Research Article
BibTex RIS Cite

Exploring the Impacts of Angelica purpurascens Extracts on Anticholinergic, Antidiabetic, Antibacterial Potential, and Antioxidant Capacity

Year 2024, Volume: 14 Issue: 2, 790 - 804, 01.06.2024
https://doi.org/10.21597/jist.1411501

Abstract

In Kars-Sarıkamış-Soğanlı, Angelica purpurascens (A. purpurascens) emerges as a promising natural antioxidant source. Extracts from its leaves, branches, and flowers underwent thorough bioanalytical assessments. The leaf extract exhibited the highest concentrations of herbal flavonoids (45.22 µg QE/mg extract) and total phenolics (28.96 µg GAE/mg extract). Branch extracts demonstrated significant enzymatic activity against AChE and BChE with IC50 values of 37.26 mg/mL and 9.08 mg/mL respectively. The flower extract displayed notable antibacterial properties. This study sheds light on the therapeutic potential of A. purpurascens ethanol extracts, suggesting benefits for Alzheimer’s, cell damage-induced diseases, and diabetes mellitus. It pioneers new enzymatic and antioxidant insights and contributes to understanding this abundant Türkiye species. A. purpurascens holds promise for pharmaceutical exploration, offering potential solutions for challenging health conditions

Supporting Institution

This study has been supported by Gümüşhane University Scientific Research Projects Coordination Department (Project No: 22.B0225.02.01).

Project Number

22.B0225.02.01

Thanks

This study has been supported by Gümüşhane University Scientific Research Projects Coordination Department (Project No: 22.B0225.02.01).

