Research Article
BibTex RIS Cite

Arıtma Çamuru ve Bor Uygulamalarının Fasulyedeki (Phaseolus vulgaris L.) Ağır Metal ve Mikro Element Düzeyleri Üzerine Etkisi

Year 2024, Volume: 14 Issue: 3, 944 - 957, 01.09.2024
https://doi.org/10.21597/jist.1450864

Abstract

Bu çalışma, artan dozlarda bor ve arıtma çamuru uygulamalarının fasulye (Phaseolus vulgaris L.) bitkisinde ağır metal ve mikro element içeriğindeki değişimlerinin belirlenmesi amacıyla yapılmıştır. İklim odasında tam şansa bağlı tesadüf parselleri deneme desenine göre hazırlanan araştırma, 3 tekerrürlü olacak şekilde yürütülmüştür. Standart bodur fasulye çeşidi olan Mina’nın kullanıldığı araştırmada, dört farklı bor dozu (B0:0mg/kg, B10:10mg/kg, B20:20mg/kg, B40:40mg/kg) ve dört farklı arıtma çamuru dozu (AÇ0:%0, AÇ5:%5, AÇ10:%10, AÇ20:%20) deneme faktörleri olarak kullanılmıştır.
Araştırmada atık çamuru uygulamalarının kontrole kıyasla fasulyedeki mikro elementlerden alüminyum (Al), bakır (Cu), mangan (Mn) ve çinko (Zn), demir (Fe), krom (Cr), kurşun (Pb), nikel (Ni), arsenik (As), kadmiyum (Cd) ve kolbalt (Co) gibi elementlerin içeriğini arttırmada etkili olduğu bulunmuştur. Aynı zamanda bor içeriğinde de azalmaya neden olduğu gözlenmiştir. En yüksek mikro element ve ağır metal içerikleri %5 ve %10 arıtma çamuru uygulamalarında ölçülmüştür. Diğer taraftan bor uygulamalarının fasulye bitkisindeki alüminyum, bakır, bor, çinko, kobalt, mangan ve nikel içeriğini kontrol bitkilerine kıyasla yükselttiği, demir, arsenik, kadmiyum ve kurşun içeriklerini ise düşürdüğü tespit edilmiştir.
Çalışma, arıtma çamuru uygulamaları sonucu artan metal içeriklerinin olumsuz etkilerinin bor uygulamalarıyla tolere edebileceğini göstermiştir. Bu tür bor uygulamalarıyla bitkilerde ağır metal kirliliğinin azaltılmasının mümkün olabileceği görülmektedir.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Müdürlüğü

