Research Article
BibTex RIS Cite

Polarization Insensitive and Thin Metamaterial Absorber Performed in High-Frequency 5G Bands

Year 2024, Volume: 14 Issue: 1, 168 - 181, 01.03.2024
https://doi.org/10.21597/jist.1300437

Abstract

A variety of fascinating applications, including 5G communication devices, high-speed data transfer, and large-scale Internet of Things (IoT), make life easier with 5G technology. Despite the 5G’s superior features, the percentage of electromagnetic (EM) waves in the environment execute a significant increase, unpleasantly. Broadband metamaterial absorbers are an appealing alternative to gather these unwanted signals. This study aims to numerically investigate a broadband metamaterial absorber (MMA) in the 5G high-frequency spectral range with the metasurface formed with coupled resistors. In addition, the 24.25-27.5GHz frequency range, one of the high-frequency 5G bands used by selected countries such as the European Union and China, was preferred. The minor aim of this study is that the usage of coupled elements as resistors may have the ability to increase the absorption bandwidth and magnitude. Comprehensive simulations were performed using the finite integration technique (FIT) utilized by the CST Microwave Studio program to investigate the absorber performance and other relevant parameters. The unit cell design is created metal-substrate-metal structures as asymmetric, single-layer, and easy to implement. The absorption responses are investigated according to the oblique incidence angle, polarization angle for TE &TM modes. The suggested MMA provided an absorbency response above 87.6% in the frequency range 24.20-27.30GHz under normal incidence. Moreover, to comprehend the physical mechanism on absorption, the top and bottom surfaces of the absorber's electric field and surface current distributions are assessed. The designed MMA resulting in relatively high performance and polarization insensitive is helpful for electromagnetic interference (EMI) shielding of 5G signals in the FR2/mmWave frequency regime.