References

  • Aćimović, M. G., Pavlović, S. Đ., Varga, A. O., Filipović, V. M., Cvetković, M. T., Stanković, J. M., & Čabarkapa, a. I. S. (2017). Chemical Composition and Antibacterial Activity of Angelica archangelica Root Essential Oil. Natural Product Communications, 12(2), 205-206.
  • Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçağ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 57(5-6), 292-304.
  • Ashleigh, T., Swerdlow, R. H., & Beal, M. F. (2023). The role of mitochondrial dysfunction in Alzheimer's disease pathogenesis. Alzheimer's & Dementia, 19(1), 333-342.
  • Bhatia, V., & Sharma, S. (2021). Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease. Journal of the Neurological Sciences, 421, 117253.
  • Bingöl, Z., Kızıltaş, H., Gören, A. C., Kose, L. P., Topal, M., Durmaz, L., . . . Gulcin, I. (2021). Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.)-profiling of phenolic compounds by LC-HRMS. Heliyon, 7(5), e06986.
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
  • Bursal, E., Aras, A., Kılıç, Ö., Taslimi, P., Gören, A. C., & Gülçin, İ. (2019). Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α‐amylase, butyrylcholinesterase, and α‐glycosidase enzymes. Journal of Food Biochemistry, 43(3), e12776.
  • Chunchao Han, C., & Guo, J. (2012). Antibacterial and Anti-inflammatory Activity of Traditional Chinese Herb Pairs, Angelica sinensis and Sophora flavescens. Inflammation, 35(3).
  • Demir, Z., & Türkan, F. (2022). Asetilkolinesteraz ve Bütirilkolinesteraz Enzimlerinin Alzheimer Hastalığı ile İlişkisi. Journal of the Institute of Science and Technology, 12(4), 2386-2395.
  • Durmaz, L., Kiziltas, H., Guven, L., Karagecili, H., Alwasel, S., & Gulcin, İ. (2022). Antioxidant, antidiabetic, anticholinergic, and antiglaucoma effects of magnofluorine. Molecules, 27(18), 5902.
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95.
  • Fogliano, V., Verde, V., Randazzo, G., & Ritieni, A. (1999). Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. Journal of Agricultural and Food Chemistry, 47(3), 1035-1040.
  • Göçer, H., Akıncıoğlu, A., Öztaşkın, N., Göksu, S., & Gülçin, İ. (2013). Synthesis, Antioxidant, and Antiacetylcholinesterase Activities of Sulfonamide Derivatives of Dopamine‐Related Compounds. Archiv der pharmazie, 346(11), 783-792.
  • Gülcin, İ. (2006). Antioxidant and antiradical activities of L-carnitine. Life Sciences, 78(8), 803-811.
  • Gülçin, İ. (2009). Antioxidant activity of L-adrenaline: A structure-activity insight. Chemico-Biological Interactions, 179(2-3), 71-80.
  • Gülçin, İ. (2012). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345-391.
  • Gülçin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651-715.
  • Gülçin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
  • Gülçin, İ., Beydemir, Ş., Topal, F., Gagua, N., Bakuridze, A., Bayram, R., & Gepdiremen, A. (2012). Apoptotic, antioxidant and antiradical effects of majdine and isomajdine from Vinca herbacea Waldst. and kit. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(4), 587-594.
  • Gülçin, İ., Topal, F., Çakmakçı, R., Bilsel, M., Gören, A. C., & Erdogan, U. (2011). Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76(4), C585-C593.
  • Halliwell, B. (1996). Antioxidants in human health and disease. Annual Review of Nutrition, 16(1), 33-50.
  • İnan Ergün, A., & Topal, M. (2023). Determination of the Antioxidant Capacity of Puerarin and Its Effect on Cholinesterases by in vitro and in silico Methods. ChemistrySelect, 8(41), e202302751.
  • Kalın, P., Gülçin, İ., & Gören, A. C. (2015). Antioxidant activity and polyphenol content of cranberries (Vaccinium macrocarpon). Records of Natural Products, 9(4), 496.
  • Kim, K., Lim, C. E., & Lee, B. Y. (2020). The complete chloroplast genome sequence of Peucedanum chujaense (Apiaceae), an endemic species to Korea. Mitochondrial DNA Part B, 5(2), 1937-1938.
  • Kızıltaş, H., Bingol, Z., Gören, A. C., Kose, L. P., Durmaz, L., Topal, F., . . . Gülçin, İ. (2021). LC-HRMS profiling and antidiabetic, anticholinergic, and antioxidant activities of aerial parts of kınkor (Ferulago stellata). Molecules, 26(9), 2469.
  • Koçyiğit, Ü. M. (2018). Investigation of Inhibition Effect of Oxytocin on Carbonic Anhydrase and Acetylcholinesterase Enzymes in the Heart Tissues of Rats. Journal of the Institute of Science & Technology/Fen Bilimleri Estitüsü Dergisi, 8(1).
  • Krishnaraj, C., Young, G. M., & Yun, S. (2022). In vitro embryotoxicity and mode of antibacterial mechanistic study of gold and copper nanoparticles synthesized from Angelica keiskei (Miq.) Koidz. leaves extract. Saudi Journal of Biological Sciences, 29, 2552-2563.