Project Number

FYL-2022-9946

References

  • Allard, S., Gutierrez, L., Fontaine, C., Croué, J. P., & Gallard, H. (2017). Organic matter interactions with natural manganese oxide and synthetic birnessite. Science of The Total Environment, 583, 487-495.
  • Bozkurt, M. A., & Yarilgaç, T. (2003). The effects of sewage sludge applications on the yield, growth, nutrition and heavy metal accumulation in apple trees growing in dry conditions. Turkish Journal of Agriculture and Forestry, 27(5), 285-292.
  • Budak, M., Günal, H. (2015). Tuzlu-Alkali Topraklarda Bor Konsantrasyonunun Uzaysal Değişkenliğinin Jeoistatistiksel Analizi ve Haritalanması. Ege Üniversitesi Ziraat Fakültesi Dergisi, 52(2), 191-202.
  • Chang, C., Sommerfeldt, T. G., & Entz, T. (1991). Soil chemistry after eleven annual applications of cattle feedlot manure (Vol. 20, No. 2, pp. 475-480). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
  • Demirkan, G. Ç., Akat, H., & Yokaş, İ. (2014). Atık su arıtma çamurunun Clarkia amoena (Yer Açelyası) türünde bitki gelişimi ve çiçeklenme üzerine etkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 28(2), 49-58.
  • Durak, Z. (2005). Adana Sofulu düzensiz çöp depolama alanında oluşan çöp sızıntı sularının bitki yetiştirilmesinde kullanılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi.
  • Dordas, C., & Brown, P. H. (2005). Boron deficiency affects cell viability, phenolic leakage and oxidative burst in rose cell cultures. Plant and soil, 268(1), 293-301.
  • Düring, R. A., & Gäth, S. (2002). Utilization of municipal organic wastes in agriculture: where do we stand, where will we go?. Journal of Plant Nutrition and Soil Science, 165(4), 544-556.
  • Elrashidi, M. A., & O'connor, G. A. (1982). Boron sorption and desorption in soils. Soil Science Society of America Journal, 46(1), 27-31.
  • Emir, C. (2017). Bor gübrelemesinin kereviz (Apium graveolens L.) ve turp (Raphanus sativus L.) bitkilerinin verim ve bazı bitki özelliklerine etkisi (Master's thesis, İnönü Üniversitesi Fen Bilimleri Enstitüsü).
  • FAO (2021). Statistics Database (The Production and Production Area of Cowpea). https://www.fao.org/faostat/en/#data/QCL/visualize (Erişim Tarihi: 13.01.2023).
  • Erdinç, U., Şen, O. F., Kılıç, Ö. B. D., Candan, N., Uzun, N., Üner, K., & Rahmanoğlu, N. (2017). Determination of soil plant available boron and boron nutritional status of tomato plants in major industrial tomato cultivated areas of Turkey. Journal of Boron, 2(3), 161-167.
  • Fink, J. R., Inda, A.V., Tiecher, T., Barrón, V. (2016). Iron oxides and organic matter on soil phosphorus availability. Ciencia e agrotecnologia, 40, 369-379.
  • Gardiner, D.T., Miller, R.W. (2008). Soils in Our Environment. 11th Edition, Pearson/Prentice Hall, Upper Saddle Hill, Ne Jersey, USA.
  • Garzón, E., González-Andrés, F., García-Martínez, V. M., & de Paz, J. M. (2011). Mineralization and nutrient release of an organic fertilizer made by flour, meat, and crop residues in two vineyard soils with different pH levels. Communications in soil science and plant analysis, 42(13), 1485-1496.
  • Günay, A (1992). Özel Sebze Yetiştiriciliği Cilt: 4. Çağ Matbaası, Ankara.
  • Güneş, A.M., Alpaslan, A., İnal. (2013). Bitki Besleme ve Gübreleme. Ankara Üniversitesi, Ziraat Fakültesi, Yayın no:1581, Ders kitabı:533, Ankara.
  • Greweling, T., Peech, M (1960). Chemical Soil Tests. Cornell University Agricultural Experiment Station, New York.
  • Goldberg, S. (1997). Reaction of Boron with Soils (pp: 193: 35-48). Plant and oil. Proceedings, RW Bell and B. Rerkasem (Eds)., Kluwer Academic Publishers. Dordrecth, the Netherlands.
  • Hall, A. E., Cisse, N., Thiaw, S., Elawad, H. O., Ehlers, J. D., Ismail, A. M., ... & McWatters, K. H. (2003). Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Research, 82(2-3), 103-134.
  • Hall, A. E. (2004). Breeding for adaptation to drought and heat in cowpea. European Journal of Agronomy, 21(4), 447-454.
  • Idahosa, D. O., Alika, J. E., & Omoregie, A. U. (2010). Genotypic variability for agronomic and yield characters in some cowpea (Vigna unguiculata (L.) Walp.). Nature and Science, 8(3), 48-55.
  • Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S., & Liyanage, R. (2018). Cowpea: an overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98(13), 4793-4806.
  • Kacar, B., İnal, A. (2008). Bitki Analizleri. Nobel Yayın No: 1241. Fen Bilimleri, 63(1).
  • Kacar, B., Katkat, V. (1999). Gübreler ve Gübreleme Tekniği. Uludağ Üniversitesi Güçlendirme Vakfı Yayın No: 144, Vipaş Yayın No:20, 531s., Bursa
  • Kacar, B., Katkat, V. (2010). Bitki Besleme. 5. Baskı, Nobel Yayın Dağıtım Tic. Ltd. Şti, Kızılay-Ankara.
  • Kabata-Pendias, A. (2011). Trace Elements in Soil and Plants. 4th Edition, CRC Press, New York. ISBN: 978-1-4200-9368.
  • Kaya, A. R., Eryigit, T., Uslu, O. S., Gedik, O., & Tuncturk, M. (2019). Effects of lead on seed germination and seedling growth in different sesame (sesamum indicum) genotypes. Fresenius Environmental Bulletin, 28, 6574-6579.