References

  • Anonymous. (2018). Federal Communications Commission (FCC), FCC Establishes Procedures for First 5G Spectrum Auctions. URL: https://www.fcc.gov/document/fcc-establishes-procedures-first-5g-spectrum-auctions-0 (Accessed date: May 20, 2023).
  • Anonymous. (2023). European Parliamentary Research Servise (EPRS), 5G Frequencies. URL: https://map.sciencemediahub.eu/5g#m=4/912.84457/845.58674,p=14 (Accessed date: May 20, 2023).
  • Akarsu, G., Nakmouche, M.F., Fawzy, D.E. & Allam, A.M.M.A. (2022). A Novel Ultra-Wideband Metamaterial-Based Perfect Absorber for 5G Millimeter-Wave Applications. In: 9th International Conference on Electrical and Electronics Engineering (ICEEE), IEEE (129-132). Alanya, Turkey. https://ieeexplore.ieee.org/abstract/document/9772547
  • Alsharari, M., Han, B.B., Patel, S.K., Surve, J., Aliqab, K. & Armghan, A. (2023). A Highly Efficient Infinity-Shaped Large Angular-and Polarization-Independent Metamaterial Absorber. Symmetry, 15(2), p.352.
  • Amiri, M., Tofigh, F., Shariati, N., Lipman, J. & Abolhasan, M. (2020). Ultra wideband dual polarization metamaterial absorber for 5G frequency spectrum. In: 14th European Conference on Antennas and Propagation (EuCAP), IEEE (1-5). Copenhagen, Denmark. https://ieeexplore.ieee.org/xpl/conhome/9127589/proceeding
  • Banadaki, M.D., Heidari, A.A. & Nakhkash, M. (2017). A metamaterial absorber with a new compact unit cell. IEEE Antennas and Wireless Propagation Letters, 17(2), 205-208.
  • Bhattacharyya, S. and Vaibhav Srivastava, K. (2014). Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. Journal of Applied Physics, 115(6), 064508.
  • Bilal, R.M.H., Baqir, M.A., Choudhury, P.K., Ali, M.M., Rahim, A.A. & Kamal, W. (2020). Polarization-insensitive multi-band metamaterial absorber operating in the 5G spectrum. Optik, 216, 164958.
  • Chao, C.T.C., Kooh, M.R.R., Lim, C.M., Thotagamuge, R., Mahadi, A.H. & Chau, Y.F.C. (2023). Visible-range multiple-channel metal-shell rod-shaped narrowband plasmonic metamaterial absorber for refractive index and temperature sensing. Micromachines, 14(2), 340.
  • Chen, J., Huang, X., Zerihun, G., Hu, Z., Wang, S., Wang, G., Hu, X. & Liu, M. (2015). Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances. Journal of Electronic Materials, 44, 4269-4274.
  • Chen, X., Chen, X., Wu, Z., Zhang, Z., Wang, Z., Heng, L., Wang, S., Zou, Y. & Tang, Z. (2018). An ultra-broadband and lightweight fishnet-like absorber in microwave region. Journal of Physics D: Applied Physics, 51(28), 285002.
  • Didari-Bader, A. & Saghaei, H. (2023). Penrose tiling-inspired graphene-covered multiband terahertz metamaterial absorbers. Optics Express, 31(8), 12653-12668.
  • Guo, T., Li, F. & Roussey, M. (2023). Dielectric Cavity-Insulator-Metal (DCIM) Metamaterial Absorber in Visible Range. Nanomaterials, 13(8), 1401.
  • Jang, T., Youn, H., Shin, Y.J. & Guo, L.J. (2014). Transparent and flexible polarization-independent microwave broadband absorber. Acs Photonics, 1(3), 279-284.
  • Kairm, H., Delfin, D., Shuvo, M.A.I., Chavez, L.A., Garcia, C.R., Barton, J.H., Gaytan, S.M., Cadena, M.A., Rumpf, R.C., Wicker, R.B. & Lin, Y. (2014). Concept and model of a metamaterial-based passive wireless temperature sensor for harsh environment applications. IEEE Sensors Journal, 15(3), 1445-1452.
  • Lee, N., Kim, T., Lim, J.S., Chang, I. & Cho, H.H. (2019). Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation. ACS applied materials & interfaces, 11(23), 21250-21257.
  • Li, Y., Ren, P. & Xiang, Z. (2019). A dual-passband frequency selective surface for 5G communication. IEEE Antennas and Wireless Propagation Letters, 18(12), 2597-2601.
  • Li, J., Zhao, C., Liu, B., You, C., Chu, F., Tian, N., Chen, Y., Li, S., An, B., Cui, A. & Zhang, X. (2019). Metamaterial grating-integrated graphene photodetector with broadband high responsivity. Applied Surface Science, 473, 633-640.
  • Ma, S., Zhang, P., Mi, X. & Zhao, H. (2023). Highly sensitive terahertz sensor based on graphene metamaterial absorber. Optics Communications, 528, 129021.
  • Naqvi, S.A., Baqir, M.A., Gourley, G., Iftikhar, A., Saeed Khan, M. and Anagnostou, D.E. (2022). A Novel Meander Line Metamaterial Absorber Operating at 24 GHz and 28 GHz for the 5G Applications. Sensors, 22(10), 3764.
  • Nguyen, T.T. and Lim, S. (2018). Angle-and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators. Applied Physics Letters, 112(2), 021605.
  • Ruan, J.F., Meng, Z.F., Zou, R.Z., Pan, S.M. & Ji, S.W. (2023). Ultra‐wideband metamaterial absorber based on frequency selective resistive film for 5G spectrum. Microwave and Optical Technology Letters, 65(1), 20-27.
  • Shi, Y., Li, Y.C., Hao, T., Li, L. & Liang, C.H. (2017). A design of ultra-broadband metamaterial absorber. Waves in random and complex media, 27(2), 381-391.
  • Sleiman D. (2021). RF and 5G new radio: top 5 questions answered. Access address: https://www.exfo.com/es/recursos/blog/rf-5g-new-radio-top-5-questions/ (Access date: 05.20.2023). So, S., Yang, Y., Lee, T. & Rho, J. (2021). On-demand design of spectrally sensitive multiband absorbers using an artificial neural network. Photonics Research, 9(4), B153-B158.
  • Sy Tuan, T. and Thi Quynh Hoa, N. (2019). Defect induced co-polarization broadband metamaterial absorber. AIP Advances, 9(5), 055321.
  • Wang, Y., Sun, T., Paudel, T., Zhang, Y., Ren, Z. & Kempa, K. (2012). Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano letters, 12(1), 440-445.
  • Wang, X., Sang, T., Li, G., Mi, Q., Pei, Y. & Wang, Y. (2021). Ultrabroadband and ultrathin absorber based on an encapsulated T-shaped metasurface. Optics Express, 29(20), 31311-31323.
  • Wen, D.E., Yang, H., Ye, Q., Li, M., Guo, L. & Zhang, J. (2013). Broadband metamaterial absorber based on a multi-layer structure. Physica Scripta, 88(1), 015402.
  • Wu, L., Li, Z., Wang, W., Zhao, L. & Ruan, H. (2022). Ultra‐Broadband Wide‐Angle Polarization‐Independent Enhanced Absorber with Ultraviolet to Far‐Infrared Absorption Performance. physica status solidi (b), 259(10), 2200158.
  • Xiaoyong, L.E.I., Shuyun, H.U.O., Mengjun, W.A.N.G., Yan, L.I. & Erping, L.I. (2020). A compact ultra-wideband polarization-insensitive metamaterial absorber at 5G millimeter wave band. In: IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), IEEE (1-4). Hangzhou, China. https://ieeexplore.ieee.org/abstract/document/9343462
Year 2024, Volume: 14 Issue: 1, 168 - 181, 01.03.2024
https://doi.org/10.21597/jist.1300437