  • Li, J., Cesari, M., Liu, F., Dong, B., & Vellas, B. (2017). Effects of diabetes mellitus on cognitive decline in patients with Alzheimer disease: a systematic review. Canadian Journal of Diabetes, 41(1), 114-119.
  • Maruszak, A., & Żekanowski, C. (2011). Mitochondrial dysfunction and Alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2), 320-330.
  • Matuschek, E., Brown, D. F. J., & Kahlmeter, G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 20, 255-266.
  • Moreira, P. I., Smith, M. A., Zhu, X., Nunomura, A., Castellani, R. J., & Perry, G. (2005). Oxidative stress and neurodegeneration. Annals of the New York Academy of Sciences, 1043(1), 545-552.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
  • Özler, E., Topal, F., Topal, M., & Öztürk Sarıkaya, S. B. (2023). LC‐HRMS Profiling and Phenolic Content, Cholinesterase, and Antioxidant Activities of Terminalia citrina. Chemistry & Biodiversity, e202201250.
  • Öztürk Sarıkaya, S. B. (2015). Acethylcholinesterase inhibitory potential and antioxidant properties of pyrogallol. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(5), 761-766.
  • Park, C. H., Park, H. W., Yeo, H. J., Jung, D. H., Jeon, K. S., Kim, T. J., Park, S. U. (2022). Combined transcriptome and metabolome analysis and evaluation of antioxidant and antibacterial activities in white, pink, and violet flowers of Angelica gigas. Industrial Crops & Products, 188, 115605.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.
  • Saija, A., Trombetta, D., Tomaino, A., Cascio, R. L., Princi, P., Uccella, N., . . . Castelli, F. (1998). In vitro'evaluation of the antioxidant activity and biomembrane interaction of the plant phenols oleuropein and hydroxytyrosol. International Journal of Pharmaceutics, 166(2), 123-133.
  • Sharma, V., & Mehdi, M. M. (2023). Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochemistry International, 105490.
  • Singh, S., Mahajan, M., Kumar, D., Singh, K., & Chowdhary, M. (2023). An inclusive study of recent advancements in Alzheimer's disease: A comprehensive review. Neuropeptides, 102369.
  • Tao, Y., Zhang, Y., Cheng, Y., & Wang, Y. (2013). Rapid screening and identification of α‐glucosidase inhibitors from mulberry leaves using enzyme‐immobilized magnetic beads coupled with HPLC/MS and NMR. Biomedical Chromatography, 27(2), 148-155.
  • Topal, F. (2019a). Anticholinergic and antidiabetic effects of isoeugenol from clove (Eugenia caryophylata) oil. International Journal of Food Properties, 22(1), 583-592.
  • Topal, F. (2019b). Determination of antioxidant capacity of 2, 6-quinolinediol. Journal of the Institute of Science and Technology, 9(3), 1520-1527.
  • Topal, F. (2019c). Inhibition profiles of Voriconazole against acetylcholinesterase, α‐glycosidase, and human carbonic anhydrase I and II isoenzymes. Journal of Biochemical and Molecular Toxicology, 33(10), e22385.
  • Topal, F., Gulcin, I., Dastan, A., & Guney, M. (2017). Novel eugenol derivatives: Potent acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 94, 845-851.
  • Topal, M. (2019). The inhibition profile of sesamol against α-glycosidase and acetylcholinesterase enzymes. International Journal of Food Properties, 22(1), 1527-1535.
  • Topal, M. (2020). Secondary metabolites of ethanol extracts of pinus sylvestris cones from eastern anatolia and their antioxidant, cholinesterase and α-glucosidase activities. Records of Natural Products, 14, 129-138.
  • Topal, M., & Gulcin, İ. (2022). Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatalysis and Agricultural Biotechnology, 43, 102417.
  • Topal, M., Ozturk Sarıkaya, S. B., & Topal, F. (2021). Determination of Angelica archangelica’s Antioxidant Capacity and Mineral Content. ChemistrySelect, 6(31), 7976-7980.
  • Türkan, F., Atalar, M. N., Aras, A., Gülçin, İ., & Bursal, E. (2020). ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn. Bioorganic Chemistry, 94, 103333.
  • Türkeş, C., Akocak, S., Işık, M., Lolak, N., Taslimi, P., Durgun, M., . . . Beydemir, Ş. (2021). Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. Journal of Biomolecular Structure and Dynamics, 1-13.
  • Türkuçar, S. A., Karaçelik, A. A., & Karaköse, M. (2021). Phenolic compounds, essential oil composition, and antioxidant activity of Angelica purpurascens (Avé-Lall.) Gill. Turkish Journal of Chemistry, 45(3), 956-966.
  • Yen, G.-C., & Chen, H.-Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27-32.
Year 2024, Volume: 14 Issue: 2, 790 - 804, 01.06.2024
https://doi.org/10.21597/jist.1411501