  • Kooijman, A. M., Lubbers, I., & Van Til, M. (2009). Iron-rich dune grasslands: relations between soil organic matter and sorption of Fe and P. Environmental Pollution, 157(11), 3158-3165.
  • Kowalik, R., Latosińska, J., & Gawdzik, J. (2021). Risk analysis of heavy metal accumulation from sewage sludge of selected wastewater treatment plants in Poland. Water, 13(15), 2070.
  • Küçükhemek, M., Gür, K., Berktay, A. (2006). Evsel Karakterli Atıksu Arıtma Çamurlarının Çim Bitkisi Ağır Metal (Mn, Zn, Ni, Cu, Cr, Pb, Cd) İçeriği Üzerine Etkisi. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 21(3), 1-12.
  • Kluczka, J., Tórz, A., Łącka, D., Kazek-Kęsik, A., & Adamek, J. (2018). Boron removal by adsorption on Cobalt (II) Doped Chitosan bio-composite. Journal of Polymers and the Environment, 26(5), 2039-2048.
  • LeNoble, M. E., Blevins, D. G., & Miles, R. J. (1996). Prevention of aluminium toxicity with supplemental boron. II. Stimulation of root growth in an acidic, high‐aluminium subsoil. Plant, Cell & Environment, 19(10), 1143-1148.
  • McCauley, A., Jones, C., Jacobsen, J. (2009). Soil pH and Organic Matter. Nutrient management module, 8(2), 1-12.
  • McCauley, A., Jones, C., Olson-Rutz, K. (2017). Soil pH and Organic Matter. Nutrient management module No. 8. US Department of Agriculture (USDA), Montana State University and Montana State University Extension.
  • Oved, T., Shaviv, A., Goldrath, T., Mandelbaum, R. T., & Minz, D. (2001). Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Applied and environmental microbiology, 67(8), 3426-3433.
  • Parks, R. Q., & Shaw, B. T. (1942). Possible mechanisms of boron fixation in soil: I. chemical. Soil Science Society of America Journal, 6(C), 219-223.
  • Pan, Y., Wang, Z., Yang, L., Wang, Z., Shi, L., Naran, R., & Xu, F. (2012). Differences in cell wall components and allocation of boron to cell walls confer variations in sensitivities of Brassica napus cultivars to boron deficiency. Plant and soil, 354(1), 383-394.
  • Plaster, E. J. (1992). Soil Science and Management. 2nd Edition, Delmar Publishers Inc., Albany, New York, USA
  • Ren, L., Zhu, D., Cui, J., Liao, S., Geng, M., Zhou, W., & Hamilton, D. (2009). Plant availability of boron doped on iron and manganese oxides and its effect on soil acidosis. Geoderma, 151(3-4), 401-406.
  • Riaz, M., Kamran, M., Fang, Y., Yang, G., Rizwan, M., Ali, S., & Wang, X. (2021). Boron supply alleviates cadmium toxicity in rice (Oryza sativa L.) by enhancing cadmium adsorption on cell wall and triggering antioxidant defense system in roots. Chemosphere, 266, 128938.
  • Schiptsova, N., Larionov, G., Vasilyev, O., Fadeeva, N., & Terentyeva, M. (2020, November). Effect of sewage sludge application on heavy metals contamination in soil and carrot. In IOP Conference Series: Earth and Environmental Science (Vol. 604, No. 1, p. 012034). IOP Publishing.
  • Sür, A., Sür, Ö., Yiğitbaşıoğlu, H. (2001). Mineraller ve Kayaçlar, Bilim Yayıncılık, Ankara.
  • Stass, A., Kotur, Z., & Horst, W. J. (2007). Effect of boron on the expression of aluminium toxicity in Phaseolus vulgaris. Physiologia Plantarum, 131(2), 283-290.
  • Wagatsuma, T., & Ezoe, Y. (1985). Effect of pH on ionic species of aluminum in medium and on aluminum toxicity under solution culture. Soil science and plant nutrition, 31(4), 547-561.
  • Walakley, A., & Black, C. A. (1934). Estimation of organic carbon by chromic acid titration method. Soil Science, 37, 29-38.
  • Wu, X., Riaz, M., Yan, L., Du, C., Liu, Y., & Jiang, C. (2017). Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls. Frontiers in plant science, 8, 1882.
  • Wu, X., Song, H., Guan, C., & Zhang, Z. (2020a). Boron alleviates cadmium toxicity in Brassica napus by promoting the chelation of cadmium onto the root cell wall components. Science of The Total Environment, 728, 138833.
  • Wu, X., Song, H., Guan, C., & Zhang, Z. (2020b). Boron mitigates cadmium toxicity to rapeseed (Brassica napus) shoots by relieving oxidative stress and enhancing cadmium chelation onto cell walls. Environmental Pollution, 263, 114546.
  • Zhang, Z. H., Riaz, T., Tang, T. J., Song, H. X., Guan, C. Y., Huang, J. Y., & Hua, Y. P. (2019). A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity. Journal of experimental botany, 70(19), 5437-5455.
  • Zhang, F. S., Yamasaki, S., & Nanzyo, M. (2002). Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals. Science of the total Environment, 284(1-3), 215-225.
  • Zhu, Y., Sun, G. X., Chen, Z., Hu, Y., & Zheng, R. L. (2018). Effects of boron treatment on arsenic uptake and efflux in rice seedlings. Huan Jing ke Xue= Huanjing Kexue, 39(7), 3400-3408.
  • Zhou, X. X., Yang, L. T., Qi, Y. P., Guo, P., & Chen, L. S. (2015). Mechanisms on boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis. PLoS One, 10(3), e0115485.