Abstract

Thanks

Bu çalışma Seher Şeyma ARSLAN MADAK’ın Yüksek Lisans tezinden üretilmiştir.

References

  • Anonymous. (2018). Federal Communications Commission (FCC), FCC Establishes Procedures for First 5G Spectrum Auctions. URL: https://www.fcc.gov/document/fcc-establishes-procedures-first-5g-spectrum-auctions-0 (Accessed date: May 20, 2023).
  • Anonymous. (2023). European Parliamentary Research Servise (EPRS), 5G Frequencies. URL: https://map.sciencemediahub.eu/5g#m=4/912.84457/845.58674,p=14 (Accessed date: May 20, 2023).
  • Akarsu, G., Nakmouche, M.F., Fawzy, D.E. & Allam, A.M.M.A. (2022). A Novel Ultra-Wideband Metamaterial-Based Perfect Absorber for 5G Millimeter-Wave Applications. In: 9th International Conference on Electrical and Electronics Engineering (ICEEE), IEEE (129-132). Alanya, Turkey. https://ieeexplore.ieee.org/abstract/document/9772547
  • Alsharari, M., Han, B.B., Patel, S.K., Surve, J., Aliqab, K. & Armghan, A. (2023). A Highly Efficient Infinity-Shaped Large Angular-and Polarization-Independent Metamaterial Absorber. Symmetry, 15(2), p.352.
  • Amiri, M., Tofigh, F., Shariati, N., Lipman, J. & Abolhasan, M. (2020). Ultra wideband dual polarization metamaterial absorber for 5G frequency spectrum. In: 14th European Conference on Antennas and Propagation (EuCAP), IEEE (1-5). Copenhagen, Denmark. https://ieeexplore.ieee.org/xpl/conhome/9127589/proceeding
  • Banadaki, M.D., Heidari, A.A. & Nakhkash, M. (2017). A metamaterial absorber with a new compact unit cell. IEEE Antennas and Wireless Propagation Letters, 17(2), 205-208.
  • Bhattacharyya, S. and Vaibhav Srivastava, K. (2014). Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. Journal of Applied Physics, 115(6), 064508.
  • Bilal, R.M.H., Baqir, M.A., Choudhury, P.K., Ali, M.M., Rahim, A.A. & Kamal, W. (2020). Polarization-insensitive multi-band metamaterial absorber operating in the 5G spectrum. Optik, 216, 164958.
  • Chao, C.T.C., Kooh, M.R.R., Lim, C.M., Thotagamuge, R., Mahadi, A.H. & Chau, Y.F.C. (2023). Visible-range multiple-channel metal-shell rod-shaped narrowband plasmonic metamaterial absorber for refractive index and temperature sensing. Micromachines, 14(2), 340.
  • Chen, J., Huang, X., Zerihun, G., Hu, Z., Wang, S., Wang, G., Hu, X. & Liu, M. (2015). Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances. Journal of Electronic Materials, 44, 4269-4274.
  • Chen, X., Chen, X., Wu, Z., Zhang, Z., Wang, Z., Heng, L., Wang, S., Zou, Y. & Tang, Z. (2018). An ultra-broadband and lightweight fishnet-like absorber in microwave region. Journal of Physics D: Applied Physics, 51(28), 285002.
  • Didari-Bader, A. & Saghaei, H. (2023). Penrose tiling-inspired graphene-covered multiband terahertz metamaterial absorbers. Optics Express, 31(8), 12653-12668.
  • Guo, T., Li, F. & Roussey, M. (2023). Dielectric Cavity-Insulator-Metal (DCIM) Metamaterial Absorber in Visible Range. Nanomaterials, 13(8), 1401.
  • Jang, T., Youn, H., Shin, Y.J. & Guo, L.J. (2014). Transparent and flexible polarization-independent microwave broadband absorber. Acs Photonics, 1(3), 279-284.
  • Kairm, H., Delfin, D., Shuvo, M.A.I., Chavez, L.A., Garcia, C.R., Barton, J.H., Gaytan, S.M., Cadena, M.A., Rumpf, R.C., Wicker, R.B. & Lin, Y. (2014). Concept and model of a metamaterial-based passive wireless temperature sensor for harsh environment applications. IEEE Sensors Journal, 15(3), 1445-1452.