Abstract

Project Number

22.B0225.02.01

References

  • Aćimović, M. G., Pavlović, S. Đ., Varga, A. O., Filipović, V. M., Cvetković, M. T., Stanković, J. M., & Čabarkapa, a. I. S. (2017). Chemical Composition and Antibacterial Activity of Angelica archangelica Root Essential Oil. Natural Product Communications, 12(2), 205-206.
  • Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçağ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 57(5-6), 292-304.
  • Ashleigh, T., Swerdlow, R. H., & Beal, M. F. (2023). The role of mitochondrial dysfunction in Alzheimer's disease pathogenesis. Alzheimer's & Dementia, 19(1), 333-342.
  • Bhatia, V., & Sharma, S. (2021). Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease. Journal of the Neurological Sciences, 421, 117253.
  • Bingöl, Z., Kızıltaş, H., Gören, A. C., Kose, L. P., Topal, M., Durmaz, L., . . . Gulcin, I. (2021). Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.)-profiling of phenolic compounds by LC-HRMS. Heliyon, 7(5), e06986.
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
  • Bursal, E., Aras, A., Kılıç, Ö., Taslimi, P., Gören, A. C., & Gülçin, İ. (2019). Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α‐amylase, butyrylcholinesterase, and α‐glycosidase enzymes. Journal of Food Biochemistry, 43(3), e12776.
  • Chunchao Han, C., & Guo, J. (2012). Antibacterial and Anti-inflammatory Activity of Traditional Chinese Herb Pairs, Angelica sinensis and Sophora flavescens. Inflammation, 35(3).
  • Demir, Z., & Türkan, F. (2022). Asetilkolinesteraz ve Bütirilkolinesteraz Enzimlerinin Alzheimer Hastalığı ile İlişkisi. Journal of the Institute of Science and Technology, 12(4), 2386-2395.
  • Durmaz, L., Kiziltas, H., Guven, L., Karagecili, H., Alwasel, S., & Gulcin, İ. (2022). Antioxidant, antidiabetic, anticholinergic, and antiglaucoma effects of magnofluorine. Molecules, 27(18), 5902.
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95.
  • Fogliano, V., Verde, V., Randazzo, G., & Ritieni, A. (1999). Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. Journal of Agricultural and Food Chemistry, 47(3), 1035-1040.
  • Göçer, H., Akıncıoğlu, A., Öztaşkın, N., Göksu, S., & Gülçin, İ. (2013). Synthesis, Antioxidant, and Antiacetylcholinesterase Activities of Sulfonamide Derivatives of Dopamine‐Related Compounds. Archiv der pharmazie, 346(11), 783-792.
  • Gülcin, İ. (2006). Antioxidant and antiradical activities of L-carnitine. Life Sciences, 78(8), 803-811.
  • Gülçin, İ. (2009). Antioxidant activity of L-adrenaline: A structure-activity insight. Chemico-Biological Interactions, 179(2-3), 71-80.
  • Gülçin, İ. (2012). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345-391.
  • Gülçin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651-715.
  • Gülçin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
  • Gülçin, İ., Beydemir, Ş., Topal, F., Gagua, N., Bakuridze, A., Bayram, R., & Gepdiremen, A. (2012). Apoptotic, antioxidant and antiradical effects of majdine and isomajdine from Vinca herbacea Waldst. and kit. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(4), 587-594.
  • Gülçin, İ., Topal, F., Çakmakçı, R., Bilsel, M., Gören, A. C., & Erdogan, U. (2011). Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76(4), C585-C593.
  • Halliwell, B. (1996). Antioxidants in human health and disease. Annual Review of Nutrition, 16(1), 33-50.
  • İnan Ergün, A., & Topal, M. (2023). Determination of the Antioxidant Capacity of Puerarin and Its Effect on Cholinesterases by in vitro and in silico Methods. ChemistrySelect, 8(41), e202302751.
  • Kalın, P., Gülçin, İ., & Gören, A. C. (2015). Antioxidant activity and polyphenol content of cranberries (Vaccinium macrocarpon). Records of Natural Products, 9(4), 496.
  • Kim, K., Lim, C. E., & Lee, B. Y. (2020). The complete chloroplast genome sequence of Peucedanum chujaense (Apiaceae), an endemic species to Korea. Mitochondrial DNA Part B, 5(2), 1937-1938.
  • Kızıltaş, H., Bingol, Z., Gören, A. C., Kose, L. P., Durmaz, L., Topal, F., . . . Gülçin, İ. (2021). LC-HRMS profiling and antidiabetic, anticholinergic, and antioxidant activities of aerial parts of kınkor (Ferulago stellata). Molecules, 26(9), 2469.
  • Koçyiğit, Ü. M. (2018). Investigation of Inhibition Effect of Oxytocin on Carbonic Anhydrase and Acetylcholinesterase Enzymes in the Heart Tissues of Rats. Journal of the Institute of Science & Technology/Fen Bilimleri Estitüsü Dergisi, 8(1).
  • Krishnaraj, C., Young, G. M., & Yun, S. (2022). In vitro embryotoxicity and mode of antibacterial mechanistic study of gold and copper nanoparticles synthesized from Angelica keiskei (Miq.) Koidz. leaves extract. Saudi Journal of Biological Sciences, 29, 2552-2563.