Impact of Sewage Sludge and Boron Applications on the Levels of Heavy Metals and Micro Elements in Beans (Phaseolus vulgaris L.)

Year 2024, Volume: 14 Issue: 3, 944 - 957, 01.09.2024
https://doi.org/10.21597/jist.1450864

Abstract

This study was conducted to determine the changes in the heavy metal and microelement contents of bean (Phaseolus vulgaris L.) plants with increasing doses of boron and sewage sludge applications. The experiment, which was set up according to the completely randomized design (CRD) in the climate chamber, was carried out with three replications. In the study where Mina, a standard dwarf bean variety, was used, four different boron doses (B0:0 mg/kg, B10:10 mg/kg, B20:20 mg/kg, B40: 40 mg/kg) and four doses of sewage sludge (SS0: %0, SS5: %5, SS10: %10, SS20: %20) were used as trial factors.
In the study, sewage sludge treatments were found to be more effective in increasing the content of microelements in beans compared to control, such as aluminum, copper, manganese, zinc, iron, chromium, lead, nickel, arsenic, cadmium, and cobalt. At the same time, it was observed to cause a decrease in the content of boron. The highest microelement and heavy metal contents were measured at 5% and 10% sewage sludge doses. On the other hand, it was determined that boron applications increased the aluminum, copper, boron, zinc, cobalt, manganese, and nickel contents of bean plants compared to control plants, and decreased the iron, arsenic, cadmium, and lead contents.
The study showed that the negative effects of increased metal contents as a result of sewage sludge applications can be tolerated with boron applications. It seems that it may be possible to reduce heavy metal pollution in plants with such boron treatments.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Müdürlüğü