  • Lee, N., Kim, T., Lim, J.S., Chang, I. & Cho, H.H. (2019). Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation. ACS applied materials & interfaces, 11(23), 21250-21257.
  • Li, Y., Ren, P. & Xiang, Z. (2019). A dual-passband frequency selective surface for 5G communication. IEEE Antennas and Wireless Propagation Letters, 18(12), 2597-2601.
  • Li, J., Zhao, C., Liu, B., You, C., Chu, F., Tian, N., Chen, Y., Li, S., An, B., Cui, A. & Zhang, X. (2019). Metamaterial grating-integrated graphene photodetector with broadband high responsivity. Applied Surface Science, 473, 633-640.
  • Ma, S., Zhang, P., Mi, X. & Zhao, H. (2023). Highly sensitive terahertz sensor based on graphene metamaterial absorber. Optics Communications, 528, 129021.
  • Naqvi, S.A., Baqir, M.A., Gourley, G., Iftikhar, A., Saeed Khan, M. and Anagnostou, D.E. (2022). A Novel Meander Line Metamaterial Absorber Operating at 24 GHz and 28 GHz for the 5G Applications. Sensors, 22(10), 3764.
  • Nguyen, T.T. and Lim, S. (2018). Angle-and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators. Applied Physics Letters, 112(2), 021605.
  • Ruan, J.F., Meng, Z.F., Zou, R.Z., Pan, S.M. & Ji, S.W. (2023). Ultra‐wideband metamaterial absorber based on frequency selective resistive film for 5G spectrum. Microwave and Optical Technology Letters, 65(1), 20-27.
  • Shi, Y., Li, Y.C., Hao, T., Li, L. & Liang, C.H. (2017). A design of ultra-broadband metamaterial absorber. Waves in random and complex media, 27(2), 381-391.
  • Sleiman D. (2021). RF and 5G new radio: top 5 questions answered. Access address: https://www.exfo.com/es/recursos/blog/rf-5g-new-radio-top-5-questions/ (Access date: 05.20.2023). So, S., Yang, Y., Lee, T. & Rho, J. (2021). On-demand design of spectrally sensitive multiband absorbers using an artificial neural network. Photonics Research, 9(4), B153-B158.
  • Sy Tuan, T. and Thi Quynh Hoa, N. (2019). Defect induced co-polarization broadband metamaterial absorber. AIP Advances, 9(5), 055321.
  • Wang, Y., Sun, T., Paudel, T., Zhang, Y., Ren, Z. & Kempa, K. (2012). Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano letters, 12(1), 440-445.
  • Wang, X., Sang, T., Li, G., Mi, Q., Pei, Y. & Wang, Y. (2021). Ultrabroadband and ultrathin absorber based on an encapsulated T-shaped metasurface. Optics Express, 29(20), 31311-31323.
  • Wen, D.E., Yang, H., Ye, Q., Li, M., Guo, L. & Zhang, J. (2013). Broadband metamaterial absorber based on a multi-layer structure. Physica Scripta, 88(1), 015402.
  • Wu, L., Li, Z., Wang, W., Zhao, L. & Ruan, H. (2022). Ultra‐Broadband Wide‐Angle Polarization‐Independent Enhanced Absorber with Ultraviolet to Far‐Infrared Absorption Performance. physica status solidi (b), 259(10), 2200158.
  • Xiaoyong, L.E.I., Shuyun, H.U.O., Mengjun, W.A.N.G., Yan, L.I. & Erping, L.I. (2020). A compact ultra-wideband polarization-insensitive metamaterial absorber at 5G millimeter wave band. In: IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), IEEE (1-4). Hangzhou, China. https://ieeexplore.ieee.org/abstract/document/9343462
There are 30 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Seher Şeyma Arslan Madak 0009-0009-5795-8221