  • Li, J., Cesari, M., Liu, F., Dong, B., & Vellas, B. (2017). Effects of diabetes mellitus on cognitive decline in patients with Alzheimer disease: a systematic review. Canadian Journal of Diabetes, 41(1), 114-119.
  • Maruszak, A., & Żekanowski, C. (2011). Mitochondrial dysfunction and Alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2), 320-330.
  • Matuschek, E., Brown, D. F. J., & Kahlmeter, G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 20, 255-266.
  • Moreira, P. I., Smith, M. A., Zhu, X., Nunomura, A., Castellani, R. J., & Perry, G. (2005). Oxidative stress and neurodegeneration. Annals of the New York Academy of Sciences, 1043(1), 545-552.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
  • Özler, E., Topal, F., Topal, M., & Öztürk Sarıkaya, S. B. (2023). LC‐HRMS Profiling and Phenolic Content, Cholinesterase, and Antioxidant Activities of Terminalia citrina. Chemistry & Biodiversity, e202201250.
  • Öztürk Sarıkaya, S. B. (2015). Acethylcholinesterase inhibitory potential and antioxidant properties of pyrogallol. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(5), 761-766.
  • Park, C. H., Park, H. W., Yeo, H. J., Jung, D. H., Jeon, K. S., Kim, T. J., Park, S. U. (2022). Combined transcriptome and metabolome analysis and evaluation of antioxidant and antibacterial activities in white, pink, and violet flowers of Angelica gigas. Industrial Crops & Products, 188, 115605.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.
  • Saija, A., Trombetta, D., Tomaino, A., Cascio, R. L., Princi, P., Uccella, N., . . . Castelli, F. (1998). In vitro'evaluation of the antioxidant activity and biomembrane interaction of the plant phenols oleuropein and hydroxytyrosol. International Journal of Pharmaceutics, 166(2), 123-133.
  • Sharma, V., & Mehdi, M. M. (2023). Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochemistry International, 105490.
  • Singh, S., Mahajan, M., Kumar, D., Singh, K., & Chowdhary, M. (2023). An inclusive study of recent advancements in Alzheimer's disease: A comprehensive review. Neuropeptides, 102369.
  • Tao, Y., Zhang, Y., Cheng, Y., & Wang, Y. (2013). Rapid screening and identification of α‐glucosidase inhibitors from mulberry leaves using enzyme‐immobilized magnetic beads coupled with HPLC/MS and NMR. Biomedical Chromatography, 27(2), 148-155.
  • Topal, F. (2019a). Anticholinergic and antidiabetic effects of isoeugenol from clove (Eugenia caryophylata) oil. International Journal of Food Properties, 22(1), 583-592.
  • Topal, F. (2019b). Determination of antioxidant capacity of 2, 6-quinolinediol. Journal of the Institute of Science and Technology, 9(3), 1520-1527.
  • Topal, F. (2019c). Inhibition profiles of Voriconazole against acetylcholinesterase, α‐glycosidase, and human carbonic anhydrase I and II isoenzymes. Journal of Biochemical and Molecular Toxicology, 33(10), e22385.
  • Topal, F., Gulcin, I., Dastan, A., & Guney, M. (2017). Novel eugenol derivatives: Potent acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 94, 845-851.
  • Topal, M. (2019). The inhibition profile of sesamol against α-glycosidase and acetylcholinesterase enzymes. International Journal of Food Properties, 22(1), 1527-1535.
  • Topal, M. (2020). Secondary metabolites of ethanol extracts of pinus sylvestris cones from eastern anatolia and their antioxidant, cholinesterase and α-glucosidase activities. Records of Natural Products, 14, 129-138.
  • Topal, M., & Gulcin, İ. (2022). Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatalysis and Agricultural Biotechnology, 43, 102417.
  • Topal, M., Ozturk Sarıkaya, S. B., & Topal, F. (2021). Determination of Angelica archangelica’s Antioxidant Capacity and Mineral Content. ChemistrySelect, 6(31), 7976-7980.
  • Türkan, F., Atalar, M. N., Aras, A., Gülçin, İ., & Bursal, E. (2020). ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn. Bioorganic Chemistry, 94, 103333.
  • Türkeş, C., Akocak, S., Işık, M., Lolak, N., Taslimi, P., Durgun, M., . . . Beydemir, Ş. (2021). Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. Journal of Biomolecular Structure and Dynamics, 1-13.
  • Türkuçar, S. A., Karaçelik, A. A., & Karaköse, M. (2021). Phenolic compounds, essential oil composition, and antioxidant activity of Angelica purpurascens (Avé-Lall.) Gill. Turkish Journal of Chemistry, 45(3), 956-966.
  • Yen, G.-C., & Chen, H.-Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27-32.
There are 52 citations in total.