Project Number

FYL-2022-9946

Thanks

Bu çalışma, Dr. Öğr. Üyesi Mustafa ÇİRKA danışmanlığında Berrin ATSAK tarafından yürütülen FYL-2022-9946 nolu BAP projesi tarafından desteklenmiş olan Yüksek Lisans Tezinden alınmıştır. Maddi desteklerinden dolayı Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Müdürlüğü'ne şükranlarımızı sunarız. Ayrıca her türlü desteklerinden dolayı Van Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarla Bitkileri Bölümü hocalarımıza teşekkürlerimizi sunarız

References

  • Allard, S., Gutierrez, L., Fontaine, C., Croué, J. P., & Gallard, H. (2017). Organic matter interactions with natural manganese oxide and synthetic birnessite. Science of The Total Environment, 583, 487-495.
  • Bozkurt, M. A., & Yarilgaç, T. (2003). The effects of sewage sludge applications on the yield, growth, nutrition and heavy metal accumulation in apple trees growing in dry conditions. Turkish Journal of Agriculture and Forestry, 27(5), 285-292.
  • Budak, M., Günal, H. (2015). Tuzlu-Alkali Topraklarda Bor Konsantrasyonunun Uzaysal Değişkenliğinin Jeoistatistiksel Analizi ve Haritalanması. Ege Üniversitesi Ziraat Fakültesi Dergisi, 52(2), 191-202.
  • Chang, C., Sommerfeldt, T. G., & Entz, T. (1991). Soil chemistry after eleven annual applications of cattle feedlot manure (Vol. 20, No. 2, pp. 475-480). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
  • Demirkan, G. Ç., Akat, H., & Yokaş, İ. (2014). Atık su arıtma çamurunun Clarkia amoena (Yer Açelyası) türünde bitki gelişimi ve çiçeklenme üzerine etkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 28(2), 49-58.
  • Durak, Z. (2005). Adana Sofulu düzensiz çöp depolama alanında oluşan çöp sızıntı sularının bitki yetiştirilmesinde kullanılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi.
  • Dordas, C., & Brown, P. H. (2005). Boron deficiency affects cell viability, phenolic leakage and oxidative burst in rose cell cultures. Plant and soil, 268(1), 293-301.
  • Düring, R. A., & Gäth, S. (2002). Utilization of municipal organic wastes in agriculture: where do we stand, where will we go?. Journal of Plant Nutrition and Soil Science, 165(4), 544-556.
  • Elrashidi, M. A., & O'connor, G. A. (1982). Boron sorption and desorption in soils. Soil Science Society of America Journal, 46(1), 27-31.
  • Emir, C. (2017). Bor gübrelemesinin kereviz (Apium graveolens L.) ve turp (Raphanus sativus L.) bitkilerinin verim ve bazı bitki özelliklerine etkisi (Master's thesis, İnönü Üniversitesi Fen Bilimleri Enstitüsü).
  • FAO (2021). Statistics Database (The Production and Production Area of Cowpea). https://www.fao.org/faostat/en/#data/QCL/visualize (Erişim Tarihi: 13.01.2023).
  • Erdinç, U., Şen, O. F., Kılıç, Ö. B. D., Candan, N., Uzun, N., Üner, K., & Rahmanoğlu, N. (2017). Determination of soil plant available boron and boron nutritional status of tomato plants in major industrial tomato cultivated areas of Turkey. Journal of Boron, 2(3), 161-167.
  • Fink, J. R., Inda, A.V., Tiecher, T., Barrón, V. (2016). Iron oxides and organic matter on soil phosphorus availability. Ciencia e agrotecnologia, 40, 369-379.
  • Gardiner, D.T., Miller, R.W. (2008). Soils in Our Environment. 11th Edition, Pearson/Prentice Hall, Upper Saddle Hill, Ne Jersey, USA.
  • Garzón, E., González-Andrés, F., García-Martínez, V. M., & de Paz, J. M. (2011). Mineralization and nutrient release of an organic fertilizer made by flour, meat, and crop residues in two vineyard soils with different pH levels. Communications in soil science and plant analysis, 42(13), 1485-1496.