Ahmet Teber 0000-0002-7361-2302

Ramazan Topkaya 0000-0002-5376-0199

Early Pub Date February 20, 2024
Publication Date March 1, 2024
Submission Date May 22, 2023
Acceptance Date December 18, 2023
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Arslan Madak, S. Ş., Teber, A., & Topkaya, R. (2024). Polarization Insensitive and Thin Metamaterial Absorber Performed in High-Frequency 5G Bands. Journal of the Institute of Science and Technology, 14(1), 168-181. https://doi.org/10.21597/jist.1300437
AMA Arslan Madak SŞ, Teber A, Topkaya R. Polarization Insensitive and Thin Metamaterial Absorber Performed in High-Frequency 5G Bands. J. Inst. Sci. and Tech. March 2024;14(1):168-181. doi:10.21597/jist.1300437
Chicago Arslan Madak, Seher Şeyma, Ahmet Teber, and Ramazan Topkaya. “Polarization Insensitive and Thin Metamaterial Absorber Performed in High-Frequency 5G Bands”. Journal of the Institute of Science and Technology 14, no. 1 (March 2024): 168-81. https://doi.org/10.21597/jist.1300437.
EndNote Arslan Madak SŞ, Teber A, Topkaya R (March 1, 2024) Polarization Insensitive and Thin Metamaterial Absorber Performed in High-Frequency 5G Bands. Journal of the Institute of Science and Technology 14 1 168–181.
IEEE S. Ş. Arslan Madak, A. Teber, and R. Topkaya, “Polarization Insensitive and Thin Metamaterial Absorber Performed in High-Frequency 5G Bands”, J. Inst. Sci. and Tech., vol. 14, no. 1, pp. 168–181, 2024, doi: 10.21597/jist.1300437.
ISNAD Arslan Madak, Seher Şeyma et al. “Polarization Insensitive and Thin Metamaterial Absorber Performed in High-Frequency 5G Bands”. Journal of the Institute of Science and Technology 14/1 (March 2024), 168-181. https://doi.org/10.21597/jist.1300437.
JAMA Arslan Madak SŞ, Teber A, Topkaya R. Polarization Insensitive and Thin Metamaterial Absorber Performed in High-Frequency 5G Bands. J. Inst. Sci. and Tech. 2024;14:168–181.
MLA Arslan Madak, Seher Şeyma et al. “Polarization Insensitive and Thin Metamaterial Absorber Performed in High-Frequency 5G Bands”. Journal of the Institute of Science and Technology, vol. 14, no. 1, 2024, pp. 168-81, doi:10.21597/jist.1300437.
Vancouver Arslan Madak SŞ, Teber A, Topkaya R. Polarization Insensitive and Thin Metamaterial Absorber Performed in High-Frequency 5G Bands. J. Inst. Sci. and Tech. 2024;14(1):168-81.