Details

Primary Language English
Subjects Medicinal and Biomolecular Chemistry (Other)
Journal Section Kimya / Chemistry
Authors

Meryem Topal 0000-0002-2107-8603

Fevzi Topal 0000-0002-2443-2372

Fırat Yılmaz 0000-0003-3633-0012

Project Number 22.B0225.02.01
Early Pub Date May 28, 2024
Publication Date June 1, 2024
Submission Date December 28, 2023
Acceptance Date March 19, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Topal, M., Topal, F., & Yılmaz, F. (2024). Exploring the Impacts of Angelica purpurascens Extracts on Anticholinergic, Antidiabetic, Antibacterial Potential, and Antioxidant Capacity. Journal of the Institute of Science and Technology, 14(2), 790-804. https://doi.org/10.21597/jist.1411501
AMA Topal M, Topal F, Yılmaz F. Exploring the Impacts of Angelica purpurascens Extracts on Anticholinergic, Antidiabetic, Antibacterial Potential, and Antioxidant Capacity. J. Inst. Sci. and Tech. June 2024;14(2):790-804. doi:10.21597/jist.1411501
Chicago Topal, Meryem, Fevzi Topal, and Fırat Yılmaz. “Exploring the Impacts of Angelica Purpurascens Extracts on Anticholinergic, Antidiabetic, Antibacterial Potential, and Antioxidant Capacity”. Journal of the Institute of Science and Technology 14, no. 2 (June 2024): 790-804. https://doi.org/10.21597/jist.1411501.
EndNote Topal M, Topal F, Yılmaz F (June 1, 2024) Exploring the Impacts of Angelica purpurascens Extracts on Anticholinergic, Antidiabetic, Antibacterial Potential, and Antioxidant Capacity. Journal of the Institute of Science and Technology 14 2 790–804.
IEEE M. Topal, F. Topal, and F. Yılmaz, “Exploring the Impacts of Angelica purpurascens Extracts on Anticholinergic, Antidiabetic, Antibacterial Potential, and Antioxidant Capacity”, J. Inst. Sci. and Tech., vol. 14, no. 2, pp. 790–804, 2024, doi: 10.21597/jist.1411501.
ISNAD Topal, Meryem et al. “Exploring the Impacts of Angelica Purpurascens Extracts on Anticholinergic, Antidiabetic, Antibacterial Potential, and Antioxidant Capacity”. Journal of the Institute of Science and Technology 14/2 (June 2024), 790-804. https://doi.org/10.21597/jist.1411501.
JAMA Topal M, Topal F, Yılmaz F. Exploring the Impacts of Angelica purpurascens Extracts on Anticholinergic, Antidiabetic, Antibacterial Potential, and Antioxidant Capacity. J. Inst. Sci. and Tech. 2024;14:790–804.
MLA Topal, Meryem et al. “Exploring the Impacts of Angelica Purpurascens Extracts on Anticholinergic, Antidiabetic, Antibacterial Potential, and Antioxidant Capacity”. Journal of the Institute of Science and Technology, vol. 14, no. 2, 2024, pp. 790-04, doi:10.21597/jist.1411501.
Vancouver Topal M, Topal F, Yılmaz F. Exploring the Impacts of Angelica purpurascens Extracts on Anticholinergic, Antidiabetic, Antibacterial Potential, and Antioxidant Capacity. J. Inst. Sci. and Tech. 2024;14(2):790-804.