  • Günay, A (1992). Özel Sebze Yetiştiriciliği Cilt: 4. Çağ Matbaası, Ankara.
  • Güneş, A.M., Alpaslan, A., İnal. (2013). Bitki Besleme ve Gübreleme. Ankara Üniversitesi, Ziraat Fakültesi, Yayın no:1581, Ders kitabı:533, Ankara.
  • Greweling, T., Peech, M (1960). Chemical Soil Tests. Cornell University Agricultural Experiment Station, New York.
  • Goldberg, S. (1997). Reaction of Boron with Soils (pp: 193: 35-48). Plant and oil. Proceedings, RW Bell and B. Rerkasem (Eds)., Kluwer Academic Publishers. Dordrecth, the Netherlands.
  • Hall, A. E., Cisse, N., Thiaw, S., Elawad, H. O., Ehlers, J. D., Ismail, A. M., ... & McWatters, K. H. (2003). Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Research, 82(2-3), 103-134.
  • Hall, A. E. (2004). Breeding for adaptation to drought and heat in cowpea. European Journal of Agronomy, 21(4), 447-454.
  • Idahosa, D. O., Alika, J. E., & Omoregie, A. U. (2010). Genotypic variability for agronomic and yield characters in some cowpea (Vigna unguiculata (L.) Walp.). Nature and Science, 8(3), 48-55.
  • Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S., & Liyanage, R. (2018). Cowpea: an overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98(13), 4793-4806.
  • Kacar, B., İnal, A. (2008). Bitki Analizleri. Nobel Yayın No: 1241. Fen Bilimleri, 63(1).
  • Kacar, B., Katkat, V. (1999). Gübreler ve Gübreleme Tekniği. Uludağ Üniversitesi Güçlendirme Vakfı Yayın No: 144, Vipaş Yayın No:20, 531s., Bursa
  • Kacar, B., Katkat, V. (2010). Bitki Besleme. 5. Baskı, Nobel Yayın Dağıtım Tic. Ltd. Şti, Kızılay-Ankara.
  • Kabata-Pendias, A. (2011). Trace Elements in Soil and Plants. 4th Edition, CRC Press, New York. ISBN: 978-1-4200-9368.
  • Kaya, A. R., Eryigit, T., Uslu, O. S., Gedik, O., & Tuncturk, M. (2019). Effects of lead on seed germination and seedling growth in different sesame (sesamum indicum) genotypes. Fresenius Environmental Bulletin, 28, 6574-6579.
  • Kooijman, A. M., Lubbers, I., & Van Til, M. (2009). Iron-rich dune grasslands: relations between soil organic matter and sorption of Fe and P. Environmental Pollution, 157(11), 3158-3165.
  • Kowalik, R., Latosińska, J., & Gawdzik, J. (2021). Risk analysis of heavy metal accumulation from sewage sludge of selected wastewater treatment plants in Poland. Water, 13(15), 2070.
  • Küçükhemek, M., Gür, K., Berktay, A. (2006). Evsel Karakterli Atıksu Arıtma Çamurlarının Çim Bitkisi Ağır Metal (Mn, Zn, Ni, Cu, Cr, Pb, Cd) İçeriği Üzerine Etkisi. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 21(3), 1-12.
  • Kluczka, J., Tórz, A., Łącka, D., Kazek-Kęsik, A., & Adamek, J. (2018). Boron removal by adsorption on Cobalt (II) Doped Chitosan bio-composite. Journal of Polymers and the Environment, 26(5), 2039-2048.
  • LeNoble, M. E., Blevins, D. G., & Miles, R. J. (1996). Prevention of aluminium toxicity with supplemental boron. II. Stimulation of root growth in an acidic, high‐aluminium subsoil. Plant, Cell & Environment, 19(10), 1143-1148.
  • McCauley, A., Jones, C., Jacobsen, J. (2009). Soil pH and Organic Matter. Nutrient management module, 8(2), 1-12.
  • McCauley, A., Jones, C., Olson-Rutz, K. (2017). Soil pH and Organic Matter. Nutrient management module No. 8. US Department of Agriculture (USDA), Montana State University and Montana State University Extension.
