a Gyroscope. Procedia - Social and Behavioral Sciences, 195, 2316-2325. doi: 10.1016/j.sbspro.2015.06.183
  • Ünker, F. ve Çuvalcı, O. (2015b). Vibration Control of a Column Using a Gyroscope. Procedia - Social and Behavioral Sciences, 195, 2306-2315. doi: 10.1016/j.sbspro.2015.06.182
  • Wang, Z., Xu, R., Zhu, S., Jiang, H., Li, Z., Liang, Z. & Luo, D. (2020). Integration planning of gimbal angle and attitude motion for zero propellant maneuver under attitude and control moment gyroscope constraints. Acta Astronautica, 172, 123-133. doi: 10.1016/j.actaastro.2020.03.040
  • Xiu, T., Yue-dong, L., Xin-xiao, L. & Er-yong, H. (2021). Structural Engineering Analysis for a Control Moment Gyroscope Framework. Journal of Physics: Conference Series, 1939, 012119. doi: 10.1088/1742-6596/1939/1/012119
  • Ye, X., Xu, X., Wen, T. & Han, B. (2021). Design and optimization of repeatable locking/unlocking device for magnetically suspended control moment gyro. Acta Astronautica, 186, 24-32. doi: 10.1016/j.actaastro.2021.05.025
  • Yilmaz, S. ve Kilci, S. B. (2021). Otonom Sualtı Araçlarında Genel Tasarım İlkeleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(1), 119-131. doi: 10.21597/jist.715459
  • Zhang, P.-F., Hao, J.-H. & Chen, Q. (2020). Gyro-less angular velocity estimation and intermittent attitude control of spacecraft using coarse-sensors based on geometric analysis. Aerospace Science and Technology, 103, 105900. doi: 10.1016/j.ast.2020.105900
  • Zhang, Y., Tang, J. & Xu, X. (2022). Modal analysis and multidisciplinary optimization of disk-shaped rotor in MSKMJ. International Journal of Mechanical Sciences, 226, 107387. doi: 10.1016/j.ijmecsci.2022.107387
  • Zhao, H., Liu, F. & Yao, Y. (2017). Optimization design steering law for VSKMJs with the function of attitude control and energy storage. Aerospace Science and Technology, 65, 9-17. doi: 10.1016/j.ast.2017.02.005
  • Zheng, S., Li, H., Han, B. & Yang, J. (2017). Power Consumption Reduction for Magnetic Bearing Systems During Torque Output of Control Moment Gyros. IEEE Transactions on Power Electronics, 32(7), 5752-5759. doi: 10.1109/TPEL.2016.2608660
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

İlyas Kacar 0000-0002-5887-8807

Project Number yok
Early Pub Date February 20, 2024
Publication Date March 1, 2024
Submission Date May 5, 2023
Acceptance Date October 11, 2023
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Kacar, İ. (2024). Bir Mekanik Jiroskopun Tasarımı, Modellenmesi ve Serbest Titreşim Analizi. Journal of the Institute of Science and Technology, 14(1), 363-376. https://doi.org/10.21597/jist.1293086
AMA Kacar İ. Bir Mekanik Jiroskopun Tasarımı, Modellenmesi ve Serbest Titreşim Analizi. J. Inst. Sci. and Tech. March 2024;14(1):363-376. doi:10.21597/jist.1293086
Chicago Kacar, İlyas. “Bir Mekanik Jiroskopun Tasarımı, Modellenmesi Ve Serbest Titreşim Analizi”. Journal of the Institute of Science and Technology 14, no. 1 (March 2024): 363-76. https://doi.org/10.21597/jist.1293086.
EndNote Kacar İ (March 1, 2024) Bir Mekanik Jiroskopun Tasarımı, Modellenmesi ve Serbest Titreşim Analizi. Journal of the Institute of Science and Technology 14 1 363–376.
IEEE İ. Kacar, “Bir Mekanik Jiroskopun Tasarımı, Modellenmesi ve Serbest Titreşim Analizi”, J. Inst. Sci. and Tech., vol. 14, no. 1, pp. 363–376, 2024, doi: 10.21597/jist.1293086.
ISNAD Kacar, İlyas. “Bir Mekanik Jiroskopun Tasarımı, Modellenmesi Ve Serbest Titreşim Analizi”. Journal of the Institute of Science and Technology 14/1 (March 2024), 363-376. https://doi.org/10.21597/jist.1293086.
JAMA Kacar İ. Bir Mekanik Jiroskopun Tasarımı, Modellenmesi ve Serbest Titreşim Analizi. J. Inst. Sci. and Tech. 2024;14:363–376.
MLA Kacar, İlyas. “Bir Mekanik Jiroskopun Tasarımı, Modellenmesi Ve Serbest Titreşim Analizi”. Journal of the Institute of Science and Technology, vol. 14, no. 1, 2024, pp. 363-76, doi:10.21597/jist.1293086.
Vancouver Kacar İ. Bir Mekanik Jiroskopun Tasarımı, Modellenmesi ve Serbest Titreşim Analizi. J. Inst. Sci. and Tech. 2024;14(1):363-76.