  • Oved, T., Shaviv, A., Goldrath, T., Mandelbaum, R. T., & Minz, D. (2001). Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Applied and environmental microbiology, 67(8), 3426-3433.
  • Parks, R. Q., & Shaw, B. T. (1942). Possible mechanisms of boron fixation in soil: I. chemical. Soil Science Society of America Journal, 6(C), 219-223.
  • Pan, Y., Wang, Z., Yang, L., Wang, Z., Shi, L., Naran, R., & Xu, F. (2012). Differences in cell wall components and allocation of boron to cell walls confer variations in sensitivities of Brassica napus cultivars to boron deficiency. Plant and soil, 354(1), 383-394.
  • Plaster, E. J. (1992). Soil Science and Management. 2nd Edition, Delmar Publishers Inc., Albany, New York, USA
  • Ren, L., Zhu, D., Cui, J., Liao, S., Geng, M., Zhou, W., & Hamilton, D. (2009). Plant availability of boron doped on iron and manganese oxides and its effect on soil acidosis. Geoderma, 151(3-4), 401-406.
  • Riaz, M., Kamran, M., Fang, Y., Yang, G., Rizwan, M., Ali, S., & Wang, X. (2021). Boron supply alleviates cadmium toxicity in rice (Oryza sativa L.) by enhancing cadmium adsorption on cell wall and triggering antioxidant defense system in roots. Chemosphere, 266, 128938.
  • Schiptsova, N., Larionov, G., Vasilyev, O., Fadeeva, N., & Terentyeva, M. (2020, November). Effect of sewage sludge application on heavy metals contamination in soil and carrot. In IOP Conference Series: Earth and Environmental Science (Vol. 604, No. 1, p. 012034). IOP Publishing.
  • Sür, A., Sür, Ö., Yiğitbaşıoğlu, H. (2001). Mineraller ve Kayaçlar, Bilim Yayıncılık, Ankara.
  • Stass, A., Kotur, Z., & Horst, W. J. (2007). Effect of boron on the expression of aluminium toxicity in Phaseolus vulgaris. Physiologia Plantarum, 131(2), 283-290.
  • Wagatsuma, T., & Ezoe, Y. (1985). Effect of pH on ionic species of aluminum in medium and on aluminum toxicity under solution culture. Soil science and plant nutrition, 31(4), 547-561.
  • Walakley, A., & Black, C. A. (1934). Estimation of organic carbon by chromic acid titration method. Soil Science, 37, 29-38.
  • Wu, X., Riaz, M., Yan, L., Du, C., Liu, Y., & Jiang, C. (2017). Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls. Frontiers in plant science, 8, 1882.
  • Wu, X., Song, H., Guan, C., & Zhang, Z. (2020a). Boron alleviates cadmium toxicity in Brassica napus by promoting the chelation of cadmium onto the root cell wall components. Science of The Total Environment, 728, 138833.
  • Wu, X., Song, H., Guan, C., & Zhang, Z. (2020b). Boron mitigates cadmium toxicity to rapeseed (Brassica napus) shoots by relieving oxidative stress and enhancing cadmium chelation onto cell walls. Environmental Pollution, 263, 114546.
  • Zhang, Z. H., Riaz, T., Tang, T. J., Song, H. X., Guan, C. Y., Huang, J. Y., & Hua, Y. P. (2019). A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity. Journal of experimental botany, 70(19), 5437-5455.
  • Zhang, F. S., Yamasaki, S., & Nanzyo, M. (2002). Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals. Science of the total Environment, 284(1-3), 215-225.
  • Zhu, Y., Sun, G. X., Chen, Z., Hu, Y., & Zheng, R. L. (2018). Effects of boron treatment on arsenic uptake and efflux in rice seedlings. Huan Jing ke Xue= Huanjing Kexue, 39(7), 3400-3408.
  • Zhou, X. X., Yang, L. T., Qi, Y. P., Guo, P., & Chen, L. S. (2015). Mechanisms on boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis. PLoS One, 10(3), e0115485.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Cereals and Legumes
Journal Section Bahçe Bitkileri / Horticulture
Authors

Berrin Atsak 0000-0003-3405-1941

Mustafa Çirka 0000-0001-6506-7407

Project Number FYL-2022-9946
Early Pub Date August 27, 2024
Publication Date September 1, 2024
Submission Date March 11, 2024
Acceptance Date May 16, 2024
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Atsak, B., & Çirka, M. (2024). Arıtma Çamuru ve Bor Uygulamalarının Fasulyedeki (Phaseolus vulgaris L.) Ağır Metal ve Mikro Element Düzeyleri Üzerine Etkisi. Journal of the Institute of Science and Technology, 14(3), 944-957. https://doi.org/10.21597/jist.1450864
AMA Atsak B, Çirka M. Arıtma Çamuru ve Bor Uygulamalarının Fasulyedeki (Phaseolus vulgaris L.) Ağır Metal ve Mikro Element Düzeyleri Üzerine Etkisi. J. Inst. Sci. and Tech. September 2024;14(3):944-957. doi:10.21597/jist.1450864
Chicago Atsak, Berrin, and Mustafa Çirka. “Arıtma Çamuru Ve Bor Uygulamalarının Fasulyedeki (Phaseolus Vulgaris L.) Ağır Metal Ve Mikro Element Düzeyleri Üzerine Etkisi”. Journal of the Institute of Science and Technology 14, no. 3 (September 2024): 944-57. https://doi.org/10.21597/jist.1450864.
EndNote Atsak B, Çirka M (September 1, 2024) Arıtma Çamuru ve Bor Uygulamalarının Fasulyedeki (Phaseolus vulgaris L.) Ağır Metal ve Mikro Element Düzeyleri Üzerine Etkisi. Journal of the Institute of Science and Technology 14 3 944–957.
IEEE B. Atsak and M. Çirka, “Arıtma Çamuru ve Bor Uygulamalarının Fasulyedeki (Phaseolus vulgaris L.) Ağır Metal ve Mikro Element Düzeyleri Üzerine Etkisi”, J. Inst. Sci. and Tech., vol. 14, no. 3, pp. 944–957, 2024, doi: 10.21597/jist.1450864.
ISNAD Atsak, Berrin - Çirka, Mustafa. “Arıtma Çamuru Ve Bor Uygulamalarının Fasulyedeki (Phaseolus Vulgaris L.) Ağır Metal Ve Mikro Element Düzeyleri Üzerine Etkisi”. Journal of the Institute of Science and Technology 14/3 (September 2024), 944-957. https://doi.org/10.21597/jist.1450864.
JAMA Atsak B, Çirka M. Arıtma Çamuru ve Bor Uygulamalarının Fasulyedeki (Phaseolus vulgaris L.) Ağır Metal ve Mikro Element Düzeyleri Üzerine Etkisi. J. Inst. Sci. and Tech. 2024;14:944–957.
MLA Atsak, Berrin and Mustafa Çirka. “Arıtma Çamuru Ve Bor Uygulamalarının Fasulyedeki (Phaseolus Vulgaris L.) Ağır Metal Ve Mikro Element Düzeyleri Üzerine Etkisi”. Journal of the Institute of Science and Technology, vol. 14, no. 3, 2024, pp. 944-57, doi:10.21597/jist.1450864.
Vancouver Atsak B, Çirka M. Arıtma Çamuru ve Bor Uygulamalarının Fasulyedeki (Phaseolus vulgaris L.) Ağır Metal ve Mikro Element Düzeyleri Üzerine Etkisi. J. Inst. Sci. and Tech. 2024;14(3):944-57.